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Introduction: Despite the well-established evidence supporting the restorative 
potential of nature exposure, the neurophysiological underpinnings of the 
restorative cognitive/emotional effect of nature are not yet fully understood. The 
main purpose of the current study was to investigate the association between 
exposure to nature and electroencephalography (EEG) functional connectivity in 
the distress network.

Methods: Fifty-three individuals (11 men and 42 women; mean age 21.38 ± 1.54 
years) were randomly assigned to two groups: (i) a green group and (ii) a gray 
group. A slideshow consisting of images depicting natural and urban scenarios 
were, respectively, presented to the green and the gray group. Before and after 
the slideshow, 5 min resting state (RS) EEG recordings were performed. The exact 
low-resolution electromagnetic tomography (eLORETA) software was used to 
execute all EEG analyses.

Results: Compared to the gray group, the green group showed a significant 
increase in positive emotions (F1; 50 = 9.50 p = 0.003) and in the subjective experience 
of being full of energy and alive (F1; 50 = 4.72 p = 0.035). Furthermore, as compared 
to urban pictures, the exposure to natural images was associated with a decrease 
of delta functional connectivity in the distress network, specifically between the 
left insula and left subgenual anterior cingulate cortex (T = −3.70, p = 0.023).

Discussion: Our results would seem to be  in accordance with previous 
neurophysiological studies suggesting that experiencing natural environments 
is associated with brain functional dynamics linked to emotional restorative 
processes.
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Introduction

The literature on contact with nature has consistently shown that mere exposure to certain 
types of natural environments may cause beneficial effects on humans (e.g., Bowler et al., 2010; 
Hartig et al., 2014; Houlden et al., 2018; Beute et al., 2020; Gladwin et al., 2022). One of the most 
important changes that have been observed in people when they are exposed to nature is 
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psychological restoration and stress reduction (Yao et al., 2021). In this 
regard, two prominent theories have been used to explain these effects. 
First, the Stress Reduction Theory (SRT; Ulrich, 1993) postulates that 
nature provokes automatic psychophysiological responses that 
modulate stress. The authors support the idea that living in urban 
areas may cause stress of which we  are not fully aware, and, 
accordingly, nature can reduce it outside the consciousness. Second, 
the Attention Restoration Theory (ART; Kaplan and Kaplan, 1989) 
that sustains how nature restores voluntary attention, namely a type 
of attention requiring active effort for the individual to focus on an 
object meanwhile suppressing all the distracting stimuli. This occurs 
because the natural environment stimulates a type of involuntary and 
effortless attention, allowing for our cognitive functions to restore. 
Both the SRT and the ART see the changes observed in individuals as 
evolutionary responses to environments that can guarantee high rates 
of survival (Bratman et al., 2012). In this regard, Kaplan (1995) has 
convincingly discussed the potential integration of the two theories 
and related processes. Interestingly, these restorative effects have been 
proved to be comparable, although not completely overlapping, both 
in natural (outdoors) and simulated (indoors) natural environments, 
including virtual ones (Kjellgren and Buhrkall, 2010; Bratman et al., 
2012; Pasca et al., 2022; Spano et al., 2022; Theodorou et al., 2023a,b).

Despite the well-established evidence supporting the restorative 
potential of nature exposure, the neurophysiological underpinnings 
of the restorative cognitive/emotional effect of nature are not yet fully 
understood. Two recent systematic reviews and meta-analyses that 
focused on both self-reported measures and psychophysiological 
bio-signals (i.e., systolic and diastolic blood pressure, heart rate 
variability, and cortisol levels) showed that exposure to natural 
environments is associated with stress reduction and/or enhanced 
relaxation (Mygind et al., 2021; Yao et al., 2021).

Similar findings have been also reported in studies investigating 
brain functional dynamics by means of different neuroimaging 
techniques (Norwood et  al., 2019). In the same way, it has been 
detected that the exposure to urban stimuli is related with the 
activation of brain areas and/or large-scale brain networks linked to 
stress and negative affect (Ancora et al., 2022).

Particularly, the electroencephalography (EEG) is widely used for 
the investigation of brain activity related to the exposure of natural 
settings (Grassini et  al., 2022), providing an important source of 
information on changes in neurophysiological dynamics associated 
with stress-related processes (Alonso et al., 2015; Giannakakis et al., 
2019; Saeed et  al., 2020; Massullo et  al., 2022). More specifically, 
compared to the traditional visual EEG scoring, through quantitative 
EEG (qEEG; i.e., numerical computations of parameters from the EEG 
data) it is possible to estimate different parameters, such as EEG power 
spectra (i.e., the power distribution of EEG series in the frequency 
domain), that offer a significant source of information in terms of 
brain activity (Thatcher, 2010; Lehembre et al., 2012).

In this research field, previous EEG studies showed that 
experiencing natural environments is associated with several 
neurophysiological patterns linked to stress reduction, including 
increased alpha (Ulrich, 1981; Chang et al., 2008; Grassini et al., 2019, 
2022; Sahni and Kumar, 2020; Koivisto et al., 2022; Olszewska-Guizzo 
et al., 2022b) and theta power (Olszewska-Guizzo et al., 2022b), as 
well as decreased beta activity (Grassini et al., 2019).

Of relevance, an important advance in the analysis of EEG signal 
is the investigation of functional connectivity referring to the 

calculation of “various measures of neural dynamics to functional brain 
state, determined by behavior, cognition, or neuropathology” (Srinivasan 
et al., 2007). Particularly, EEG connectivity-based measures, such as 
EEG coherence, provide a valuable estimation of the functional 
interactions between brain structures operating in specific frequency 
bands, offering significant information about network dynamics and 
functional integration across neural systems (Srinivasan et al., 2007; 
Whitton et al., 2018).

To the best of our knowledge, only one study has investigated the 
association between EEG functional connectivity and exposure to 
nature. Chen et al. (2020) showed that, as compared to a nonrestorative 
scenario (i.e., a traffic island), a restorative one (i.e., a wooded garden) 
was associated with a significant increase of theta connectivity. 
Therefore, in order to extend previous EEG findings, the main aim of 
the current study was to investigate the association between exposure 
to nature and EEG functional connectivity among brain nodes 
involved in emotional distress (i.e., the distress network; De Ridder 
et al., 2011; Pattyn et al., 2018). According to the view that natural 
environments can lead to stress reduction (Norwood et  al., 2019; 
Mygind et al., 2021; Yao et al., 2021), we hypothesized that compared 
to images depicting urban spaces (i.e., gray condition), pictures 
showing green spaces (i.e., green condition) would be associated with 
a decrease of functional connectivity within the distress network.

Materials and methods

Participants

An a priori power analysis was conducted using G*Power 3.1 
software (Faul et al., 2009). It revealed that, given a probability level of 
0.05, a sample size of 52 was required to provide a satisfactory 
statistical power (1–β = 80%) with large effect size (i.e., d = 0.80) in a 
two-sided test. Given the novelty of the study, this effect size was 
estimated according to a previous EEG connectivity report in this 
research field (Chen et al., 2020).

Participants were recruited in the campus of the European 
University of Rome through advertising. The enrollment lasted 
from November 2021 to May 2022. The following inclusion criteria 
were applied: right-handedness [i.e., Laterality Quotient > of 60 
according to the Edinburgh Handedness Inventory–short form 
(EHI–SF; Veale, 2014)], self-reported lifetime negative anamnesis 
of neurological diagnosis, normal or corrected-to-normal vision, 
absence of use of active drugs (including psychotropic medications) 
on the central nervous system in the 2 weeks before the study. A 
checklist with dichotomous items was administered to assess 
inclusion criteria as well as socio-demographic data (e.g., age, 
educational attainment) and clinical data (e.g., tobacco and alcohol 
use in the last 6 months).

Eighty-seven university students were assessed for eligibility after 
providing their informed consent. Fifty-eight participants fulfilled the 
inclusion criteria and were enrolled in the present research. Five 
participants (8.62%) had no suitable EEG recordings (i.e., bad EEG 
signal), thus we have excluded such participants from the analyses. 
Therefore, the final sample consisted of 53 participants (11 men and 
42 women; mean age 21.38 ± 1.54 years). Participants received course 
credits for their participation and were not aware about the 
experimental hypothesis. This research was approved by the European 
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University’s ethics review board (Prot. N. 11/2021) and was performed 
according to the Helsinki declaration standards.

Study design and procedures

In line with previous experimental research on exposure to 
natural and built environments (e.g., Chen et al., 2020), the current 
study was performed in the following three consecutive time-points.

Pre-stimuli assessment (T0)
After providing the written informed consent, all participants 

underwent a 5 min resting state (RS) EEG recording (T0-RS-EEG 
condition) and were administered the state version of the Positive and 
Negative Affect Schedule (PANAS; Watson et al., 1988), and the state 
version of the Subjective Vitality Scale (SVS-S; Ryan and 
Frederick, 1997).

Stimuli administration
After the pre-assessment phase, participants were randomly 

assigned to the two groups using the online software Research 
Randomizer:1 (i) the green group and (ii) the gray group. A slideshow 
consisting of images depicting a natural and an urban scenarios were, 
respectively, presented to the green and the gray group. More 
specifically, 20 natural and urban digitized color pictures were used. 
Images were presented for 12 s and were preceded by a fixation cross 
placed centrally on the screen with a duration of 1 s. Participants were 
instructed to freely explore each picture.

Post-stimuli assessment (T1)
Immediately at the end of the slideshow, all participants 

underwent another 5 min RS EEG recording (T1-RS-EEG condition) 
and were asked to complete again the state version of the PANAS and 
the SVS-S. All participants also completed the Brief Symptoms 
Inventory (BSI; Derogatis and Melisaratos, 1983) and were asked to 
evaluate the pleasantness (i.e., “To what extent did you like the images 
shown?”), the quality (i.e., “How would you  rate the quality of the 
images shown?”), the lightness (i.e., “How would you rate the lightness 
of the images shown?”), and the familiarity (i.e., “How familiar are 
you with the place you saw in the pictures?”) of the stimuli using a 
10-point visual analog scale. These measures have been frequently 
used in earlier research on exposure to natural and built environments 
(e.g., Carrus et al., 2013).

EEG recordings and analysis

All EEG recordings were performed in an eye-closed RS condition 
with participants sitting on a comfortable chair (Massullo et al., 2020). 
EEG data were recorded using a 31-electrode cap placed according to 
the International 10–20 System and acquired using Micromed System 
Plus digital EEGraph (Micromed© S.p.A., Mogliano Veneto, TV, 
Italy). In order to avoid the possible effect of alcohol and caffeine on 
EEG data, participants were asked to refrain from them immediately 

1 https://www.randomizer.org/

before their EEG recordings (i.e., at least 4 h). All EEG recordings 
lasted 5 min and were carried out with the following parameters: 
256 Hz sampling rate, and A/D conversion performed at 16 bits. The 
reference electrodes were placed on the right mastoid. Impedances 
were kept below 5 kΩ before starting EEG recording and checked 
again at the end of EEG session (i.e., T0 and T1) for each participant.

EEG recordings were offline filtered 1–40 Hz (with values 
corresponding, respectively, to high and low frequency band-pass 
filters) using the EEGLAB toolbox for MatLab v.2022.1 (Delorme and 
Makeig, 2004). Successively, the average reference was computed and 
a first visual inspection of the most noticeable and severe artifacts was 
carried out. Furthermore, in order to remove the main electrical, 
muscular, and visual artifacts, an independent component analysis 
(ICA) based on the infomax decomposition algorithm (“runica” tool 
of EEGLAB), was applied to all EEG channels. After the ICA 
decomposition, bad components were removed using the MARA 
EEGLAB plug-in and by visual inspection (Winkler et al., 2011, 2014). 
Subsequently, the identification of artifact-contaminated channels was 
mainly carried out in two ways: firstsly, the data spectrum of the 
channels was observed using the Plot → Channel spectra and maps 
tool; secondly, the EEGLAB’s “automatic channel rejection” function 
was further used to identify channels with kurtosis above five z-scores. 
Finally, a three-dimensional spherical spline interpolation was 
performed on the most artifact-contaminated channels (Perrin et al., 
1989; Ferree, 2006).

The minimum length of the artifact-free EEG recording 
included in the analysis was 200 s (even if not consecutive) for each 
participant for each condition. Artifact-free data were then 
fragmented into epochs of 4 s for the EEG coherence analysis 
(Miljevic et al., 2022).

The exact Low-Resolution Brain Electromagnetic Tomography 
software (eLORETA; Pascual-Marqui et al., 2011) was used for all EEG 
analyses (including epochs fragmentation). This is a validated 
computer program for the investigation of large-scale brain networks 
functional connectivity (Liu et al., 2018). The eLORETA is considered 
one of the most widely adopted systems among the brain source 
localization procedures (Jatoi et  al., 2014; Halder et  al., 2019; 
Asadzadeh et  al., 2020) able to detect electrocortical activity with 
rigorous localization capacity in terms of cortical, limbic (e.g., the 
hippocampus and the amygdaloid complex) and para-limbic (e.g., the 
insula) structures, even when reduced electrode montages (i.e., <30) 
have been applied (e.g., Mulert et al., 2004; Zotev and Bodurka, 2020).

In the current study, in order to evaluate the connectivity in the 
distress network, eight Regions of Interest (ROIs; Table  1) were 
pre-defined according to a previous LORETA study (Pattyn et al., 
2018) choosing the “ROI-maker#2 method” (i.e., based on the 
Brodmann’s areas) available in the eLORETA software.

The connectivity analysis was performed by computing the 
Lagged Phase Synchronization (LPS; Pascual-Marqui et al., 2011), one 
of the main neurophysiological indices used for the assessment of 
brain functional connectivity (Olbrich et al., 2014; Hata et al., 2016; 
Imperatori et  al., 2017). The LPS reduces the artifacts (e.g., the 
volume-conduction) by removing the instantaneous zero-lag 
contribution (Hata et  al., 2016), and it calculates the similarity 
between signals in the frequency domain, based on normalized 
Fourier transform (performed through the eLORETA), with values 
ranging from 0 (i.e., no synchronization) to 1 (i.e., the 
maximum synchronization).
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According to previous studies (e.g., Canuet et al., 2011; de la 
Salle et  al., 2016; Kitaura et  al., 2017), in order to perform the 
source reconstruction of the brain networks, the “single nearest 
voxel” option (i.e., each ROI consisting of a single voxel, the closest 
to each seed) was selected in the eLORETA software. In the current 
study, the following four frequency bands were considered (Mazza 
et al., 2014): delta (0.5–4 Hz), theta (4.5–7.5 Hz), alpha (8–13 Hz), 
and beta (13.5–30 Hz).

Self-report questionnaires

The PANAS (Watson et  al., 1988) is a 20-item self-report 
questionnaire assessing both negative (e.g., scared, distressed) and 
positive affect (e.g., strong, enthusiastic). In the current study, the 
“state” (i.e., “at this moment”) Italian version of the PANAS (Terraciano 
et al., 2003) was used. At T0, the Cronbach’s alpha values were 0.81 for 
the positive and 0.86 for the negative subscale. At T1, the Cronbach’s 
alpha values were 0.90 for both positive and negative subscale.

The SVS-S (Ryan and Frederick, 1997) is a seven-item self-report 
questionnaire assessing subjective experience of being full of energy 
and alive. Each item is rated on a seven-point Likert scale ranging 
from “not at all” to “very true,” with higher scores indicating greater 
subjective vitality. In the current study, the Italian version of the SVS-S 
was used, and the Cronbach’s alpha values were 0.81 and 0.86 for T0 
and T1, respectively.

The BSI (Derogatis and Melisaratos, 1983) is a self-report 
questionnaire widely used to assess psychological symptoms (e.g., 
anxiety and depressive symptoms). It is composed of 53 items rated 
on a five-point Likert scale (0–4), with higher scores indicating 
more severe self-reported symptoms. The BSI provides a Global 
Severity Index (GSI), which is designed to measure overall 
psychopathological distress. This questionnaire is characterized by 
good internal consistency and test–retest reliability (Derogatis and 
Melisaratos, 1983). In the current study, the Italian version of the 
scale (Adawi et al., 2019) was used and the Cronbach’s alpha was 
0.96 for the GSI.

Statistical analysis

In order to investigate the association between nature exposure 
and EEG functional connectivity in the distress network, the following 
comparisons were performed: (i) T0-RS-EEG green group vs. 
T0-RS-EEG gray group, and (ii) T1-RS-EEG green group vs. 
T1-RS-EEG gray group. Comparisons were performed using the 
statistical non-parametric mapping methodology provided by the 
eLORETA software (Nichols and Holmes, 2002). This approach is 
based on Fisher’s permutation test and used a nonparametric 
randomization procedure in order to perform the correction of 
significance for multiple testing. Briefly (for more details see Kitaura 
et al., 2017; Hata et al., 2019), this procedure computes 5,000 data 
randomizations to determine the critical probability threshold of 
T-values corresponding to a statistically corrected (i.e., after the 
multiple comparisons among each ROIs in each frequencies) p values 
(p = 0.05 and p = 0.01). The eLORETA software also computed the 
effect size thresholds for T-statistics corresponding to Cohen’s d values 
(Cohen, 1988): small = 0.2, medium = 0.5, and large = 0.8.

Two-way chi-squared and univariate ANOVAs were used to 
analyze differences between groups at T0, respectively for dichotomous 
and dimensional measures. According to the recommendations for 
pre-post study designs (Senn, 2006), questionnaire data were analyzed 
using analysis of covariance (ANCOVA) with group (green vs. gray) 
as a between-subject factor, value at T1 as dependent variables, and 
value at T0 as a covariate. In order to determine effect sizes, Cohen’s d 
and Cohen’s dppc2 (Morris, 2008; equation number 8) values were 
calculated for ANOVAs and ANCOVA analyses, respectively. 
Chi-squared, ANOVA and ANCOVA analyses were performed using 
SPSS (version 18.0).

Results

For all study participants the qualitative visual evaluation of the 
EEG recordings (i.e., T0-RS-EEG and T1-RS-EEG) showed no 
relevant evidence of unusual neurophysiological patterns, such as 
epileptic discharges and/or focal delta slow waves. In the T0-RS-EEG 
condition the average epochs analyzed for the green group and the 
gray group was 70.54 ± 6.62 and 68.56 ± 9.28, respectively (F1; 51 = 0.797 
p = 0.376). In the T1-RS-EEG condition, the average epochs analyzed 
for green group and gray group was 70.88 ± 8.16 and 66.96 ± 7.17, 
respectively (F1; 51 = 3.466, p = 0.068).

The two groups did not significantly differ in age and in other 
socio-demographic variables. At T1, a significant group main effect 
was observed for PANAS positive dimension and SVS-S total score. 
Specifically, compared to the gray group, the green group showed a 
significant increase of positive emotions (green group: 28.62 ± 8.70 vs. 
gray group: 24.70 ± 7.41; F1; 50 = 9.50; p = 0.003) and SVS-S total score 
(green group: 27.42 ± 8.05 vs. gray group: 23.15 ± 7.48; F1; 50 = 4.72; 
p = 0.035). Detailed descriptive and F statistics are reported in Table 2.

Functional connectivity results

The effect sizes for T-threshold were 1.428, 3.571, and 5.713, 
corresponding, respectively, to small, medium, and large effect sizes. 

TABLE 1 eLORETA Montreal Neurological Institute (MNI) coordinates of 
the distress network.

Regions of 
interest

Brodmann 
areas

eLORETA MNI 
coordinates*

x y z

Left insula 13 −40 −10 10

Right insula 13 40 −5 10

Left amygdala 34 + 35 −20 −10 −20

Right amygdala 34 + 35 20 −10 −20

Left sgACC 25 −10 20 −15

Right sgACC 25 5 15 −15

Left dACC 24 + 32 −10 15 30

Right dACC 24 + 32 5 15 30

MNI, montreal neurological institute; eLORETA, exact low-resolution brain electromagnetic 
tomography software; sgACC, subgenual anterior cingulate cortex; and dACC, dorsal 
anterior cingulate cortex. 
*eLORETA ROIs coordinates reconstruction.

https://doi.org/10.3389/fpsyg.2023.1171215
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Imperatori et al. 10.3389/fpsyg.2023.1171215

Frontiers in Psychology 05 frontiersin.org

At T0, the thresholds for significance (corrected for multiple testing) 
were T = ±3.462 corresponding to p < 0.05, and T = ±3.883, 
corresponding to p < 0.01. In this condition, no significant differences 
were observed between groups.

At T1, the thresholds for significance (corrected for multiple 
testing) were T = ±3.463 corresponding to p < 0.05, and T = ±3.969 
corresponding to p < 0.01. In this condition, significant modifications 
were observed in delta band. Compared to the gray group, participants 
in the green group showed a decreased delta LPS between the left 
insula and left subgenual anterior cingulate cortex (sgACC; T = −3.70, 
p = 0.023; Figure 1). No significant differences were observed in the 
other frequency bands.

Discussion

The main aim of the present study was to investigate the 
association between the exposure to nature and EEG functional 
connectivity in the distress network. Our results showed that the 
exposure to natural images, compared to urban pictures, was 
associated with a decrease of delta functional connectivity in the 
distress network, specifically between the left insula and left 
sgACC. Moreover, as compared to gray stimuli, the exposure to green 
spaces was also associated with a significant increase of positive 
emotions and the subjective experience of being full of energy 
and alive.

Our results would seem to be  in accordance with previous 
neurophysiological studies suggesting that experiencing natural 
environments is associated with brain functional dynamics linked to 
emotional restorative processes and stress reduction (Grassini et al., 
2019, 2022; Norwood et al., 2019; Sahni and Kumar, 2020). Indeed, 
both the insula and the sgACC are known to be  brain regions 

commonly involved in emotional distress (Li et al., 2018; Pattyn et al., 
2018). More specifically, while the insula plays a crucial for the 
integration of interoceptive information and global-emotional 
processing (e.g., emotional salience detection) and awareness 
(Duerden et  al., 2013), the sgACC, given its connections with 
subcortical and cortical structures, is critically involved in regulating 
visceral and autonomic responses to stressful events, assigning 
emotional valence to internal and external stimuli, and emotional 
expression (Pizzagalli, 2011; Rolls, 2019). These two brain areas are 
strongly and reciprocally connected (Simmons et  al., 2013) and 
abnormal increased resting state insula-sgACC connectivity has been 

TABLE 2 Detailed descriptive and F statistics.

Variable
Green group 

(N = 26)
Gray group 

(N = 27)
Test statistics p Effect size

Age: M ± DS 21.15 ± 1.43 21.59 ± 1.62 F1;51 = 1.084 0.303

Women: N (%) 21 (80.8%) 21 (77.8%) χ2 = 0.072 0.788

Tobacco use: N (%) 12 (46.2%) 10 (37%) χ2 = 0.453 0.501

Alcohol use: N (%) 23 (88.5%) 24 (.9%) χ2 = 0.002 0.961

BSI-GSI: M ± DS 0.85 ± 0.68 0.89 ± 0.75 F1;51 = 0.047 0.829 d = 0.056

Stimuli pleasantness: M ± DS 7.46 ± 1.45 3.33 ± 1.47 F1;51 = 106.14 < 0.001 d = −2.828

Stimuli quality: M ± DS 7.19 ± 1.86 5.04 ± 1.99 F1;51 = 16.602 < 0.001 d = −1.116

Stimuli lightness: M ± DS 7.69 ± 1.78 5.37 ± 2.20 F1;51 = 17.693 < 0.001 d = −1.157

Stimuli familiarity: M ± DS 8.19 ± 1.44 5.85 ± 2.49 F1;51 = 17.336 < 0.001 d = −1.145

PANAS-N T0: M ± DS 18.00 ± 5.38 15.19 ± 5.95 F1;51 = 3.255 0.077 d = −0.495

PANAS-P T0: M ± DS 29.15 ± 6.82 30.15 ± 5.13 F1;51 = 0.362 0.550 d = 0.166

SVS-S T0: M ± DS 26.77 ± 7.03 25.56 ± 6.17 F1;51 = 0.447 0.507 d = −0.183

PANAS-N T1: M ± DS 15.15 ± 6.34 13.48 ± 4.85 F1;50 = 0.018 0.893 dppc2 = −0.198

PANAS-P T1: M ± DS 28.62 ± 8.70 24.70 ± 7.41 F1;50 = 9.501 0.003 dppc2 = 0.805

SVS-S T1: M ± DS 27.42 ± 8.05 23.15 ± 7.48 F1;50 = 4.722 0.035 dppc2 = 0.456

M, mean; N, number; SD, standard deviation; BSI, brief symptoms inventory; GSI, global severity index; PANAS-N, positive and negative affect schedule-negative affect; PANAS-P, positive 
and negative affect schedule-positive affect; SVS-S, subjective vitality scales-state version; T0, pre-stimuli assessment; and T1, post-stimuli assessment. 
Means and SDs for T1 are not adjusted for the covariates. In bold significant values.

FIGURE 1

Results of the eLORETA functional connectivity between group 
comparison (green vs. gray) in the delta frequency band at T1. Blue 
lines indicate connections presenting a decrease of EEG functional 
connectivity. Red lines (not present) would indicate an increase of 
EEG functional connectivity. Threshold values (T) for statistical 
significance are reported at the bottom of the figure. sgACC, 
subgenual anterior cingulate cortex.
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suggested as a neurophysiological pattern associated to negative 
emotions in response to stress (Shao et al., 2018). Consistently, it has 
been reported that adaptive response to stress (i.e., high level of 
resilience) was associated with reduced sgACC-insula RS connectivity 
immediately following stress induction (Shao et al., 2018).

The involvement of these structures has been also documented by 
several studies measuring the effect of environment on brain activity. 
For example, the decrease of subgenual prefrontal cortex activity has 
been detected (Bratman et al., 2015) following the exposure to a brief 
nature experience (i.e., a 90-min walk in a natural setting). It has also 
been shown that the limbic and paralimbic areas (including the insula) 
were more active in uncomfortable urban environments reflecting 
more negative emotional stimulation (Kim and Jeong, 2014). 
Furthermore, previous EEG studies showed that unpleasant pictures 
elicited increased delta coherence over long-range circuits of the brain 
(Klados et al., 2009; Guntekin et al., 2017).

Intriguingly, the decrease of delta connectivity between the insula 
and the sgACC was detected in the left hemisphere. Although the 
right hemisphere dominance in emotional processing is generally 
recognized, the traditional division of cognitive functions according 
to the left–right brain dichotomy seems to have become obsolete 
(Stankovic, 2021). Moreover, the modern view of brain supports a 
dynamic large-scale brain networks model underlying different 
components of emotional experience (i.e., generation, perception, and 
regulation; Morawetz et al., 2020; Palomero-Gallagher and Amunts, 
2022). For example, it has been proposed (Stankovic, 2021) that the 
right-biased lateralization of emotional experience can be changed 
rapidly due to strong environmental input such as acute stress.

Thus, considering the above mentioned findings, the current 
neurophysiological pattern (i.e., decreased delta coherence between 
the left insula and the left sgACC) might reflect the neural 
underpinning of the processes related to emotional restorative effects 
of interacting with nature. Obviously, the other side of the coin could 
be considered, and both are not mutually exclusive: urban scenarios 
can induce brain responses associated with negative emotion and 
stress that may be  restored through the exposure to natural 
environments (Ancora et al., 2022).

Of relevance, no significant associations were detected in other 
frequency bands (e.g., alpha and theta) previously associated with 
nature exposure and stress reduction (Ulrich, 1981; Chang et al., 2008; 
Grassini et al., 2019, 2022; Sahni and Kumar, 2020; Koivisto et al., 
2022). The discrepancies between previous reports and the current 
research may be explained by several differences in study designs and 
methods. More specifically, our study differs from these previous 
studies by investigating, for the first time, EEG functional connectivity 
in a pre-defined brain network (i.e., the distress network). Indeed, 
while EEG power reflects the amount of activity in certain frequency 
bands (Dressler et al., 2004), EEG connectivity provides “information 
on the degree of synchrony of brain activity at different locations for each 
frequency, independent of power” (Bowyer, 2016). Furthermore, 
compared to previous studies that evaluated the modifications of EEG 
parameters during the view of nature-related stimuli, we  have 
investigated EEG data during the RS condition, which is thought to 
reflect the neurophysiological base rhythm providing potentially 
valuable information on the functional dynamic interactions between 
brain structures (Raichle, 2011). Thus, the current findings should 
be considered specific to the eyes-closed RS condition and future EEG 
connectivity investigations should be performed also during different 
task-related conditions.

The present findings should be  considered while taking into 
account several limitations. First, our study provides an image that is 
informative of the dynamics that take place right after exposure to 
nature, while in future research it could be interesting to investigate if 
the changes observed in the neural correlates would last and, if so, for 
how long. These findings could also contribute to designing 
interventions aimed at restoration through nature exposure, providing 
protocols for the duration of the intervention (e.g., a certain amount 
of time every day for several days/weeks) and testing the short-and 
long-term consequences. This issue have been previously investigated 
by a handful of studies (e.g., Barton and Pretty, 2010; Shanahan et al., 
2016), and further research is needed. Secondly, although an a priori 
power analysis was performed according to a previous EEG coherence 
study, the sample size was adequate for detect a large effect size. 
Moreover, notwithstanding university undergraduate students 
represent an easily accessible population, a potential source of bias 
should be considered (Medin et al., 2017).

Thirdly, we employed two photo slideshows showing green vs. 
gray spaces and found significant results in line with previous studies. 
Nevertheless, it would be interesting to test the replicability of the 
findings in outdoor nature including blue or white spaces, to see if 
there would be  any differences in the distress network activity 
observed. Moreover, future studies investigating differences in 
neurophysiological underpinnings between the exposure to urban 
green spaces vs. wild green spaces are needed. Furthermore, other 
stress-related psychophysiological markers (e.g., the cortisol levels) in 
relation to nature exposure were not evaluated, and future studies 
would need to fill in such a gap. Lastly, while the eLORETA software 
is a reliable tool to investigate brain connectivity, it has an intrinsic 
limit in space resolution. Moreover, although 31 electrodes might 
be appropriate for investigating brain networks, it is known that the 
spatial localization accuracy of EEG increases with high-density (e.g., 
256 electrodes) recording approaches (Dattola et al., 2020). Thus, our 
results should be  treated with caution and should be  deeply 
investigated in further studies combining multimodal neuroimaging 
data (i.e., high-density EEG/fMRI) in larger representative samples in 
order to better understand the neural dynamics underlying the 
restorative effect of nature.

Despite these limitations, we believe that our results have relevant 
theoretical and practical implications. From a theoretical point of 
view, these findings add up to all previous research that suggests 
psychophysiological restoration induced by nature exposure (Berto, 
2014). Importantly, they are in line with both SRT and ART, and the 
integrative framework between these two theories (Ulrich, 1981; 
Kaplan and Kaplan, 1989; Ulrich et al., 1991; Kaplan, 1995). Indeed, 
the decreased delta coherence we found between the left insula and 
the left sgACC is consistent with the SRT postulating that nature 
exposure reduces physiological stress. Moreover, this 
neurophysiological pattern suggests decreased effort in voluntary 
attention as theorized in the ART.

Starting from these findings, it would be interesting to investigate 
the individual differences that are related to different brain dynamics 
in the distress network, when exposing people to nature, such as 
environmental identity, connectedness to nature, sensation seeking, 
venturesomeness, and preferences for a specific natural environment. 
In this regard, future studies could examine the psychophysiological 
dynamics in response to different types of natural environments (e.g., 
sea, lake, desert, mountain, and arctic) or different types of green 
space. In this regard, a recent systematic review (Beute et al., 2020) 
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detected a general beneficial relation between several green space 
types (e.g., park, garden, and forest) and mental health, suggesting the 
need of further investigations focused on underlying pathways of the 
association between specific green spaces (e.g., types and 
characteristics) and individual well-being. For example a recent 
multimodal EEG and functional near-infrared spectroscopy study 
(Olszewska-Guizzo et al., 2022a), showed that the passive exposure to 
a “therapeutic garden” (compared to a “residential green space” and to 
a “busy downtown”) was associated with an improvement of mood 
status and a modification of brain activity (e.g., it had a moderating 
effect on frontal alpha asymmetry values) in both healthy and 
depressed individuals.

Furthermore, it could be  relevant to study how the human-
nature interaction might provide restoration by observing the 
distress network activity (e.g., hiking, gardening, and swimming in 
a natural area; Bratman et al., 2019). Lastly, in recent years growing 
attention was directed to multisensorial experiences (i.e., indoor 
nature experience in which the visual stimulus is teamed with 
auditory and/or olfactory stimuli) and virtual reality experiences 
(i.e., nature exposure through head-mounted displays that can 
guarantee a high level of immersion to the user). Thus, observing 
the distress network activity also in multisensorial and virtual 
reality nature experiences could contribute to extend this new and 
expanding line of research.

As mentioned before, if future studies will confirm our results, 
they might be relevant to build up applied psychological interventions 
across different fields. However, importantly, the research should first 
test the duration of such beneficial effects. For instance, in clinical 
populations (e.g., with mental disorders or general medical patients), 
the exposure to nature could be  important in alleviating both 
psychological and physical symptomatology (Collado et al., 2017). 
Occupational psychologists might use such interventions in order to 
restore employees’ cognitive resources after exposure to intensive 
workload in the workplace. In the general population, the exposure to 
nature might be  employed in individuals undergoing periods 
characterized by high levels of stress and/or negative mood. In all 
these cases, the research focusing on the distress network activity 
could offer additional insights into the dynamics involved in the 
restoration and help to tailor better-suited interventions for 
all circumstances.
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