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Empirical study on the
construction of a cognitive model
of factorization in eighth-grade
students

Xu Zhangtao, Cai Jiabao*, Li Jiale, Li Na and Li Bo

School of Mathematics and Statistics, Central China Normal University, Wuhan, China

The construction of cognitive models is the basis for cognitive diagnosis, and

the cognitive models will change based on the purpose of the study. According

to the purpose of mathematical education, the cognitive factorization model

is constructed based on the competence and knowledge dimensions. The

factorization cognitive model was preliminarily constructed using expert-defined

and literature surveys, and a small-scale test was subsequently carried out. The

rationality of the cognitive model was tested through verbal reports and the

regression of the item’s di�culty through the cognitive attributes. The study

included a sample of 72 students from two eighth-grade classes in a junior

high school located in Wuhan. A diagnosis was made based on the mastery

of factorization knowledge and the level of mathematical operation ability of

the eighth graders in the cognitive model. Research 1 demonstrates that the

construction of the cognitive factorization model is reasonable. Research 2

shows that approximately 79% of students’ mathematics operation ability can

reach the level of knowledge understanding, 71% of students can reach the

level of knowledge transfer, and only 28% of students can reach the level of

knowledge innovation.

KEYWORDS

factorization, cognitive diagnosis, cognitive models, regression analysis, middle school

education

Introduction

Frederiksen et al. (1993) classified the evolution of the psychological test theory

into two stages: standard test theory and test theory for a new generation of tests.

Standard test theory includes classical test theory (CTT), generalizability theory (GT),

and item response theory (IRT) (Dai, 2010), which emphasizes measuring and assessing

an individual’s macro-ability level. However, the psychological significance of depicting

the macro-ability level’s “statistical structure” is fuzzy. Cognitive diagnostic (CD) is based

on project response theory and is more sensitive to the machining process of individual

micro psychology, revealing the psychological significance of the “statistical structure” of

the macroscopic ability level. The new generation of test theory emphasizes the need to

simultaneously assess an individual’s macro-level competency and diagnose their micro-

psychological processes (Tu et al., 2012). The realization of this process is based on the

cognitive model of problem-solving and the psychological measurement model of testing.

The cores of cognitive diagnostic assessment theory (CDAT) are the cognitive model and

the cognitive diagnosis models (CDMs) (Tu et al., 2019). Currently, there is no uniform

standard for the definition of cognitive models worldwide (Petkov and Luiza, 2013).
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While the development and research of CDMs is a hot topic, both

at home and abroad, there are over 60 CDMs that can be used

by researchers in contemporary times. The cognitive diagnosis

model, which is based on the theory of cognitive diagnosis and

combined with the mathematical model, can set the cognitive

characteristics specified in the study as the independent variables

in the mathematical model and the subjects’ responses as the

dependent variables in the model to compute the mathematical

relationship between the independent variables and the dependent

variables and diagnose the subjects’ cognitive structure (Deng,

2018). The development of a cognitive model is the foundation

of cognitive diagnosis, and its rationality has a direct impact on

the accuracy rate. Direct cognitive diagnosis without a cognitive

model is akin to entering a large city without a map and stumbling

around on crisscrossing roads (Ding et al., 2012).While the number

of studies on the construction of cognitive models is relatively

small, there is no suitable cognitive model for achievement testing,

mainly because the cognitive model is relatively complex, and its

construction differs according to different research purposes. It is

not only closely related to subject knowledge but also related to

the researchers’ comprehension of the subject knowledge’s internal

structure. The order of the development of mathematics knowledge

itself is different from the order arranged in the textbook, and

there are individual differences in the structure of mathematics

knowledge on the minds of students (Yu P., 2018). Owing to these

differences, the construction of the cognitive models turned out to

be more meaningful. The development of ability is based on the

mastery of knowledge, and mastering knowledge itself is also an

ability (Yu J., 2018, pp. 80–85). Factorization is one of the most

important identical transformations in middle school mathematics,

and the factorization process includes many mathematical thinking

methods, such as equation thought, whole thought, and so

on, which can greatly cultivate students’ observation, operation,

and creative abilities. This view coincides with the theoretical

community’s view on the relationship between knowledge and

ability. Yu J. (2018) divided the results of knowledge learning

into knowledge understanding, knowledge transfer, and knowledge

innovation, which represent the three levels of key competence

in mathematics disciplines (Yu J., 2018, pp. 80–85). Based on

the relationship between knowledge and ability, taking junior

high school algebra’s ‘factorization’ as an example and combining

“mathematics key ability level,” which was put forward by

Yu J. (2018) eighth graders’ factorization cognitive model was

constructed together on the knowledge dimension and the ability

dimension. The purpose of mathematics teaching is not only to

learn existing knowledge; one of its most important purposes is

to transfer the acquired knowledge to a new situation, which

requires students to learn to solve problems creatively (Shao et al.,

1997, pp. 88–89). Mathematical learning relies on understanding;

understanding promotes migration, and knowledge innovation

is the result of understanding’s arrival. There have been many

types of research on factorization teaching and studies of the

application of cognitive diagnosis. Factorization is one of the most

important transformations in middle school mathematics. The

process of factorization includes manymathematical methods (Yin,

2016, pp. 40–434), such as equations and whole ideas, which can

cultivate students’ observation ability, operation ability, creativity,

etc. According to existing research, students often make mistakes

on the test because they do not understand the meaning of

factorization. Presently, the applied research in cognitive diagnosis

can be divided into two categories: competence research and subject

knowledge research (Dai et al., 2006, pp. 10–11), and the goal of

cognitive diagnosis is to help with teaching and personalization of

learning (Zhang andWang, 2016). Therefore, the existing cognitive

models have the following characteristics: First, the cognitive model

is constructed only from the knowledge dimension and does

not reflect the ability dimension in the knowledge dimension.

Second, the cognitive model is constructed only from the capability

dimension and does not reflect the knowledge dimension in the

capability dimension. Finally, the cognitive model constructed by

the knowledge dimension fails to reflect the connection between

knowledge at a deeper level.

Cognitive attributes and cognitive
models

Cognition and attributes are the basic concepts in the

theory of cognitive diagnostic assessment. Cognition refers to

the process by which people acquire or apply knowledge. It is

the most fundamental aspect of the psychological processes of

human beings, including psychological phenomena such as feeling,

perception, memory, thinking, imagination, and language (Luo,

2019). Leighton et al. (1999) believed that “attribute” describes

the declarative or procedural knowledge required to complete a

problem in a certain field. Attributes are divided into physiological

attributes (such as gender and height) and psychological attributes

(such as feeling, perception, and ability). This theory refers to

the psychological attributes of human beings, which represent the

implicit psychological traits that affect people’s explicit behavior.

In this study, attributes specifically refer to the psychological

traits of knowledge, skills, and other abilities. The construction

of cognitive models requires consideration of cognitive attributes.

According to the purpose of mathematical education, the cognitive

factorization model is constructed based on the capability and

knowledge dimensions.

Capability dimension attribute analysis

Knowledge understanding, knowledge transfer, and knowledge

innovation are the three different patterns into which Professor

Yu separated knowledge acquisition outcomes. He claimed that

“knowledge is the origin of critical skill development.” Each

pattern corresponds to a level of key competence in the discipline,

stratification can be said to increase the three modes or stages

of core literacy development (Yu J., 2018, pp. 80–85). Knowledge

understanding (Yu, 2017) refers to the understanding and mastery

of the essence of knowledge, the capacity to comprehend

fundamental concepts and principles, and the capacity to carry out

simple applications, which is the first level of the key competence

of the discipline, which is recorded as B1. Knowledge transfer

refers to the capacity to transfer the fundamental knowledge

and fundamental skills to various learning circumstances and

to use a variety of knowledge and methods to solve problems.

It is the discipline’s second level of key competence, which is
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denoted as B2. Knowledge innovation refers to the ability to

analyze and judge things mathematically and know the world with

mathematical thinking and vision. This is not only the ultimate

goal of mathematical education but also the third level of the key

competence of the discipline, which is denoted as B3. This article

mainly studies the mathematics operation ability of the eighth

graders, so the students’ operation ability can be divided into three

levels: B1, B2, and B3.

Knowledge dimension attribute analysis

Factorization is one of the most important constant

transformations in middle school mathematics. It is clearly

stipulated in the “Compulsory Education Mathematics Curriculum

Standard (Ministry of Education of the People’s Republic of

China, 2022)” that factorization can be carried out by using the

common factor method and the formula method (directly using

the formula not more than twice) (the index is a positive integer).

This kind of deformation, in which a sum form is transformed

into a product form in the real number range, will help cultivate

students’ observation ability, operation ability, creativity, etc.

Because of its strong technical and educational value (Xu, 2018),

it plays an important role in the junior high school mathematics

system. Since cognitive psychologists have not yet developed a

suitable cognitive model for achievement tests, researchers can

construct cognitive models based on their own diagnostic goals.

Some scholars have divided the cognitive attributes involved in

factorization into five items: A1: the concept of factorization; A2:

the concept of the common factor; A3: the extracting the common

factor method; A4: the method of the square difference formula;

and A5: the method of the perfect square formula. A1 and A2 are

basic concepts belonging to the first layer. A3, A4, and A5 are

specific methods for the second layer. A1 is the basis of A3, A4,

and A5. One-way arrows exist from A1 to A3, A4, and A5. A2 is

the basis of A3. There is a one-way arrow from A2 to A3. Except

for the above arrows, no arrow connects the residual attributes.

However, there is no unrelated relationship between the

method of extracting the common factor, the method of the square

difference formula, and the method of the perfect square formula.

This point is described in detail in a study by Xu (2017), in which

some algebraic polynomials are regarded as research objects and the

multiplication formulas using inverse polynomials are regarded as

research tools. The purpose is to decompose a polynomial into the

product of several factors. In this sense, the method of extracting

the common factor, the method of the square difference formula,

and the method of the complete square formula are all research

tools; therefore, it is reasonable for some scholars to regard them

as being on the same level. However, educational mathematics uses

the most basic “grouping-extracting common factor” as a research

tool. The method of extracting a common factor refers to extracting

the common factor that can be directly observed in the polynomial

without grouping. Therefore, it is the basis of the method of

“grouping-extracting common factors.” The square difference

formula method and the complete square formula method can be

derived using the method of “grouping-extracting the common

factor” by adding polynomials and extracting the common factor by

grouping. Therefore, the method of extracting the common factor

is the basis of the method of square difference formula and the

method of perfect square formula, and these three methods can be

merged under the method of grouping-extracting common factors.

The premise of the method of grouping-extracting common factors

is “grouping,” which reflects students’ logical reasoning, visual

imagination, mathematical operation ability, and other abilities.

To describe the cognitive model in more detail, the method of

grouping-extracting common factors is expressed by grasping the

different levels of ability of the method of extracting the common

factor. Therefore, the knowledge attributes of factorization have

five items: A1: the concept of factorization; A2: the concept of the

common factor; A3: the method of extracting the common factor;

A4: the method of the square variance formula, and A5: the method

of the perfect square formula.

Establishment of the factorization
cognitive model

The concepts of factorization (A1) and the common factor

(A2) should be on the level of knowledge understanding (B1)

after analyzing the capability dimension and knowledge dimension

of factorization. The extracting common factor method (A3) has

different levels of cognitive operation and different requirements

for students. It can be divided into three levels: knowledge

understanding (B1), knowledge transfer (B2), and knowledge

innovation (B3). Among them, A3B1 refers to the knowledge

understanding of extracting the common factor method, such

as extracting the common factor that can be directly observed

in the polynomial. A3B2 refers to the knowledge transfer of

the extracting common factor method. The so-called “knowledge

migration” refers to the ability to carry out cross-context migration

of basic knowledge and basic skills and integrate multiple types

of knowledge. For example, to solve the decomposition of some

quadratic trinomials, the method is called cross-multiplication in

the textbook. In fact, cross multiplication is also a special case of

the method of “grouping-extracting common factors.” However,

it would be more difficult than the “formulation method” to

use. A3B3 refers to the knowledge innovation method, and the

“innovation” is relative to the learner. For a learner, if the new

knowledge and new methods have transcended the textbook’s

content, the new knowledge should be obtained through self-

discovery. The method of the square variance formula (A4) and the

method of the perfect square formula (A5) are both applications

of the formula, which can be regarded as the special case of

the method of “grouping-extracting common factor.” Thus, they

should belong to the level of knowledge understanding (B1). The

level of competence contained in each knowledge content is given

in Table 1 below (1 means knowledge-implied ability and 0 means

no implication).

Through discussions with educational experts, it has been

determined that the cognitive factorization model involves seven

attributes: A1B1: knowledge understanding of the factorization

concept; A2B1: knowledge understanding of the concept of the

common factor; A3B1: knowledge understanding of the method

of extracting the common factor; A3B2: knowledge transfer of

the method of extracting the common actor; A3B3: knowledge
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TABLE 1 The level of competence contained in each knowledge content

of factorization.

Knowledge
attribute
and ability
level

Knowledge
understanding

B1

knowledge
transfer

B2

Knowledge
innovation

B3

Concept of

factorization A1

1 0 0

Concept of

common factor

A2

1 0 0

Method of

extracting the

common factor

A3

1 1 1

Method of the

square variance

formula A4

1 0 0

Method of the

perfect square

formula A5

1 0 0

TABLE 2 Factorization cognitive model attribute.

Code Full name Description

A1B1 Knowledge-understanding of

the factorization concept

Understand and master the

basic concepts of factorization

A2B1 Knowledge understanding of

the concept of the

common factor

Understand and grasp the

concept of the common

factor, be able to determine

the common factor of the

polynomial

A3B1 Knowledge understanding of

the method of extracting the

common factor

Proficiently and accurately

decomposing polynomials

whose common factor that

can be observed directly

A3B2 Knowledge transfer of the

method of extracting the

common factor

Extracting the common factor

by grouping the polynomials

and using A3, A4, and A5

comprehensively

A3B3 Knowledge innovation of the

method of extracting the

common factor

Decomposing polynomials

through adding terms and

extracting the common factor

of the terms by grouping.

A4B1 Knowledge understanding of

the method of the square

variance formula

Proficiently and accurately

decomposing polynomials by

the method of formula for the

difference of square

A5B1 Knowledge understanding of

the method of the perfect

square formula

Decomposing proficiently and

accurately polynomials by the

method of formula for the

perfect square

innovation of the method of extracting the common factor; A4B1:

knowledge understanding of the method of the square variance

formula; and A5B1: knowledge understanding of the method of the

perfect square formula (see Table 2 for specific performance).

Leighton et al. (1999) believed that cognitive attributes are

not independent operations but subordinate to an interrelated

network. There may be a certain logical order or hierarchical

relationship between cognitive attributes. The cognitive model is

FIGURE 1

Factorization of hierarchical relationships between cognitive

attributes.

a hierarchical relationship diagram used to represent related tasks.

We constructed a hierarchy of seven attributes related to the

cognitive factorization model, as shown in Figure 1. The following

hierarchical relationship diagram reflects the order of psychological

processing and cognitive development of individuals in mastering

factorization knowledge to a certain extent.

Empirical research

Research I: rationality of factorization
cognitive model

Research purposes
To test the rationality of the cognitive model through

verbal reports and the regression of the item’s difficulty on the

cognitive attributes.

Research methods
Research ideas (Cai and Tu, 2015): First, according to the

cognitive factorization model, we would have the adjacency matrix

(a matrix reflecting the direct relationship between attributes) and

the reachability matrix R (amatrix reflecting the direct relationship,

indirect relationship, and self-relations between the attributes), and

the ideal mastering pattern and typical project evaluation pattern
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would be obtained after it. Then, after designing the test matrix

Q (Tatsuoka, 1983), which is a structured representation of the

relationship between items and potential attributes (Wang et al.,

2018) (generally, the test Q matrix should include the typical

project evaluation patterns), based on the typical project evaluation

pattern, the test questions would be compiled and organized

accordingly. Third, eighth graders from two junior high school

classes in Wuhan were selected for testing. Eight students from

each subject were selected to report on the 15th, 19th, and 20th

questions in the test. Then, after collecting the answer sheet data,

sorting it by 0-1, calculating the difficulty of each item, and using

R statistical software to build a program to establish a regression

analysis of the project’s difficulty on cognitive attributes to verify the

rationality of the cognitive model (Because of the page limit, only

the test matrix Q is shown here, omitting the adjacency matrix A,

the reachability matrix R, the ideal mastering mode, and the typical

project evaluation mode)

Q

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A1B1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A2B1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A3B1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A4B1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1

A5B1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

A3B2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

A3B3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Sample method and subjects
The random sampling method was used to extract samples

from eighth-grade students taught by the author. A total of 72

students were randomized from two classes in the eighth grade of a

junior high school in Wuhan. Eight students from it were selected

for verbal reports. The eighth-grade students had mastered basic

algebraic knowledge, such as rational numbers and real numbers,

and also learned the first-order linear equation. They also gained

skills in dealing with inequality and binary linear equations.

Measurement tools
We prepared factorization test questions. There were 20

questions (eight multiple-choice questions, four fill-in-the-blank

questions, and eight answer questions), of which the 15th and 19th

questions were used as “anchor questions.” Questions 1–13 were

designed to examine the level of knowledge understanding B1,

questions 14–18 were designed to examine the level of knowledge

transfer B2, and questions 19–20 were designed to examine the level

of knowledge innovation B3. The examinations of attributes A1B1,

A2B1, A3B1, A4B1, A5B1, A3B2, and A3B3 involved 19 questions,

19 questions, 17 questions, 13 questions, 14 questions, 7 questions,

and 2 questions, and the order of the questions was arranged from

easy to difficult. Examples of self-edited questions are as follows:

Question 19. Read the following materials and answer

the questions:

When Xiao Ming observed the equation (x+ p)(x+ q) = x2 +

(p+ q)x+ pq, it was found that, when p is opposite to q, the square

variance formula can be obtained. When p is the same with q, the

perfect square formula can be obtained. The process of Xiao Ming’s

decomposition of x2 − y2 is given: x2 − y2 = x2 − xy+ xy− y2 =

x(x− y)+ y(x− y) = (x− y)(x+ y). Can you refer to this idea and

decompose factor:x3 − y3.

Research result I
The test of verbal reports (take the 19th question as an

example, two students’ reports were selected for display): Student

1: “According to the materials, I write down x3 − y3, try to add

a middle item and subtract the same item, then divide them into

two groups and merge the similar items, which have the common

factor.” The answering process for Student 1 is as follows:

解：原式 = x3 − y3

= x3 − x2y + x2y − y3

= x2(x − y) + y(x2 − y2)

= x2(x − y) + y(x + y)(x − y)

= (x2 + xy + y2)(x − y)

Student 2: “According to the materials, adding and subtract

all items, including x, y with a lower degree, and then extract the

common factor.” The answering process of student 2 is as follows:

解：原式 = x3 − y3

= x3 + x2y + x2y − y3

= x(x2 + xy + y2) − y(x2 + xy + y2)

= (x2 + xy + y2)(x − y)

It can be clearly observed from the students’ answering

process that they need to try to add and subtract some items

when solving the 19th question, grouping the polynomials and

extracting the common factors from the polynomials after the

grouping. It also indicates that the student’s thinking process is

consistent with the basic idea of educational mathematics in dealing

with the factorization problem, but the hierarchical relationship

between attributes cannot be accurately verified. In this process,

the hierarchical relationship of attributes between A3B1, A3B2, and

A3B3 is reflected, but the hierarchical relationship of attributes

between A1B1, A2B1, A3B1, A4B1, and A5B1 is not reflected.

There are two main reasons for this: The first is the limitations of

verbal reports.

Since knowledge can be divided into procedural and declarative

knowledge, such as A1 and B1 being declarative knowledge, it

obviously cannot be revealed in the student’s answering process

to this question. However, it does not mean that the student’s

understanding of the concept of factorization and the concept

of the common factor is not examined. If students do not

understand these basic concepts, they may not understand the

meaning of the question, and they would not answer correctly.

Therefore, sometimes, it is difficult for some declarative knowledge

to be tested by verbal reports. Second, the cognitive structure of

students differs from the established cognitive model. From the

perspective of educational mathematics, the cognitive factorization
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FIGURE 2

Project di�culty frequency distribution histogram.

model is established through a deeper understanding of the

teaching content. Therefore, it is more suitable for students with

higher ability levels. The cognitive structure of factorization in

students is largely influenced by teachers’ mathematical pedagogical

content knowledge (MPCK), but not all mathematics teachers’

cognitive structures are consistent with those advocated for

educational mathematics.

Regression analysis: By establishing the regression of the project

difficulty to the cognitive attributes, the degree of interpretation

of the cognitive attributes was examined to test the completeness

of the cognitive attributes. The seven attributes A1B1, A2B1,

A3B1, A4B1, A5B1, A3B2, and A3B3 were used as independent

variables, and the project difficulty was used as the dependent

variable to establish the regression equation. The specific process:

First, plot the frequency distribution histogram to detect the

distribution of the difficulty of the dependent variable, as shown

in Figure 2.

As is shown in Figure 2, the difficulty of the items varies

between (0, 1), the number of items between (0, 0.2) and (0.8, 1)

is less, and the difficulty of most items is concentrated between (0.4,

0.6), indicating that the project is more reasonable. The second

limitation is calculating the correlation coefficient between each

variable and displaying it in the scatter plot matrix, as shown in

Figure 3. The scatter plot matrix is represented by the correlation

coefficient matrix and the histogram. The correlation coefficient

matrix is above the diagonal line. The histogram was used to plot

the numerical distribution of each variable on the diagonal. The

scatter plot below the diagonal visualizes the correlation between

the two variables.

The third limitation is to establish multiple linear regression

equations. The results are as follows:

y = 0.4583x1 + 0.4167x2 − 0.1328x3 + 0.2131x4 + 0.0011x5

−0.1147x6 + 0.4778x7 − 0.3889

According to the above formula, we could observe the

relationship between each attribute and the dependent variable.

The variable x7 indicates that the attribute A3B3 has higher

requirements for the student’s ability level. The items containing

this attribute are difficult, so the variable has a greater impact

on the difficulty. Moreover, the last step is the performance

evaluation of the model. The multivariate R2 value of the model

is 0.8258, and the adjusted R2 value is 0.7241, which means that

the identified attribute can explain 72.41% of the difficulty of the

project. It is generally considered that to reach more than 60%

means that the identified cognitive attributes are reliable (Tu et al.,

2012).

From the results of the verbal reports and the regression

analysis, the attributes in the cognitive factorization model are

complete, and the hierarchical relationship between the attributes

is partially verified. Thus, the hierarchical relationship between

the three different ability levels of extracting the common factor

is verified. For some attributes that fail to detect the hierarchical

relationship in a verbal report, such as attribute A1B1, attribute

A2B1, attribute A3A1, attribute A4B1, and attribute A5B1, by

analyzing the correlation between two attributes, there is a highly

weak correlation between A1B1 and A2B1 so that the two can

be juxtaposed into the same layer. A1B1 and A2B1 are highly

positively correlated with A3B1 but moderately correlated with

A4B1 and A5B1, and A3B1 is highly correlated with A4B1 and

A5B1. Therefore, A3B1 can be regarded as the second layer,

and A4B1 and A5B1 are considered as the third layer, since the

correlation coefficients between A3B2 and A4B1 or A5B1 are

greater than the correlation coefficients between A3B3 and A4B1

or A5B1. A3B2 and A3B3 can be regarded as the fourth and

fifth layers, respectively. From this, the cognitive model can be

considered to be reasonable.

Research II: cognitive diagnosis using the
cognitive factorization model

Research purposes
To diagnose the mastery of factorization knowledge and the

level of mathematical operation ability of the eighth graders

according to the cognitive factorization model.

Research method
Research ideas: Students’ response patterns can be divided

into ideal (IRT) and observation response patterns. In theory, the

researcher calculates the reachability matrix R after obtaining the

adjacency matrix A according to the cognitive factorization model

and then uses the augment algorithm (Yang et al., 2008) to obtain

the ideal test pattern, the ideal master pattern (IMP), and the ideal

response pattern (no guessing or error-free response pattern). The

test Q matrix is compiled according to the ideal test pattern; that is,

when the cognitive model is determined, the ideal reaction pattern

can be obtained by Boolean operation, as shown in Table 3.

The observation response pattern refers to the student’s actual

response through the observed response pattern that can be

obtained directly, expressing students’ knowledge state that cannot

be observed directly (Tatsuoka, 1995). Owing to the students’ guess

and slip on the test, the students’ observation response patterns

were not necessarily ideal, and there were many non-ideal response

patterns (Cao, 2009). Therefore, in the cognitive diagnosis, it

is also necessary to select an appropriate diagnostic model and

estimate the attribute master pattern of the subject according to the

Frontiers in Psychology 06 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1171352
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Zhangtao et al. 10.3389/fpsyg.2023.1171352

FIGURE 3

Scatter plot matrix.

TABLE 3 The ideal patterns (seven attributes).

Subjects Ideal master
pattern (IMP)

Ideal test
pattern

Ideal response
patterns (IRT)

1 0000000 000000000

2 1000000 1000000 100000000

3 0100000 0100000 010000000

4 1110000 1110000 111000010

5 1111000 1111000 111100010

6 1110100 1110100 111110010

7 1111110 1111110 111111011

8 1111111 1111111 111111111

9 1100000 1100000 110000010

10 1111100 1111100 111110011

diagnostic model, the observation reaction pattern of the subject,

and the test Q matrix.

The specific process was, first, data collation. The answer data

of 72 subjects were collated to form a 0–1 answering matrix of

72 rows and 20 columns (The correct answer is marked 1, and

error or not answered is marked 0). Second, model selection and

parameter estimation. The DINAmodel (Junker and Sijtsma, 2001)

(the deterministic inputs, noise “and” gate model) was selected

as a diagnostic model for its simplicity and less affected by the

number of cognitive attributes (Cai et al., 2013). Many studies have

shown that it has high diagnostic accuracy (Cheng, 2008; Rupp

and Templin, 2008). We uploaded the Q matrix and the student

answer matrix to the cognitive diagnosis analysis platform (http://

www.psychometrics-studio.cn/). We chose the DINA model in

the “Parameter Estimation” column to estimate parameters. The

students attribute mastery probability, and the mastering attribute

pattern will follow. Third, we performed a model-fitting test. We

then investigated the fitness of subjects and projects. The Lz index

was used for the index of fitness of subjects and the Maximum

Statistics indicator was used for the project fitting index. Fourth,

we conducted a testing quality analysis before calculating the

clone Bach coefficient to verify the reliability of the test item.

Finally, we analyzed the students’ knowledge states and the level

of mathematical operating ability according to their attribute

master pattern.

Research result II
Test reliability, validity, difficulty, and discrimination: The

Cronbach’s alpha of this test was 0.84, indicating a high degree

of consistency between projects, and items could be used to

test students’ mathematical operating ability. Moreover, once the

cognitive model and the diagnostic test are consistent, the test

validity would be more fully guaranteed (Ding et al., 2012). We

employed construct validity to test validity and the statistical

software SPSS to analyze student testing data using exploratory

factor analysis (72 subjects and 20 test questions). We also

used principal component analysis, determined factor extraction

if the eigenvalue was >1, and conducted factor analysis using

the orthogonal rotation maximum variance method. The results

showed that the number of KMO sampling appropriateness was

0.741, indicating that it was suitable for factor analysis; the Barthes

case sphericity value was 578.918, and the significance was 0.000,

which was <0.05, that is, the correlation matrix was not a unit

matrix so factor analysis could be carried out. Seven factors were

extracted in factor analysis, and the variance contribution rate was

70.946%. Therefore, these data were suitable for factor analysis.
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Comparing these seven factors and their corresponding observed

variables with the test Q matrix, the structure was basically the

same; thus, the 7 factors are A1B1, A2B1, A3B1, A4B1, A5B1,

A3B2, and A3B3, and the Q matrix was equitable. The difficulty

associated with the test is mostly concentrated between 0.4 and

0.6 (Figures 1–4). Items with discrimination of less than 0.2 need

to be eliminated, and those with discrimination greater than or

equal to 0.4 are the best; the rest needs to be improved. The

individual test items belong to the basic questions, and the students

have a good grasp, so the item discrimination is low, but most of

the item discrimination is ≥0.4, and the overall test preparation

is reasonable.

Model fitting: The subject fitting index follows the traditional

Lz statistic of the item response theory (IRT), and its value is

<-2, which means bad fitting. The experimental results showed

that four of the 72 subjects’ Lz values are <-2. However, 94%

of the subjects are still fitted. The project fitting index is based

on the Maximum Statistics indicator (see Table 4 below): it is

generally considered that “adj.p-value.max[z.r] > 0.05” means

fitting well.

The results of the students’ cognitive attributes: Estimating the

probability of mastery of each attribute in the student’s knowledge

state (DINA model) is shown in Table 5.

As can be observed from Tables 3, 4, the students have

a poor grasp of the knowledge attribute A5. The grasp of

the first level of attribute A3 is great, the second level of

attribute A3 follows, and the third level is badly mastered. The

average value of the mastery probability for the attributes

A1B1, A2B1, A3B1, A4B1, and A5B1 is 0.79; therefore,

the probability of grasping each attribute of the student’s

mathematical operating ability level can be obtained, as is shown

in Table 6.

Approximately 79% of the 72 students reached the level of

knowledge understanding, 71% achieved the level of knowledge

transfer, and only 28% attained the level of knowledge innovation.

Diagnostic results of students’ cognitive status: According to

the diagnosis results, some students’ knowledge status belonged to

the ideal mastery pattern, but some students’ knowledge status did

not exhibit the ideal master pattern (non-ideal mastery state). The

diagnosis types in Table 7 included students’ ideal mastery pattern

and students’ non-ideal master pattern (represented by “∗”).

The cognitive status of 43 of the 72 students can be classified

as an ideal master pattern, and the cognitive status of 29 students

is a non-ideal master pattern. The students in each state were

diagnosed based on their knowledge and ability dimensions. For

example, students with a cognitive status of 1110100 have attributes

A1B1, A2B1, A3B1, and A5B1, so they have attributes A1, A2,

A3, and A5 in the knowledge dimension, and the operating ability

reaches level B1; students with a cognitive status of 0001001∗

have attributes A4B1 and A3B3. The students mastered A3B3 in

the model but did not master A3B1. Thus, they did not have

attribute A3. Although B2 and B3 are theoretically related to the

knowledge attribute A3, in fact, B2 and B3, respectively, contain

the migration and innovation of the five knowledge attributes;

therefore, the students have reached the B3 level probably because

A4 is better. Therefore, the student is likely to reach the B3

level because knowledge attribute A4 is well mastered. Therefore,

attribute A4 is mastered in the knowledge dimension, and the

ability level reaches B1 and B3. Generally speaking, students’

ability levels should range from low to advanced. Only when

they master the low level is it possible to master the advanced

level, but the empirical data show that there are 12 students

with the ability level mastering pattern “B1, B3” among the

72 students, and there is an “overstepping” phenomenon. A

total of 18 students have mastered knowledge attributes A3, A4,

and A5 but not A1 and A2. There are four possible reasons

for this phenomenon. First, the loss of some information by

means of a 0–1 score results in an inaccurate judgment of the

attributes of students. Second, even if the judgment is correct,

the development of a student’s ability level may not strictly follow

the process from knowledge understanding to knowledge transfer

and knowledge innovation. Moreover, it may appear that there is

a phenomenon of “transition” from knowledge understanding to

knowledge innovation.

Third: Since attributes A1 and A2 are declarative knowledge,

attributes A3, A4, and A5 are procedural knowledge. Students

undergo numerous procedural exercises in their studies, and they

have a better mastery of procedural knowledge. Fourth, there is

research that indicates that the DINA model is susceptible to the

test and sample size (Tu et al., 2012). The small number of samples

in this experiment is also likely to reduce the accuracy of the

DINA model.

Limitation and prospects

The diagnostic status of 29 of 72 subjects was not in the

ideal mastery status, which reflected that students had a better

TABLE 4 Items fitting index.

Item 1 2 3 4 5 6 7 8 9 10

adj.pvalue.max[z.r] 0.133 0.342 1 0.684 0.247 0.608 0.247 0.684 0361 1

Item 11 12 13 14 15 16 17 18 19 20

adj.pvalue.max[z.r] 0.076 1 0.076 0.855 0.646 0.133 1 0.133 1 0.361

TABLE 5 Mastery probability of each attribute in the student’s knowledge state.

Number of people A1B1 A2B1 A3B1 A4B1 A5B1 A3B2 A3B3

72 0.79 0.87 0.82 0.81 0.66 0.71 0.28
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mastery of the factorization formula but worse mastery of the

concept of the factorization formula. A “bypass” phenomenon

affects a small part of students’ operational ability levels. The

main reasons are as follows: First, the use of 0–1 scoring enabled

the loss of part of the information, which may have contributed

to the student’s inability to understand the judgment. Some

studies showed that sample size and subjects easily affect the

DINA model (Qin et al., 2014). Because this test had fewer

samples, the DINA model’s classification accuracy rate would be

lower (Zhan et al., 2016); second, because attributes A1 and A2

were declarative knowledge, and attributes A3, A4, and A5 were

procedural knowledge, students had many declarative exercises in

their study process to improve their declarative knowledgemastery.

Students often made mistakes due to their incomprehension of the

meaning of factorization; the third is the test Q matrix’s impact

on cognitive diagnosis results. Setting the correct Q matrix is

the key factor for obtaining accurate parameter estimation results

(Nájera et al., 2020), but these test attributes in the test project

theory do not strictly follow the cognitive attributes’ hierarchical

structure in the cognitive model. The cognitive model reflects

subjects’ logic sequence, which they must obey in the process of

knowledge mastery, but the project test mode does not necessarily

follow this logic sequence. For example, question 19 should

have examined all attributes in terms of theory, but it primarily

tested A3B3 in actual measurement, which is consistent with the

result of factor analysis; fourth, if the judgment is correct, the

development of student ability level in this process may not strictly

accord to knowledge understanding, knowledge transfer, and

knowledge innovation. A “transition” may occur from knowledge

understanding to knowledge innovation. This point needs more

elaborate measurements to be tested; fifth, as students’ cognitive

results are related to their order structure of knowledge learned

and teachers’ knowledge structure of teaching lectures, a study

shows that teachers’ subject knowledge is significantly positively

correlated with students’ academic performance, which is an

important implicit factor affecting students’ academic performance

(Liu et al., 2016). A cognitive model from the perspective of

educational mathematics was established to provide a deeper

understanding of teaching content. It is more suitable for students

with greater abilities. Moreover, students’ cognitive structures

for factorization are greatly influenced by teachers’ mathematics

teaching knowledge, and not all math teachers’ cognitive structures

are consistent with the structures that educational mathematics

advocates. However, when the majority of pupils have the same

issue, the unjustified school curriculum may also be to blame

(Tu et al., 2012). Additionally, this study is localized in that the

testing materials examined students’ use of the add-on method

to perform factorization, including the “cross multiplication”

method. However, the “cross multiplication” method occurs in the

reading materials of eighth-grade mathematics textbooks, which

is not compulsory content and will not occur in eighth-grade

achievement tests. In addition, some students have mastered

this method through after-class study, leading to deviations

in the results. If the test material is closer to the student’s

academic test, then the results may be better. Testing content

is relatively simple, and factorization is mainly examined so

that students’ mathematical operation abilities cannot be fully

reflected. Knowledge and ability dimensions have been considered

TABLE 6 Mastery probability of each attribute of mathematical operating

ability level.

Number of people B1 B2 B3

72 0.79 0.71 0.28

when designing the Q matrix, but the cognitive model still

uses the DINA model with 0–1 scoring. The assessment of

students’ ability levels depends on the knowledge mastery results,

so the given measurement results of students’ ability levels are

relatively sweeping. Some students may not even understand the

required knowledge, but the model fails to reflect it. The idea

of a Q matrix of multilevel attributes is proposed by De la

Torre et al. (2010) and Chen and de la Torre (2013), which

can carefully examine the project measurement attribute and its

level. In other words, using the Q matrix of multilevel attributes

can not only display the knowledge attribute of factorization

but also the needed ability level of each knowledge attribute.

Moreover, each knowledge attribute corresponds to more than

one capability level to achieve a more refined measurement of

capability level. The generation of the idea of the Q matrix of

a multilevel attribute has provided the theoretical basis for the

establishment of a multilevel cognitive model. Studies (Cai et al.,

2010; Li, 2016) have shown that the stability and parameter

estimation accuracy of the attribute multilevel cognitive model

is good, and the model accuracy is great. Moreover, this study

has provided a practical reference for the establishment of a

multilevel cognitive model, which is favored in developing a

multilevel attribute cognitive model suitable for students’ academic

achievement tests.

Conclusion

ResearchIshows that the construction of the cognitive

factorization model is reasonable. ResearchIIshows that

approximately 79% of students achieved the level of knowledge

understanding, 71% of students reached the level of knowledge

transfer, and only 28% of students reached the level of knowledge

innovation. Although both studies have shortcomings, the research

results were not exactly the same as the predictions but were

consistent with the teaching practice. It could be found that,

in the actual teaching, if too much attention is paid to the

“problem-solving practice” of procedural knowledge but not to the

understanding of declarative knowledge, it will be detrimental to

the cultivation of students’ knowledge transfer ability. This is also

the reason why attribute B2 is not listed separately when judging

the level of students’ ability in the second study. Knowledge

transfer and knowledge innovation may not necessarily be strict

subordinate relationships, but it is certain that, if students do

not reach the level of knowledge understanding, it is difficult

to transfer knowledge. Although some researchers pointed out

that the concept of factorization should be diluted (Yu J., 2018),

this does not mean that the conceptual teaching of factorization

can be skipped directly. Huaishui Zhou, Shoulei Chen, and

other researchers studied the errors in the student factorization

test and found that some students were mistaken because they

did not understand the meaning of factorization. An accurate
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TABLE 7 Diagnostic results of students’ cognitive status.

Type of
diagnosis

Knowledge
dimension

Ability
dimension

Number of
people

0000000 0 0 0

1000000 A1 B1 0

0100000 A2 B1 0

1100000 A1, A2 B1 0

1110000 A1, A2, A3 B1 2

1110100 A1, A2, A3, A5 B1 3

1111000 A1, A2, A3, A4 B1 1

1111100 A1, A2, A3, A4,

A5

B1 1

1111110 A1, A2, A3, A4,

A5

B1, B2 31

1111111 A1, A2, A3, A4,

A5

B1, B2, B3 5

0010100∗ A3, A5 B1 1

0011000∗ A3, A4 B1 1

0011100∗ A3, A4, A5 B1 1

0010010∗ A3 B1, B2 3

0010111∗ A3, A5 B1, B2, B3 1

0011011∗ A3, A4 B1, B2, B3 1

0010101∗ A3, A5 B1, B3 2

0011101∗ A3, A4, A5 B1, B3 1

0011110∗ A3, A4, A5 B1, B2 1

0001011∗ A4 B1, B2, B3 1

0001001∗ A4 B1, B3 1

0001101∗ A4, A5 B1, B3 1

0001111∗ A4, A5 B1, B2, B3 1

0000101∗ A5 B1, B3 1

0000100∗ A5 B1 1

1101001∗ A1, A2, A4 B1, B3 1

1101000∗ A1, A2, A4 B1 1

1100001∗ A1, A2 B1, B3 1

1101011∗ A1, A2, A4 B1, B2, B3 2

1110001∗ A1, A2, A3 B1, B3 1

1111011∗ A1, A2, A3, A4 B1, B2, B3 1

1111010∗ A1, A2, A3, A4 B1, B2 1

1111001∗ A1, A2, A3, A4 B1, B3 1

1111101∗ A1, A2, A3, A4,

A5

B1, B3 2

The ∗ symbol indicates students’ non-ideal master pattern.

understanding of concepts is the basis for developing students’

ability to transfer knowledge.

Although most students can achieve knowledge understanding

and knowledge transfer, only a small number of students can

reach the level of knowledge innovation. According to research by

Dyers et al. (2011), “Two-thirds of human creativity comes from

education, and one-third comes from inheritance. On the contrary,

in intelligence, one-third is from education, and two-thirds is from

heredity. Therefore, we may not be able to do a lot to improve

one’s intelligence, but we can cultivate their creativity”. Teachers’

mathematical pedagogical content knowledge greatly influences

students’ cognitive structure. Thus, how can teachers assist students

in moving from the level of knowledge transfer to the level of

knowledge innovation?

Educational mathematics points the way. Knowledge

innovation refers to the ability to analyze and judge things

in a mathematical way, as well as to know the world with

mathematical thinking and vision. Along the technical route

of educational mathematics, “researching problems-research

objects-research tools,” students’ thinking styles and thinking

habits can be better cultivated. Problem-solving teaching is a part

of mathematics teaching, and mathematics thinking methods can

be well infiltrated into students through problem-solving teaching,

but teachers should not be limited to existing mathematical

thinking methods. Otherwise, it will limit the development of

students’ creativity. If we regard these mathematical thinking

methods and mathematical knowledge as tools and means to solve

research problems, then we can encourage students to explore new

methods or use new methods to solve new problems creatively.

Educational mathematics pays more attention to the students’

thinking mode and allows students to generate mathematical

thinking methods by thinking about the process of solving specific

problems (Franke et al., 2001). It is this thinking that guides

students to acquire mathematics naturally. In this way, students

can comprehend not only mathematical thinking methods and

creatively propose ways to solve problems but also learn a way

and habit of thinking about problems. If knowledge is the origin

of the core literacy generation (Fu, 1994, pp. 80–85), education

mathematics as a mathematical teacher knowledge theory system

is the compass to develop students’ core literacy.
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