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Utility of a slopes difference test 
for probing longitudinal multilevel 
aptitude treatment interactions: a 
simulation
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To determine which interventions work best for which students, precision 
education researchers can examine aptitude-treatment interactions (ATI) or skill-
by-treatment interactions (STI) using longitudinal multilevel modeling. Probing 
techniques like the slopes difference test fit an ATI or STI framework, but power 
for using slopes difference tests in longitudinal multilevel modeling is unknown. 
The current study used simulation to determine which design factors influence 
the power of slopes difference tests. Design factors included effect size, number 
of waves, number of clusters, participants per cluster, proportion of assignment 
to the treatment group, and intraclass correlation. Of these factors, effect size, 
number of waves, number of clusters, and participants per cluster were the 
strongest determinants of power, model convergence, and rates of singularity. 
Slopes difference tests had greater power in longitudinal multilevel modeling 
than where it is originally utilized: multiple regression.
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1. Introduction

Conducting research featuring rigorous designs that effectively evaluate instructional 
interventions in the context of education is a difficult task. With experimentally strong designs 
historically avoided due to difficulty designing, executing, and funding (Gersten et al., 2000), 
many educational studies have been limited to correlational techniques that weaken the 
establishment of effective interventions for student outcomes (Villarreal et al., 2017; Johnson 
and Christensen, 2019). Lines of educational research that often use experimental or quasi-
experimental designs to answer the question of which interventions work for which students 
(precision education; Cook et al., 2018), such as aptitude treatment interactions (ATIs; Cronbach 
and Snow, 1977) or skill-by-treatment interactions (STIs; Burns et al., 2010), are developing 
stronger and more cost-effective research designs. Preacher and Sterba (2019) give several 
recommendations for improving ATI research (e.g., using multiple repeated measure designs 
and ensuring appropriate power to test interactions), but techniques for answering research 
questions that follow these recommendations are often underutilized or even underdeveloped. 
For example, the slopes difference test developed by Dawson and Richter (2006) for use in 
multiple regression has a great conceptual fit for studying cross-level interactions in ATI or STI 
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educational research, but to the best of the authors’ knowledge, no 
published research has utilized the slopes difference test in a 
multilevel context.

The current study develops a slopes difference test for the 
multilevel context and answers two sets of research questions. The 
primary focus of the study is to determine the power of using a slopes 
difference test: (1) what is the statistical power of the slopes difference 
test in a longitudinal multilevel analytical framework under different 
research design conditions? What factors affect this power and how? 
Additionally, if longitudinal multilevel models are likely to fail under 
certain design conditions, then researchers with limited resources or 
expectations of unfavorable design conditions should likely consider 
other designs when developing their research program. As such, the 
secondary focus of the current study is to determine under what kinds 
of designs the slopes difference test can be conducted: (2) what are the 
rates for convergence and singularity when fitting longitudinal 
multilevel models with the intention of conducting a slopes difference 
test under different research design conditions? What factors affect 
convergence and singularity rates and how?

Since the slopes difference test has not previously been utilized to 
examine ATIs/STIs—let alone interactions in a longitudinal multilevel 
context—it is important to review its development and utilization for 
the current study. While considering intervention research—ATIs and 
STIs in particular, longitudinal cluster-randomized trials, and 
techniques for interaction analysis (all reviewed in the subsequent 
sections), it becomes clear that the use of the slopes difference test in 
the areas of ATI and STI research is strongly supported. The following 
review defines precision education, reviews research design best suited 
to it, and provides evidence for the conceptual fit of the slopes 
difference test in a longitudinal multilevel analysis where an ATI/STI 
is being examined.

Intervention research is particularly important in the educational 
context (Ysseldyke et al., 2008). Since teachers have little to no control 
over many of the learning readiness factors of the students in their 
classrooms (Sullivan et al., 2004), teachers need to understand how 
best to approach students of varying backgrounds. In addition to 
practical experiences in the classroom, teachers can rely upon 
intervention research to determine whether various teaching 
approaches will be effective. Despite the obvious need for intervention 
research in education, until recently, empirical educational studies 
used rather rudimentary designs to determine the effectiveness of 
treatments. For example, in their content analysis of major school 
psychology journals from 2010 to 2014, Villarreal et al. (2017) found 
that only 11.1% of the articles included intervention methods in which 
an intervention was introduced and compared to a control group over 
time. The remaining designs were descriptive or correlational in 
nature. Being less powerful for determining or supporting causal 
relationships, these types of designs are less than ideal for drawing 
conclusions in educational research (Johnson and Christensen, 2019).

A more individualized approach to intervention research, called 
precision care, is a growing area across fields like medicine, 
psychology, and education. Precision care does not consider whether 
an intervention works or not, but rather which interventions work for 
whom and why (Cook et al., 2018). Referred to as precision education 
when used in school settings, this approach to intervention research 
does well to consider the social, emotional, academic, and physical 
health issues that impact students. Two frameworks that have been 
commonly used for precision education and related research, 

Aptitude-by-Treatment Interaction (ATI; Cronbach and Snow, 1977) 
and Skill-by-Treatment Interaction (STI; Burns et al., 2010), have been 
tested and debated for many years. As both are still being used for 
intervention research in education, it is necessary to review the 
background for both and consider their relevance to 
precision education.

An interaction effect may be defined as an effect among variables 
where the relationship between an independent variable (IV) and a 
dependent variable (DV) depends upon the levels of a second IV, 
called the moderator (Whisman and McClelland, 2005). In the context 
of an ATI, the relationship between the type or level of treatment 
applied and the desired outcome (e.g., academic score) depends upon 
the aptitude of the student toward the treatment—the moderator. 
Although, theoretically, aptitude or skill is generally considered to 
be the moderating variable for the relationship between treatment and 
the desired outcome, research tends to use treatment as the 
moderating variable in the analysis. Being a categorical variable, 
treatment is often easier to analyze as a moderator when analyzing an 
ATI or STI. Since it is mathematically arbitrary which variable is 
labeled as the independent variable or the moderator, researchers 
generally opt for the easier analysis by using treatment as the 
moderator (Preacher and Sterba, 2019). There is extensive literature 
discussing the distinctions between ATIs and STIs. However, due to 
limited space and the focus of the current study, researchers are 
encouraged to refer to other resources (e.g., Connor et al., 2004; Burns 
et  al., 2018) for further details on their conceptual differences. 
Nevertheless, both ATI and STI are able to adopt a similar research 
design and analysis plan, so both are considered for the current study.

Several research design and statistical approaches have been 
created and adopted over the years to analyze these types of models. 
Thus, a review of previous research is helpful to learn about 
recommended designs. Among these, a longitudinal cluster-
randomized trial fits well within the context of a precision education 
study aimed at examining an ATI or STI effect. Some related research 
designs and analyses are reviewed below to support the use of a 
longitudinal cluster-randomized trial in the current context.

Multilevel analysis, longitudinal design, and cluster-randomized 
trials (CRTs) have been used successfully to examine ATIs and STIs in 
educational research. For example, Hauk and Matlen (2016) utilized 
a CRT to determine the effectiveness of various types of web-based 
activities and testing systems for community college elementary 
algebra classes. Other studies like Connor et al. (2004) have utilized a 
longitudinal approach to examining STI effects. Still other studies 
examining ATIs or STIs in education have data that could be examined 
longitudinally, but use cross-sectional analyses instead (see Burns 
et al., 2018; Connor et al., 2018). Perhaps the most effective approach 
to addressing precision education questions in an ATI or STI 
framework is the longitudinal cluster-randomized trial 
(longitudinal-CRT), which covers a wide array of research design and 
analysis topics, including nested data structures and their analysis, 
longitudinal research design, and cluster-randomized trials (see Heo 
and Leon, 2009). Using such a design is beneficial for a number of 
reasons: (1) longitudinal analyses provide greater potential for an 
increase in statistical power which is crucial for examining interaction 
effects, (2) cluster randomization is easier to implement in an 
educational setting than other group assignment techniques, and (3) 
multilevel analyses respect the nested nature of data often found in 
longitudinal educational research data. We discuss the reason for these 
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benefits and particular considerations for ATI/STI research in the 
following paragraphs.

Longitudinal research design has seen extensive use in ATI 
research. Aptitude growth design (Snow, 1991) examines pre- and 
post-treatment aptitude to see which treatments cause the greatest 
change for different pre-treatment aptitudes. Rogosa (1991) describes 
a growth curve analysis that can be used for this design that allows for 
a more statistically powerful analytical approach to ATI research. 
Because longitudinal designs measure the same participants repeatedly 
over a length of time, this means that more observations can 
be measured with a smaller number of participants.

Researchers often simplify their data from a longitudinal multiple-
occasion design to a two-occasion format for analysis (see Burns et al., 
2018; Connor et  al., 2018). Preacher and Sterba (2019) reviewed 
several studies in which multilevel models measured only two 
occasions. Two-occasion designs are limited when analyzing an ATI/
STI because a given ATI or STI may represent differences in how 
quickly students benefit from an intervention rather than a difference 
in the overall outcome (Smith and Sechrest, 1991). Since the goal of 
precision education is to impact individual outcomes for students, the 
chief concern of precision education research should be  to show 
outcome differences for students of varying skills or aptitudes based 
on treatment. Using a multiple-occasion multilevel design – having at 
least three time points – solves this issue and allows for increased 
power to detect an ATI or STI (Preacher and Sterba, 2019).

To best understand how sample size, number of waves, or cluster 
size influences statistical power for longitudinal multilevel designs, it 
is important to understand how to assign participants to intervention 
groups. For ATI or STI educational research, therefore, the level at 
which participants are assigned to treatment groups should 
be considered.

When assigning students to treatment or control groups, a 
number of options are available. The most obvious is to randomly 
assign individual students to treatment or control groups. For large-
scale interventions, however, cluster-randomized trials (CRTs) are 
considered the gold standard (Campbell et  al., 2000). For CRTs, 
participants belong to clusters (i.e., classrooms), and are assigned to 
treatment or control by clusters. In education, where students often 
belong to classrooms, it can be difficult to assign participants to groups 
that are different from already existing classrooms. Since teachers 
serve as a natural and useful way to introduce an intervention, 
assigning whole classrooms rather than individual students to groups 
into an intervention means that extra steps are not needed in order to 
introduce interventions to students assigned to different groups. CRTs, 
being uniquely suitable for interventions where individuals naturally 
belong to nested data structures, work well for educational research 
(Glaman et  al., 2020) including ATI research (Preacher and 
Sterba, 2019).

With increased statistical power available to longitudinal-CRT 
researchers (Kwok et al., 2008), commonly underpowered statistical 
tests, such as those used to discover and probe interaction effects, have 
a greater chance of arriving at statistically significant results. 
Interactions effects—as defined earlier in this review—are the 
phenomena of interest when researching an ATI or STI. In the 
following, therefore, we review different techniques for examining 
interactions and define probing techniques that are of interest to ATI 
or STI researchers.

To determine if an ATI or STI is meaningful, interactions must 
be analyzed using statistical analysis. While more general techniques 
are commonly known for examining interactions (i.e., an omnibus 
interaction), a greater depth of understanding can be  gained by 
utilizing probing techniques on an interaction to better understand 
the precise relationships between each of the variables. We review 
below both conceptually and mathematically how interactions are 
tested starting with an overall test and working toward the probing 
technique of interest for the current study: the slopes difference test.

Interaction effects are commonly examined using an omnibus 
analysis to inform the researcher of the existence of a moderator 
(Durand, 2013). Consider a regression equation where there is one 
interaction term:

 y x z x zi i i i i i= + + + +b b b b e0 1 2 3  (1a)

where the βs represent regression weights and x and z represent 
the independent variable and moderator, respectively. The estimated 
value for β3 represents the weight of the omnibus interaction. This 
coefficient can be tested for statistical significance by comparing the 
critical ratio—defined below in Equation (1b)—to a t-distribution:

 

t =
b

b





3

3

SE
.

 

(1b)

While the above omnibus technique informs the researcher of the 
existence of an interaction, the interaction can be further examined 
using probing techniques such as the simple slopes technique (Aiken 
and West, 1991), the Johnson-Neyman technique (Johnson and 
Neyman, 1936), and the slopes difference test (Dawson and Richter, 
2006). Precision education aims to understand which treatments work 
best for which students, not just which treatments work for which 
students. Of the three types of probing techniques mentioned here, 
the slopes difference test is the most informative and would be fit for 
probing an interaction effect in precision education research. The 
slopes difference test specifies levels of the moderator for which to 
determine the relationship between the predictor and outcome (i.e., 
the slopes relating predictor to outcome) and then tests for statistical 
significance between these slopes. In order to better understand how 
interactions are analyzed and probed, it is necessary to review the 
simple slopes technique, which provides the analytical foundation for 
the slopes difference test.

Equation (1a) can be reorganized to reflect a simple intercept and 
simple slope:

 y z z xi i i i i= +( ) + +( ) +b b b b e0 2 1 3  (1c)

where simple intercept, 0 2 izb b+ , is denoted as 0ŵ  and simple 
slope, b b1 3+ zi, is denoted as 1ŵ , and both 0ŵ  and 1ŵ  are considered 
to be compound coefficients (Preacher et al., 2006).

Like the critical ratio for an omnibus significance test, the critical 
ratio for either the simple intercept or the simple slope can 
be calculated and compared to a t-distribution with df = - -N p 1, 
where N is the sample size and p is the number of independent 

https://doi.org/10.3389/fpsyg.2023.1156962
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


DeJong and Chen 10.3389/fpsyg.2023.1156962

Frontiers in Psychology 04 frontiersin.org

variables, to test for statistical significance. The critical ratio for the 
simple slopes technique, therefore, is the following:

 

t = w

w





1

1

SE
.

 
(1d)

This critical ratio changes depending on what level of the 
moderator is specified and is used to test a null hypothesis that t = 0. 
Therefore, the critical ratio for simple slope tells a researcher whether 
the relationship between the IV and the DV is statistically significantly 
different from zero for each level of treatment (Preacher et al., 2006).

Somewhat more nuanced, the slopes difference test tells a 
researcher whether the simple slopes for each of the treatment groups 
have statistically significant differences from one another (Dawson 
and Richter, 2006). This becomes particularly useful when there are 
several simple slopes to calculate, such as a three-way interaction 
scenario. Consider a general equation for a three-way interaction:

 

y x z w x z
x w w z x z w

i i i i i i
i i i i i i i i

= + + + +
+ + + +
b b b b b
b b b e
0 1 2 3 4

5 6 7  (1e)

where z and w are the moderators. The values in the equation can 
again be  reorganized to group simple intercept and simple slope 
terms together:
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and conditional values of the moderators, z and w, may be chosen. 
If high and low values of both moderators are chosen as the 
conditional values, then four simple slopes would exist: z wH Hwith , 
z wL Hwith , z wH Lwith , with z wL Lwith . The slopes difference test 
yields more information for researchers about how interactions 
change across levels of the moderators (Dawson and Richter, 2006).

As interactions become more complex, such as situations where a 
cross-level interaction is examined, probing techniques like the slopes 
difference test become crucial for understanding them. A cross-level 
interaction refers to situations where a higher-level moderator (e.g., 
aptitude or treatment) is considered to influence the nature or strength 
of the relationship between two lower-level variables (e.g., time 
predicting a student achievement outcome; Aguinis et al., 2013). Since 
three-way cross-level interactions naturally happen in longitudinal-CRT 
models that contain more than two levels (Raudenbush and Bryk, 
2002), the slopes difference technique enables researchers to probe 
interactions in ATI/STI research where assignment to treatment and 
student aptitudes/skills moderate growth in achievement outcomes. ATI 
or STI effects may be missed or misrepresented without using probing 
techniques (Preacher et al., 2006).

Although the simple slopes technique has been extended from 
linear regression to longitudinal multilevel models (Preacher et  al., 
2006), the slopes difference test has not been extended to these types of 
models. Dawson and Richter (2006) utilized Monte Carlo simulation 
within a traditional multiple-regression context to determine the types 
of conditions under which slopes difference tests might be considered 

powerful enough to be practically useful. Considering the conceptual 
fit of slopes difference tests for cross-level interactions in longitudinal 
multilevel models, the practical utility of these models in the context of 
precision education must be determined. It was the purpose of the 
present study to extend the slopes difference test to a longitudinal 
multilevel context and determine its utility with conditions commonly 
found in precision education research.

When attempting to fit a complex statistical model, there are two 
warnings that may appear: non-convergence of the model and 
singularity of the model. When a non-convergence warning appears, 
the analysis fails to produce any results (i.e., estimated parameters or 
model summary). A singularity warning means that although the 
model was still able to produce results, the estimated parameters and 
model fit indices are untrustworthy. Although these warnings are not 
the primary focus of the current study, their presence in an analysis 
would make it difficult or impossible to utilize the slopes difference 
test in a multilevel model. Interpreting models with singular or 
non-convergent warnings is at best difficult and at worst not 
recommended (Linck and Cunnings, 2015). If a particular research 
design tends to lead to singularity or non-convergence, then 
researchers should avoid those research designs. As such, rates of 
non-convergence and singularity must be  considered to inform 
researchers of whether these issues are likely to occur for their data.

2. Materials and methods

The goal of the present study was to determine the utility of the 
slopes difference test for a longitudinal multilevel model to probe an 
ATI or STI effect. Specifically, the following sets of research questions 
were asked:

 1. What is the statistical power of the slopes difference test in a 
longitudinal multilevel analytical framework under different 
research design conditions? What factors affect this power 
and how?

 2. What are the rates for convergence and singularity when fitting 
longitudinal multilevel models with the intention of conducting 
a slopes difference test under different research design 
conditions? What factors affect convergence and singularity 
rates and how?

Dawson and Richter (2006) extended the statistical test for simple 
slopes to determine if simple slopes from a three-way interaction are 
statistically significantly different from each other. Following the 
example of Dawson and Richter (2006), a Monte Carlo simulation was 
conducted to examine the statistical power of the slopes difference test 
across varying design conditions in a longitudinal multilevel context. 
Power was defined as the probability of finding a statistically 
significant effect when it should, in fact, exist (Cohen, 1988). In the 
current context, power was represented by the number of times a slope 
difference was found for a randomly drawn sample from a simulated 
population with specified parameters when a slope difference did exist 
in that population. Following recommendations from previous 
research (Dawson and Richter, 2006; Preacher and Sterba, 2019), 
we first established the method for using slopes difference tests in ATI/
STI research, and then examined power across research design 
conditions. Once power across these conditions was determined, 
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we  investigated how these factors impacted power for the slopes 
difference test.

2.1. Simulation

With the research question and model in mind, a simulation was 
conducted using a Monte Carlo simulation in R Studio (RStudio Team, 
2015). In this type of study, population values are created that align 
with specified data conditions and then analyzed to answer research 
questions related to the statistical analysis and/or parameter estimates 
of interest (see Dawson and Richter, 2006, for a similar study and 
process). Thus, parameters in the model had to be determined so that 
population values could be  simulated. The following sections 
summarize the model, specify model parameters, and determine 
conditions that help to answer the research questions.

2.1.1. The data generation model
Following the recommendation by Preacher and Sterba (2019) to 

use a model that is as parsimonious as possible and by utilizing a 
modified version of a three-level longitudinal model (Chen et al., 
2010), the following longitudinal multilevel model was created:

 • Level 1 (Occasion)

 Y etij ij ij tij tij= + ( ) +p p0 1 Time  (2a)

 With 
e Ntij ~ 0

2
,s( ) (2b)

 • Level 2 (Student)

 p b b0 00 01 0ij j j ij ijr= + ( ) +Aptitude Skill/  (2c)

 p b b1 10 11 1ij j j ij ijr= + ( ) +Aptitude Skill/  (2d)
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 • Level 3 (Classroom)

 b g g m00 000 001 00j j j= + ( ) +Treatment  (2f)

 b g g01 010 011j j= + ( )Treatment  (2g)

 b g g10 100 101j j= + ( )Treatment  (2h)

 b g g11 110 111j j= + ( )Treatment  (2i)

 With m tb00 0
00j N~ ,( ) (2j)

where Aptitude/Skill is a continuous variable and Treatment is a 
dichotomous variable, with 0 representing a control group and 1 
representing an intervention group. The combined/mixed model is 
as follows:

 

Y Timetij tij= + ( ) + ( ) + ( )
+

g g g g

g

000 001 010 100
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Treatment Aptitude
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tij tijg111

1 jj ij jTime r( ) + + +tij tije 0 00m

 
(2k)

This model fits the context of a cluster-randomized trial (CRT) 
where assignment to a treatment is done at the classroom level. Only 
two treatment groups were chosen to ensure use of the simplest form 
of a model for this research context. In accordance with Preacher and 
Sterba’s (2019) observation that many ATI research articles do not 
expect the relationship between aptitude – or skills – and achievement 
to vary across clusters, Equations (2g)–(2i) constrain b01 j, b10 j , and 
b11 j to vary across treatments but not across classrooms. Once the 
framework for the statistical model was established, parameters for 
simulation conditions needed to be  specified. The achievement 
(outcome) variable was simulated by saving fitted values from the 
longitudinal multilevel model with the following fixed parameters and 
random effects as described and specified in the variance–covariance 
matrix below. Details regarding variable scaling and model variability 
introduced by the random effects of the model are described in 
Section 2.1.2.

2.1.2. Fixed-value parameters
Eight fixed-effect coefficients (i.e., g000, g001, g010, g011, g100,  

g101, g110, and g111) and five variances and covariance of the random 
effects (i.e., s 2, tp 00, tp 01, tp11, and tb 00) had to be specified. Using 
plausible values that fit with precision education research and the 
proposed model, fixed gamma values were specified (g000 0= ; 
g001 0 1= . ; g010 0 5= . ; g011 0 3= . ; g100 0 1= . ; g110 0 5= . ; g111 0 1= . ). 
For the purposes of the simulation, we used a scale similar to that 
of centered IQ, with a mean of 0 and a standard deviation of 15, 
consistent with scales used in Connor et al. (2018) for both the 
outcome variable, achievement, and the aptitude variable. Therefore, 
aptitude values were randomly sampled from a distribution with a 
mean of 0 and standard deviation of 15. Aligning with a precision 
education research scenario where treatments may be  targeting 
students of lower aptitudes, we determined the following: Treatment 
would appear to have only a small main effect, indicating that the 
treatment is only somewhat effective, aptitude would have a strong 
effect suggesting a strong relationship between a student’s aptitude 
and his/her achievement, time would have only a moderate effect 
to indicate that a student’s achievement grows over time, the 
interaction between aptitude and time would have a strong effect, 
meaning that achievement growth strongly depends on a student’s 
aptitude, the interaction between treatment and aptitude would 
have a small effect suggesting that the effect of a treatment on 
achievement changes little across aptitudes, and the interaction 
between treatment, aptitude, and time would have a small effect 
(implying that there is only a small moderating effect of aptitude 
and treatment on achievement growth) for consistency. Values used 
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for small (0.1), medium (0.3), and large (0.5) effects are consistent 
with Cohen’s (1988) rules of thumb. The coefficient for the 
interaction between treatment and time, g101, is relevant for 
determining the effects size for the slopes difference test. Therefore, 
its value will be discussed and specified in the next section.

In addition to gamma values, some variances and covariance of 
the random effects were fixed and specified according to Raudenbush 
and Liu’s (2001) medium effect size criteria as:
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These values were fixed across all conditions of the simulation. 
Variability for the achievement variable was introduced via the 
random effects at each level in Equations (2b, 2e, 2j) (i.e., 
e r r and utij ij ij j, , ,0 1 00 ). The variance for the classroom level, tb 00, 
will vary in accordance with the ICC conditions set for the 
simulation and is, therefore, discussed in the next section. In the 
following, we  discuss and specify the design conditions set for 
the simulation.

2.1.3. Simulation conditions

2.1.3.1. Effect size
The slopes difference test can be used to compare any two pairs of 

slopes. If only high and low aptitudes are selected as conditional values 
and there are two treatment conditions (four unique slopes), six pairs 
of slopes can be compared. In order to test the effectiveness of the 
slopes difference test across the conditions to be specified for this 
simulation, it is only necessary to examine one of the pairs of slopes 
for a difference. Statistically, it does not matter which pair of slopes is 
compared because the same approach is used for all slope comparisons. 
For example, Dawson and Richter (2006) only examined one slope 
difference in their simulation.

In the context of ATI or STI, it makes the most sense to examine 
slopes where the first moderator, aptitude/skill, is constrained to a 
value—low for our purposes—and the slopes for both zero and one 
values in the second moderator, treatment, are compared (i.e., 
compare “AptitudeLow and Control” with “AptitudeLow and Treatment”). 
Therefore, the standardized version of formula d from Dawson and 
Richter (2006) was adjusted to calculate a t-value and test for 
statistical significance:

 
t = -

+ +
g g

g g g g

101 111

101 111 101 1112var var cov  
(3a)

The numerator in Equation (3a) represents the effect of the 
treatment condition on the relationship between time and 
achievement for a low (z = -1) conditional value of aptitude/skill (i.e., 
the difference between the treatment and control group over time for 
low-aptitude students). Additionally, the fixed effect coefficient g101 
was determined by the condition of the effect size for the simulation. 
The value of g101 was set as 0.6, 0.4, and 0.2 to represent a large (0.5), 
medium (0.3), and small (0.1) effect size conditions, respectively, for 
the slopes difference test.

2.1.3.2. Intraclass correlation
The value of the intraclass correlation (ICC) was also specified to 

vary across three conditions: two that were chosen as real-world 
values, small and medium, from Hedges and Hedberg (2007) and one 
that represented a larger plausible value. Hedges and Hedberg (2007) 
found that depending on the type of achievement and the achievement 
level of the school (average or low achievement), the ICC values 
differed. Therefore, we utilized an ICC reflecting average achieving 
students (0.086) and one reflecting low-achieving students (0.113). A 
third ICC, 0.2, was also included to ensure that larger levels of ICC 
that are commonly found in educational research were considered 
(Chen et al., 2010). From these ICCs, tb 00 was calculated based on the 
equation ICC = + +( )t s t tb p b00

2
00 00/  (Raudenbush and Bryk, 

2002). For the smaller ICC (0.086) tb 00 0 113= . , for the moderate 
ICC (0.113) tb 00 0 153= . , and for the large ICC (0.2) tb 00 0 3= . . As 
such, these represent three ICC conditions for simulation.

2.1.3.3. Sample and cluster size
Sample sizes for all three levels of the model were also varied. For 

the first level, the number of waves was varied across three 
conditions—three, four, and five—where the waves are considered to 
be equally spaced apart in time. Although Chen et al. (2010) used only 
four waves, we  also considered other conditions because tests for 
interaction effects are often underpowered (Durand, 2013). This extra 
sensitivity to power could have led to the slopes difference test being 
especially sensitive to the number of waves in the study. After 
centering and spacing the waves by one, the values for the wave 
conditions were the following for three, four, and five wave conditions, 
respectively: −1, 0, and 1; −1.5, −0.5, 0.5, and 1.5; and − 2, −1, 0, 
1, and 2.

Chen et al. (2010) conducted a comprehensive literature review of 
the education literature to determine the size and number of clusters 
(sample size for Levels 2 and 3, respectively). They settled upon using 
20 and 40 cases per cluster and on 30, 50, and 80 as the number of 
clusters. After adjusting for more typical classroom sizes in the 
United States, the conditions for cases per cluster in the current study 
were determined to be 10, 20, and 30. Additionally, to increase the 
number of conditions for the number of clusters (i.e., the number of 
classrooms in the study) and limit the number of classrooms to what 
is typical in research studies, the conditions for the number of clusters 
were set to be 20, 30, 40, and 50.

Also relevant to the sizes of these clusters is the proportion of 
assignment to the treatment group at the school level. Stone-Romero 
et al. (1994) discussed the effects of categorical variables on power and 
recommended considering the proportion of participants belonging 
to each category. Treatment was a dichotomous variable in this 
simulation, so two levels of proportions for assignment to the 
treatment group: 0.5 and 0.3 (Stone-Romero et al., 1994) helped to 
determine whether different proportions of assignment to the 
treatment group affected statistical power.

2.1.4. Analysis
The proposed simulation used a 3 (number of waves: three, four, 

or five) × 3 (students per classroom: 10, 20, or 30) × 4 (number of 
classrooms: 20, 30, 40, or 50) × 2 (proportions assigned to treatment 
group: 0.5 or 0.3) × 3 (ICC: 0.113, 0.086, or 0.2) × 3 (effect size for the 
slope difference: 0.1, 0.3, or 0.5) factorial design to simulate the data, 
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resulting in 648 unique conditions. The simulation included 1,000 
replications for each condition, yielding a total of 648,000 datasets. 
Once the data were simulated and saved using R Studio (RStudio 
Team, 2015), the accuracy of the parameter estimates was examined.

After parameter estimates were deemed accurate, three outcomes 
were examined: power, non-convergence, and singularity. Power, the 
probability of finding a statistically significant result when an effect 
does in-fact exist, is a useful outcome for determining whether the 
slopes difference test is likely to find an effect. Power for each 
condition was determined by finding the proportion of statistically 
significant results across all replications under each condition. To 
answer the second set of research questions, non-convergence rates 
and singularity rates were determined as the proportion of 
non-convergence and the proportion of singularity across all 
replications under each condition.

An ANOVA was used to determine how design factors and their 
interactions influenced power, non-convergence rates, and singularity 
rates for the slopes difference test. In addition to examining statistical 
significance, measures of effect size are crucial for determining the 
importance of effects in an ANOVA (Cohen, 1994). Therefore, effect 
sizes for the conditions, h h2 2i e. . /, SS SSEffect Total=( ) , were 
calculated for significant effects to determine which effects were the 
most meaningful.

3. Results

Data consisting of 1,000 replications across 648 unique conditions 
were simulated. Outcomes for data analysis included power per design 
condition across all replications, as well as convergence rate and 
singularity rate for supplementary analyses per design condition 
across all replications. Figures, ANOVA results, and post-hoc results 
are shown for power, convergence, and singularity. Post-hoc tests were 
only conducted for factors where h2 0 03> .  to avoid interpreting 
factors that only explain a small portion of variance. For all statistical 
tests, a = 0 05. . Results from all simulation conditions are also 
available via the following link: https://osf.io/rp23n/?view_only=e32
6f41934d8456ca1b8bc4ea8bf3da3.

3.1. Power for the slopes difference test 
across simulation conditions

Relevant to both research questions, power across all replications 
was examined first with descriptive statistics, and secondly with an 
ANOVA including both main and interaction effects. Effect sizes (h2

) and Tukey’s HSD were then calculated to assist the interpretation of 
results. Tukey’s HSD is a post-hoc test that falls between the more 
conservative Bonferroni method and the more liberal Fisher’s LSD and 
allows for ANOVA results to be  broken down into pairwise 
comparisons while also controlling for the inflation of the family-wise 
error rate (Abdi and Williams, 2010).

3.1.1. Descriptive statistics for power
A histogram depicting the distribution of power is presented in 

Figure 1. Power was close to one for most conditions (mean = 0.841, 
s = 0.256). In fact, 72% of the 648 conditions had an average power 
above 0.8, which is considered appropriate power (Cohen, 1988). The 

lowest power observed was 0.128, meaning that less than 13% of the 
time, the slopes difference test was statistically significant when an 
effect should have been found across all replications for this condition. 
This lowest-powered condition, 436, had the lowest waves (3), the 
lowest class size (10), the lowest number of classrooms (20), an equal 
split of treatment and control classrooms, the smallest effect size (0.1), 
and the largest ICC (0.2). Being the lowest-powered condition, 
condition 436 had a similar set of parameters to other conditions 
where the slopes difference test had low power.

3.1.2. ANOVA and post-hoc results for power
An ANOVA was conducted with power as the outcome and 

simulation conditions and their bivariate interactions as independent 
variables. Test results as well as effect sizes (h2) for the significant 
effect are summarized in Table 1. Starting with significant interaction 
effects, the only sizeable bivariate interactions were those that included 
effect size. Two of these interactions explained over 6% of the variance 
in power (number of waves * effect size and class size * effect size) and 
one interaction explained almost 4% (number of classrooms * effect 
size). These findings suggest that depending on the effect size for 
condition, the relationship between power and sample size-related 
variables changes. Since all the patterns were similar across all three 
sample-size related variables, the pattern can be seen in the provided 
plot for the interaction between the number of waves and the effect 
size predicting power (Figure 2). Figure 2 demonstrates that each of 
the sample size-related design factors (number of waves, size of class, 
and number of classrooms) had a stronger influence on power when 
the effect size is “small” (i.e., 0.2). Thus, these sample size-related 
variables had little to no influence on power when the effect size is 
“medium” (0.4) or “large” (0.6). All other interactions effects were 
non-significant.

Now considering main effects, the largest main effect was that of 
effect size (h2 684= . ) with more than 68% of the variance in power 
explained by effect size. Far behind effect size were number of waves, 
size of class, and number of classrooms, each explaining over 3% of 
the variance in power. However, the effect from these sample size-
related factors on power depends primarily on whether the effect size 
is small. As such, their effects appear to have little influence unless 
effect size is small. Of the remaining factors, the proportion assigned 
to the treatment group and the ICC were not found to be influential 
in determining the power of the slopes difference test.

Post-hoc tests using Tukey’s HSD were conducted for factors 
where h2  was larger than 0.03, in the order from largest to 

FIGURE 1

Distributions of power across all simulation conditions. Bins 
represent equal ranges of observed power in a simulation condition.
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smallest h2 . Only main effects were tested since pairwise 
differences for significant interaction conditions can be seen in 
Figure 2. The smallest effect size condition was found to have 
significantly lower power than both the “medium” and “large” 
effect size conditions. Power increased significantly for every 
increase in both number of waves and class size. Additionally, 
power was significantly higher for every increase in the number 
of classrooms included, aside from going from “40” classrooms to 
“50” classrooms. To assist practitioners, we have also included a 
chart displaying percentages of underpowered conditions 
(power < 0.8) across sample size conditions for small effect sizes 
(see Figure  3) and medium effect sizes (see Figure  4). Some 
medium effect size conditions and all large effect size conditions 
showed no underpowered replications, so they were not included 
in the figures.

3.2. Singularity and convergence rates for 
the slopes difference test

Supplemental to the analysis of power of the slopes difference test 
is how often the model had proper fit for each of the conditions. 
Singularity rate and convergence rate were examined similarly to 
power to determine the prevalence of these warnings as well as what 
conditions were more likely to lead to these outcomes. ANOVAs for 
both models only included main effects since this analysis is 

supplementary to the research questions. Effect sizes (h2) and Tukey’s 
HSD were calculated as well to assist the interpretation of the results.

FIGURE 2

Interaction plot for number of waves and effect size predicting 
power. Effect size values of 0.6, 0.4, and 0.2 correspond to large, 
medium, and small effect sizes respectively; similar patterns were 
found for both class size and number of classrooms (replacing 
number of waves in this figure).

TABLE 1 ANOVA results for simulation factors impacting power for the slopes difference test.

Type of effect Factor F df p h2

Main Number of waves 803.913* 2 <0.001 0.048

Size of class 809.524* 2 <0.001 0.048

Number of classrooms 343.182* 3 <0.001 0.031

Proportion in treatment 74.721* 1 <0.001 0.002

Effect size 11433.155* 2 <0.001 0.684

ICC 0.018 2 0.982 <0.001

Interaction Waves: class 0.569 4 0.685

Waves: classrooms 0.394 6 0.883

Waves: treatment 0.360 2 0.698

Waves: effect 531.712* 4 <0.001 0.064

Waves: ICC 0.048 4 0.996

Class: classrooms 0.366 6 0.900

Class: treatment 0.102 2 0.903

Class: effect 535.990* 4 <0.001 0.064

Class: ICC 0.013 4 1.000

Classrooms: treatment 0.392 3 0.759

Classrooms: effect 212.300* 6 <0.001 0.038

Classrooms: ICC 0.082 6 0.998

Treatment: effect 41.238* 2 <0.001 0.002

Treatment: ICC 0.135 2 0.135

Effect: ICC 0.022 4 0.999

*Indicates statistically significant at the 0.05 level; h2  represents the proportion of the total variance in the DV that can be explained by the factor; only h2  for statistically significant 
interaction effects shown; residual df = 576; a bold h2  represents an effect size above the cutoff of 0.03.
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3.2.1. Descriptive statistics for singularity and 
convergence rates

Non-convergence and singularity across the conditions were 
generally rare, with a high average convergence rate (mean = 0.999, 
s = 0.001) and a low average singularity rate (mean = 0.016, 
s = 0.035). Histograms show where the distributions of the 
conditions align (see Figures 5, 6). Values of the worst rates for 
convergence and singularity were 0.994 (condition 438) and 0.189 
(condition 7), respectively. The lowest convergence condition had 
all the same conditions as the lowest powered condition (436), 
except for the effect size was large (0.5). Although this was the 
lowest convergence rate, the rate at which the model converged was 
still considerably high at 0.994. The lowest singularity rate condition 
also had mostly similar design conditions as the lowest powered 
condition (436), except for the ICC was low at 0.086. Overall, the 
slopes difference test did not have serious issues with singularity or 
non-convergence.

3.2.2. ANOVA and post-hoc results for singularity 
and convergence rates

ANOVA Results for both convergence and singularity outcomes 
can be seen in Table 2. For convergence rate, the number of waves had 
the largest impact, explaining over 25% variance. The size of the class 

and the number of classrooms were also found to have relatively 
smaller effects, explaining 6.4 and 4.9% variance, respectively. This 
was also the only model where ICC came close to explaining 1% of the 
variance in the dependent variable (h2 = 0.009). Post-hoc tests (using 
Tukey’s HSD) were conducted for pairwise comparisons of factors 
where h2 0 03> . . Convergence rates were significantly lower for 
conditions where there were “three” waves, the class size was “10,” or 
there were “20” classrooms.

As shown in Table 2, three conditions explained sizeable portions 
of the variance in singularity. These effects once again came from 
factors related to sample size, with number of waves being large 
(h2 0 383= . ), size of class medium (h2 0 127= . ), and number of 
classrooms somewhat smaller (h2 0 073= . ). Post hoc tests were also 
conducted for the current model. Rates of singularity were significantly 
higher for the “three-wave” group, and “20” classrooms condition. 
Singularity rates decreased significantly as class size condition 
increased. Additionally, “30” classrooms showed significantly higher 
singularity rates than “50” classrooms. To assist practitioners, we have 
also included figures displaying percentages of replications with no 
singularities (see Figure  7) and where all models converged (see 
Figure 8) across sample size conditions.

4. Discussion

The simulation and analyses conducted in this study were 
successful in answering the research questions as well as shedding 
light on the viability of these types of research designs and analyses. 

FIGURE 5

Distribution of singularity rates across all simulation conditions. Bins 
represent equal ranges of singularity rates in a simulation condition.

FIGURE 6

Distribution of convergence rates across all simulation conditions. 
Bins represent equal ranges of convergence rates in a simulation 
condition.

FIGURE 3

Percentage of replications underpowered across sample size 
conditions with a small effect size. IPC, individuals per cluster. A 
lower percentage is preferable for researchers.

FIGURE 4

Percentage of replications underpowered across sample size 
conditions with a medium effect size. IPC, individuals per cluster. A 
lower percentage is preferable for researchers. Excluded conditions 
were 0% underpowered.
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Following the pattern of the results section, the results of the power 
for the slopes difference test will be discussed in relation to the two 
research questions: (1) what was the power of the slopes difference test 

in a longitudinal multilevel analytical framework and (2) what factors 
affected this power and how. The supplemental results on singularity 
and convergence rate are then discussed, followed by implications of 
the study results.

4.1. Overall power and influencing factors 
for the slopes difference test

Answers for both research questions were found by (1) calculating 
descriptive statistics across design conditions and then (2) conducting 
an ANOVA with power as the dependent variable using the design 
conditions and their bivariate interactions as factors. These results 
showed that not only is the slopes difference test appropriately 
powered for most research conditions, but also that the slopes 
difference test has consistently higher power for longitudinal 
multilevel modeling than cross-sectional multiple regressions (i.e., 
Dawson and Richter, 2006).

For the first research question, the simulation showed that the 
slopes difference test was, on average, appropriately powered (i.e., 
0.841) across all conditions. Dawson and Richter (2006) found an 
average power of 0.558 in their conditions similar to those used in the 
current study. This confirms the notion by Preacher and Sterba (2019) 
that there is greater power when using longitudinal-CRT in a 
multilevel framework. Since the observed power increase in the 
current study could be the result of introducing longitudinal design, 
the slopes difference test should also be examined in a longitudinal 
multiple regression context to see if power improves over the findings 
of Dawson and Richter (2006).

The answer to the second research question helps us better 
understand what conditions researchers should aim to meet in order 
to achieve appropriate power to detect slope differences. Howell 
(2012) discusses how power, Type I error, effect size, and sample size 
all relate to and influence each other in a closed system. It is this 
system of relationships that likely drove which factors were predictive 
of power in the current study. Considering the main effects of 
conditions on the power of the slopes difference test, effect size was by 

TABLE 2 ANOVA results for simulation factors impacting convergence and singularity rates for the overall model.

DV Factor F df p
h2

Convergence Number of waves 127.879* 2 <0.001 0.251

Size of class 32.444* 2 <0.001 0.064

Number of classrooms 16.471* 3 <0.001 0.049

Proportion in treatment 3.055 1 0.081

Effect size 0.773 2 0.462

ICC 4.343* 2 0.013 0.009

Singularity Number of waves 292.147* 2 <0.001 0.383

Size of class 96.992* 2 <0.001 0.127

Number of classrooms 37.315* 3 <0.001 0.073

Proportion in treatment 0.004 1 0.948

Effect size 0.013 2 0.987

ICC 0.012 2 0.988

*Indicates statistically significant at the 0.05 level; h2  represents the proportion of the total variance in the DV that can be explained by the factor; only h2  for significant results are shown; 
residual df = 635; a bold h2  represents an effect size above the cutoff of 0.03.

FIGURE 7

Percentage of replications without singularity across sample size 
conditions. IPC, individuals per cluster. A higher percentage is 
preferable for researchers.

FIGURE 8

Percentage of replications with all models converged across sample 
size conditions. IPC, individuals per cluster. A higher percentage is 
preferable for researchers.
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far the largest determining factor. In this study, the effect size of the 
slope difference indicated the difference between the slope for the 
low-aptitude control group and the low-aptitude treatment group. 
Finding a small effect means that the difference between the slopes for 
these two groups was about 0.1. In the current study, power levels in 
conditions where a small effect size existed were more than 0.43 lower 
than those under both the medium and large effect size conditions. 
This means that if all other conditions are the same but the effect size 
is small rather than medium or large, the slopes difference test is 
highly likely to be  underpowered. These findings coincide with 
Dawson and Richter’s (2006) simulation of the slopes difference test 
in a cross-sectional multiple regression context. They found that 
unless the sample size was very large (i.e., 500), the power of the slopes 
difference test to detect small effects was highly underpowered. 
Sample sizes of 200 and 100 were required for properly powered slopes 
difference tests examining medium and large effects, respectively 
(Dawson and Richter, 2006).

Other sample size related design factors like number of waves, size 
of class, and number of classrooms were not nearly as influential as 
effect size but may still be considered as impactful. Specifically, power 
significantly increased when both the number of waves and the size of 
the class increased. These findings are consistent with Howell (2012) 
who said that effect size and sample size-related factors are the most 
influential for power. It would be interesting to have included even 
higher wave conditions and class sizes to see if the significant 
improvement in power provided by adding more tapers off at a certain 
level. However, for practical reasons using a larger number of waves 
or finding larger class sizes may not be realistic. Regarding the number 
of classrooms to collect data for, each increase in number led to a 
significant increase in power, although there was no significant 
increase in power going from 40 to 50 classrooms. This suggests that 
regardless of the values of other factors, once data from 40 classrooms 
have been collected, there is no added benefit for power of the slopes 
difference test in recruiting more classrooms. According to Hoyle and 
Gottfredson (2015), who studied cross-sectional applications of 
multilevel modeling, estimates from multilevel models are trustworthy 
with 10 or more clusters or with less than 10 clusters and a cluster size 
of 30 or more. The current study, while not disputing the suggestions 
of Hoyle and Gottfredson (2015), shows that power would significantly 
benefit from having much larger cluster size and numbers of clusters 
than they suggested. Although this may seem obvious to the 
statistician, practitioners who are less statistically savvy should now 
be warned: you are significantly less likely to find effects with the 
slopes difference test when meeting only the minimum sample sizes 
at all three levels explored in the current study (i.e., 3 waves, class size 
of 10, and 20 classrooms).

The bivariate interaction effects for design factors follow a similar 
pattern. That is, all the condition interactions that might be considered 
meaningful involved effect size as a moderator. This means that 
depending on what the effect size of the condition was, the influence 
of the other condition parameters on power for the slopes difference 
test changed. Specifically, conditions with the “small” effect size 
parameter showed an increased relationship between other factors and 
power. This finding corresponds with Scherbaum and Ferreter (2009) 
who state that statistical power in multilevel models can remain 
properly powered with much smaller samples when the observed 
effect size is medium or large. This conclusion was based on a 
statistical significance test for the group-level covariate (i.e., the 

omnibus interaction effect). The current study shows that this 
moderating effect of effect size on power also holds true for probing 
an interaction with the slopes difference test. The three interaction 
pairs of interest for the current study, number of waves with effect size, 
class size with effect size, and number of classrooms with effect size, 
all explain the variance of power between 3.8 and 6.4%. To illustrate, 
let us take one of these pairs. For the class size and effect size pair, the 
interaction effect shows that class size may become more important 
when the effect size is small and less important when effect size is 
large. For those hoping to gain greater power to detect small effect 
sizes, therefore, the number of waves, size of the class, and number of 
classrooms become especially important. In short, increasing each of 
these three design factors is the best way to increase the chances of 
detecting a small slope difference. Discussing the topic of sample size 
at different levels of a multilevel model, Snijders (2005) says that 
studies including more schools tend to be more expensive. Increasing 
the number of students can also be limited by the size of a school or 
classroom. Since the effect of sample size at all three levels on power 
is similar, the most prudent approach to increasing power would be to 
increase the number of waves.

It is also noteworthy to consider why changes in ICC were shown 
to have a minimal impact on power for the slopes difference test. Hox 
et al. (2010) who examined multivariate multilevel models, found that 
ICC had no effect on the accuracy of parameter estimates, even for 
between-group effects. According to Raudenbush (1997) medium 
(0.1) and large (0.2 or 0.5) ICCs require substantially smaller lower-
level sample sizes (i.e., cluster size) to retain a power of 0.5 (0.8 being 
considered appropriate) for parameter estimates than a small ICC 
(0.05 or even 0.01). As such, the ICCs used in the current study may 
not have included small enough ICC conditions to demonstrate the 
main or moderating effect of ICC. Considering that a longitudinal-CRT 
design introduces greater potential for variance at the cluster level by 
assigning classrooms to treatment or control groups, the ICC 
conditions used for the current study are more likely to reflect a real-
world research scenario than a small ICC category like 0.01. Therefore, 
the results from the current study are trustworthy for a 
longitudinal-CRT design.

4.2. Singularity and non-convergence: are 
they an issue?

Each of the 648,000 simulations conducted represents one 
random research study that an educational researcher might 
conduct. If the model does not converge or has singular fit for a 
particular study, the intended analysis cannot be conducted, and the 
research questions for the study would become more difficult to 
answer. Considering the complexity of a longitudinal-CRT and the 
multilevel model used, it is encouraging to see the high rates of 
convergence and low rates of singularity across all the simulation 
design conditions. Much like the way many people trust hand 
sanitizer to keep them sanitized when the bottle claims to kill 99.9% 
of germs, the longitudinal-CRT multilevel model can be trusted to 
converge over 99.9% of the time when one collects data that align 
with the conditions simulated in this study.

Although non-convergence and singularity are rare for 
longitudinal-CRT models, the results of this study allow researchers 
to figure out how many classrooms to include or whether they need 
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to assign treatment groups equally to avoid non-convergence or 
singular fit. For both singularity and convergence, it is especially 
important to ensure having the appropriate number of waves. As 
illustrated, a three-wave design led to significantly lower convergence 
rates and significantly higher singularity rates than both four- and 
five-wave designs. This finding confirms prior assumptions by Chen 
et al. (2010) that four-wave designs are more reliable than three-wave 
designs and that a five-wave design may not be necessary because it 
does not significantly improve convergence and singularity rates.

Class size and number of classrooms are, although less strong than 
effect size or number of waves, informative for researchers trying to 
avoid non-convergence or singularity. Between class size and number 
of classrooms, class size was more important for reducing the 
likelihood of non-convergence and singularity. Although this goes 
against typical recommendations for multilevel modeling where 
increasing the number of classrooms would have more influence, the 
current result may be due to the model only having treatment as a 
covariate at the highest level of the model. Singularity rates went down 
with every increase in class size. Also, a class size of 10 was the only 
condition shown to have significantly worse convergence rates. Thus, 
applications of these types of models may be less likely to succeed in 
special education contexts. However, convergence and singularity 
rates are still reasonable even in conditions with only 10 students per 
classroom. The number of classrooms needed to help avoid 
non-convergence and singularity is 30 or greater. Conditions where 
only 20 classrooms were included performed significantly worse in 
terms of convergence and singularity. The results also showed that if 
researchers want to collect data from more than 30 classrooms to 
improve convergence and singularity rates, they need to go up to 50 
classrooms to find any significant change. In a study comparing lower-
level (e.g., students) and group-level (e.g., schools) sample sizes within 
a multilevel context, Maas and Hox (2005) found that only group-level 
sample sizes were influential for convergence rates. However, Maas 
and Hox (2005) examined conditions where convergence got as low 
as 90.1%. Additionally, the design used by Maas and Hox (2005) was 
cross-sectional whereas the current study was longitudinal, so the 
within-group sample size for the current study includes both waves 
and class size. Being that the current study used a longitudinal model 
where within-group sample sizes (i.e., the class size and number of 
waves) and convergence rates far exceeded those examined by Maas 
and Hox (2005), the influence of sample size (i.e., number of waves, 
class size, and number of classrooms) on power was likely more 
balanced between levels of the analysis. It should also be noted that 
differences for convergence rates in the current study were so small 
that they should be  considered inconsequential for research 
in practice.

4.3. Implications, limitations, and 
conclusion

Educational research positively impacts educational structures 
and enhances student learning (Reddy, 2016). How much more 
informative and meaningful could educational research be if statistical 
techniques that more accurately reflect the context of the data are 
used? Advances in technology have opened the door for precision 
education researchers to use advanced techniques like longitudinal 
multilevel modeling that accurately reflect the data structure they are 

studying. Although scarcely utilized, probing techniques like the 
slopes difference test are conceptually a good fit for ATI or STI 
frameworks and should be utilized by precision education researchers 
more. In fact, the results of the current study show that the slopes 
difference test is more viable in a longitudinal-CRT within a multilevel 
framework than in its original context of single level cross-sectional 
multiple regression. To better understand differences between 
treatments on the educational outcomes for students of different 
aptitudes or skills, researchers should consider a slopes difference test 
as a powerful tool when using a longitudinal-CRT design. Based on 
the findings of the current study as well as prior research (i.e., Dawson 
and Richter, 2006), the slopes difference test is recommended for 
examining medium or large effects for both multiple regression and 
longitudinal multilevel models. Researchers may still use the slopes 
difference test for a small effect size scenario, but the test may 
be underpowered. Additionally, to improve power and reduce chances 
of non-convergence or singularity, researchers should first increase the 
number of waves, then the size of the class, and finally the number of 
classrooms. Taken in this order, these improvements are also the most 
cost-effective way to improve a longitudinal-CRT study. Although this 
recommendation is somewhat contrary to that typical in multilevel 
modeling, the model for the current study, where the only cluster-level 
covariate is treatment and the model is longitudinal, lends itself to 
being less influenced by number of clusters. This combined with the 
findings of the current study, where number of waves had a 
substantially larger influence on convergence and singularity rates, 
leads us to conclude that the number of waves is the most impactful 
factor for improving results for a slopes difference test in a 
longitudinal-CRT.

One thing to consider when discussing the applicability of the 
current results in the context of major interest (ATI/STI research in 
precision education) is the fact that many studies in this context have 
historically utilized a pre-post design rather than the more powerful 
longitudinal design with at least 3 waves where multilevel models can 
be utilized (see Spybrook and Raudenbush, 2009; Wolfe et al., 2009; 
Clements et al., 2011; Fuchs et al., 2014). The benefits of designing 
research studies that include multiple waves of longitudinal data have 
been discussed at length in this paper. Given that the current study has 
shown that a slopes difference test is effective for probing ATI and STI 
effects, especially for longitudinal CRT designs, it is our 
recommendation that future researchers collect more waves of data, 
thus allowing for more powerful and informative statistical analyses. 
Due to the complex nature of the research design and statistical tests 
discussed here, work should be done to educate researchers in the field 
of precision education on how to design and analyze studies such that 
powerful tests like the slopes difference test can be utilized.

To improve upon the current study, more simulation conditions 
could be  considered to more fully understand how power can 
be influenced for the slopes difference test. For example, smaller ICC 
conditions could be considered to confirm whether a small ICC would 
affect power for the slopes difference test. Additionally, larger sample 
size conditions (e.g., number of waves and class size) could be included 
to determine if the positive effects of increased sample size eventually 
become insignificant. While these additional conditions do not fit well 
with a precision education context where a longitudinal-CRT design 
is used, other areas of research may need to consider data with these 
conditions. Education researchers might argue that the effect size 
conditions represented here (in accordance with Cohen, 1988) are not 
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consistent with common effect sizes in educational intervention 
studies (Kraft, 2020). It would be beneficial to expand the current 
effect size conditions to account for these discrepancies in 
future research.

It can also be noted that the model framework examined here 
represents a simpler one than many researchers would utilize. For 
example, many longitudinal CRT studies also consider covariates at 
any level of the model. In general, introducing multiple predictors can 
add to model complexity, thereby increasing the risk of convergence 
issues or singularity. Additional issues such as reduced statistical 
power and multicollinearity could lead the researcher to miss or even 
misinterpret model effects (see Shieh and Fouladi, 2003). Many 
researchers fall prey to the allure of including “statistical controls” in 
their models assuming it will appropriately adjust the effects of interest 
(such as an ATI). However, there is a body of work suggesting that 
such practices not only detract from potential findings but can also 
lead to erroneous conclusions for variable relationships of interest (see 
Spector and Brannick, 2011; Carlson and Wu, 2012). As such, 
we decided to utilize the most parsimonious model for examining 
ATIs to avoid these issues. Further research should be  done to 
determine the impacts of the inclusion of covariates in the current 
model. Regardless of these limitations, the current study serves as a 
starting point for understanding the utility of the slopes difference test 
in a longitudinal-CRT design.

Findings from the current study may also be  generalized to 
research in other fields utilizing similar parameters in a longitudinal 
CRT context. For example, medical researchers who often compare 
treatment effects among several randomly assigned physicians could 
benefit from the slopes difference test, especially if they wish to 
consider how patient characteristics might impact treatment 
effectiveness on patient outcomes. One study that could stand to 
benefit from a slopes difference test is provided in Grandes et  al. 
(2011). This study evaluated the effectiveness of a physical activity 
promotion intervention on patients by utilizing multilevel modeling 
and a longitudinal CRT. One of the effects the authors were interested 
in was whether the prescriptions given to the patient moderated the 
intervention’s effectiveness on the various outcomes examined in the 
study. Given that the study examined 4 waves, 56 clusters, and an 
average of approximately 65 individuals per cluster, the data would 
be a good candidate for conducting a successful slopes difference test 
given the results of the current study. Other fields outside of ATI and 
STI research stand to benefit from the results of the current study such 
as: education (see Rosário et al., 2020), psychology/psychiatry (see 
Brathwaite et al., 2022), and business (see Janssens et al., 2020).

The current study has extended the slopes difference test to 
longitudinal multilevel modeling and shown that it is a powerful tool for 
discovering differences within a precision education context where 
longitudinal-CRT and multilevel modeling are applied. In addition, 
we have made evidence-based recommendations for how to improve the 
power of the slopes difference test and avoid modeling errors such as 
non-convergence and singularity. The hope is that this study will lead to 
increased use of the slopes difference test in a longitudinal-CRT design 
and thus benefit research design in precision education and related areas.
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