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The past years have seen a drastic rise in studies devoted to the investigation

of colexification patterns in individual languages families in particular and the

languages of the world in specific. Specifically computational studies have profited

from the fact that colexification as a scientific construct is easy to operationalize,

enabling scholars to infer colexification patterns for large collections of cross-

linguistic data. Studies devoted to partial colexifications—colexification patterns

that do not involve entire words, but rather various parts of words—, however, have

been rarely conducted so far. This is not surprising, since partial colexifications

are less easy to deal with in computational approaches and may easily su�er

from all kinds of noise resulting from false positive matches. In order to address

this problem, this study proposes new approaches to the handling of partial

colexifications by (1) proposing new models with which partial colexification

patterns can be represented, (2) developing new e�cient methods and workflows

which help to infer various types of partial colexification patterns frommultilingual

wordlists, and (3) illustrating how inferred patterns of partial colexifications can be

computationally analyzed and interactively visualized.
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1. Introduction

The past years have seen a drastic rise in studies devoted to the investigation of
colexification patterns in individual languages families and the languages of the world. The
concept of colexification has proven specifically useful for computational and quantitative
approaches in lexical typology. The term colexification was originally proposed by François
(2008) as a cover term for all cases where multiple senses are expressed by one word
form, no matter whether the multitude of senses results from polysemy or homophony.
Colexifications can be easily computed from large collections of lexical data, specifically
from multilingual wordlists, in which a certain number of concepts is translated into several
target languages (see List, 2014, p. 22–24). Through the aggregation of several multilingual
wordlists, it is straightforward to assemble large amounts of cross-linguistic colexification
data, as witnessed by the growth in recent versions of the Database of Cross-Linguistic
Colexifications (CLICS; List et al., 2018; Rzymski et al., 2020; https://clics.clld.org), as well as
by the increase in studies which exploit colexification data assembled from different sources
(Bao et al., 2021; Di Natale et al., 2021). Quantitative studies on colexification patterns have
also shown that it is straightforward to extract those colexifications that are most likely
to result from polysemy by searching for colexifications recurring across several language
families— as opposed to frequent colexifications inside one and the same language family,
wich might reflect wide-spread cases of homophony (List et al., 2013). This means in turn
that large colexification networks can be treated as polysemy networks that give us direct
insights into certain aspects of lexical semantics (Youn et al., 2016; Jackson et al., 2019;
Harvill et al., 2022).
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Up to today, however, most studies dealing with colexifications
focus on colexifications of entire words. Colexifications involving
only certain parts (i.e.,morphemes) of the words in a given language
— partial colexifications, also called loose colexifications (François,
2008)—have rarely been investigated (see Urban, 2011 for an
exception) and rarely been computed automatically from larger
collections of cross-linguistic data (see List et al., 2022 for initial
attempts). As an example for loose or partial colexification in
the sense of François (2008, p. 171), consider the words English
straight and straightforward, which share the morpheme straight

and thus loosely colexify the two senses “rectilinear” and “simple.”
Two major factors seem to account for the problems involving
studies with partial or loose colexifications. On the one hand, it
is less straightforward to model partial colexifications in networks,
since the relations between words that share common parts may
at times be asymmetric, with one word being entirely repeated
in the other word. Not only are different network types needed
to model partial colexification networks, it is also much less
straightforward to interpret them. On the other hand, it is difficult
to infer partial colexifications networks from large collections of
cross-linguistic data, since partial commonalities between words
easily arise by chance or reflect grammatical distinctions (noun
classes, gender marking, and part of speech). As a result, a method
that naively searches for similarities between words in the same
language variety in a large corpus typically provides very densely
connected noisy networks in which one barely finds any signal
that would be interesting from a semantic or cognitive perspective.
Thus, while it is easy to handle noise due to homophony in the
case of full colexification networks by using strict thresholds for
the occurrence of particular colexifications in combination with
normalized weights, it is difficult to use the same criteria when
creating partial colexification networks.

This study attempts to address at least some of these problems
by proposing new models with which certain kinds of partial
colexification patterns can be represented in networks, and by
developing new efficient methods and workflows that help to infer
different types of partial colexification patterns from multilingual
wordlists. Having inferred these patterns, the study further shows
how they can be visualized and analyzed.

2. Materials and equipment

2.1. Multilingual wordlists

The starting point of our new workflow for the inference of
partial colexifications are multilingual wordlists. A wordlists is
hereby understood as a collection of word formswhich are arranged
by their meaning. Unlike a dictionary, in which the word form (the
headword) constitutes the primary linguistic unit by which data
are ordered, a wordlist orders words by their meaning. While a
dictionary starts from the form, following a semasiological or form-
based perspective, a wordlist starts from the meaning, following
an onomasiological, or concept-based perspective. As a result, a
multilingual wordlist allows us to compare how certain concepts

(which are thought to be generally comparable across languages,
even if this may be problematic in practice) are translated into
certain languages.

The compilation and aggregation of multilingual wordlists
has seen remarkable progress during the last decade and the
number of digitally available wordlist collections is constantly
increasing. On the one hand, large unified multilingual wordlist
collections have been published in the past years (Haspelmath and
Tadmor, 2009; Key and Comrie, 2016; Dellert et al., 2020), on
the other hand, standards for cross-linguistic data formats have
been constantly improved (Forkel et al., 2018) and applied to
many smaller or growing data collections (Ferraz Gerardi et al.,
2021) and for the purpose of retro-standardization (Geisler et al.,
2021).

2.2. Cross-Linguistic Data Formats

For the exploration of partial colexification patterns across
multiple languages, a modified version of the well-known
Intercontinental Dictionary Series (IDS) was prepared (Key and
Comrie, 2016). While the original version mixes phonetic
transcriptions with language-specific phonological transcriptions
and orthographic entries, the entries in the modified version
were semi-automatically converted to the International Phonetic
Alphabet in the variant proposed by the Cross-Linguistic
Transcription Systems (CLTS) reference catalog (https://clts.clld.
org; List et al., 2023; see Anderson et al., 2018). The conversion was
done by applying the Lexibank workflow of creating standardized
wordlists in Cross-Linguistic Data Formats (List et al., 2022).
In this workflow, originally non-standardized datasets are semi-
automatically standardized by applying a mix of software tools
(based on CLDFBench; Forkel and List, 2020) and manual
annotation in order to convert the data into the formats
recommended by the Cross-Linguistic Data Formats initiative
(Forkel et al., 2018).

The updated version of the IDS provides wordlists for 329
language varieties for up to 1,310 concepts. The standardized
phonetic transcriptions consist of a total of 558 distinct sounds
(types) which occur 2,902,306 times in the data (tokens),
with an average phoneme inventory size of 50.76 sounds per
variety. Although—strictly speaking—partial colexifications
could in theory also be identified from orthographic data,
being able to work with a larger multilingual wordlist available
in phonetic transcriptions has two major advantages, even
if the transcriptions may contain certain errors. First, it is
easier to evaluate the findings if transcriptions are harmonized;
secondly, knowing that sounds are represented in segmented
form makes it easier to select the thresholds by which partial
colexifications are preliminarily accepted or discarded. The
revised version of the Intercontinental Dictionary Series is
currently curated on GitHub, where it can be accessed at:
https://github.com/intercontinental-dictionary-series/ids-
segmented. The version used in this study is v0.2 (https://
github.com/intercontinental-dictionary-series/idssegmented/tree/
0.2).

For developmental purposes and in order to test certain
technical aspects of the new methods proposed here, a smaller
wordlist by Allen (2007) was used. This list—also converted to
CLDF (see: https://github.com/lexibank/allenbai)—offers data for
nine Bai dialect varieties in standardized phonetic transcriptions.
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3. Methods

Full colexifications across languages can be handled in an
efficient way that has shown to provide very interesting insights
into semantic relations. Partial (or loose) colexifications, however,
suffer from noise, resulting from the fact that partial similarities
between words in the same language may result from a large
number of factors (coincidence and grammatical markers) that
do not reflect specific semantic relations between the words
in question. As a result, the well-established workflows for the
inference of full colexification networks cannot be used to infer
partical colexification networks. In order to handle this problem,
I propose a three-stage approach that starts from the modeling

of partial colexifications—which helps to reduce the search space
and provides a consistent representation of distinct types of
partial colexifications in networks—, offers efficient methods for
the inference of specific partial colexification types, and finally
allows us to analyze different kinds of partial colexification
networks in various ways. In this context, modeling, inference, and
analysis reflect a general approach to scientific problem solving
in the historical sciences that was inspired by its application in
evolutionary biology (Dehmer et al., 2011).

3.1. Modeling partial colexifications across
languages

3.1.1. Major types of partial colexification
When modeling words as sequences of sounds, we can

define major sequence relations in a formal way. Since sequences
play a crucial role in many scientific fields—ranging from
computer science (Gusfield, 1997) via bioinformatics (Durbin et al.,
2002[1998]) to physics (Kruskal and Liberman, 1999[1983])—basic
relations between sequences have been independently identified
and discussed long ago. In the following, we will distinguish
the term partial colexification from the term loose colexification

(the latter originally termed by François, 2008). According to
this distinction, partial colexifications are restricted to those cases
where two word forms, modeled as sound sequences, share at
least one non-grammatical morpheme that has the same surface
form. Following the examples provided by François (2008), loose
colexifications would then refer to all cases where two word forms
that express different senses share at least one non-grammatical
cognate morpheme. According to this distinction, English old

and its comparative form older can be said to colexify partially
(and loosely), while German alt “old” and its comparative ālter

“older” would only colexify loosely. The narrower notion of partial
colexifications has the advantage that we can use existing models
and insights from earlier studies on sequence and string relations
and adopt them to the notion of partial colexifications.

When comparing three fictitious sequences ABC, XYABCD,
and ZABCEF, it is easy to see that the first sequence ABC recurs
in both the second and the third one. In computer science and
bioinformatics, ABC is called a common substring of XYABCD and
ZABCEF. Since there is no longer common substring than ABC, it is
furthermore the longest common substring between both sequences.
Regarding the specific relation between XYABCD and ZABCEF,

we can say that they share a common substring of length 3. The
sequence ABC also shares substrings of length 3 with the two other
sequences ZABCEF and XYABCD. In addition, however, we can see
that the sequence ABC is identical with the common substring, and
we can say that ABC is a part of XYABCD and ZABCEF. While the
common substring relation between sequences is commutable, the
part-of relation isn’t: saying that one sequence A is part of another
sequence B is not the same as saying that sequence B is part of
sequence A.

Given their importance for a wide range of scientific
and industrial applications, many efficient algorithms for the
inference of common substrings and the identification of part-
of relations (or parthood relations; see Hoehndorf et al., 2009)
in sequences have been proposed (see the overview in Gusfield,
1997, p. 89–121). Common substring relations and part-of
relations are two fundamental relations between sequences. Partial
colexifications, in the sense define above, reflect a specific
subtype of these relations, in so far as words sharing at
least one non-grammatical morpheme with a common surface
form also share a common substring and could also reflect a
part-of relation.

3.1.2. A�x and overlap colexifications
When trying to develop methods that search for partial

colexifications from multilingual wordlists, we have the problem
that the segmentation of words intomorphemes is usually not given
to us. While it would sure be possible to annotate morphemes
manually, this would require a detailed expert knowledge of the
languages in question that we often do not have, not to speak of the
amount of time and labor it would cost to provide these annotations
for hundreds of languages. Instead of carrying out the segmentation
of words into morphemes directly, we can alternatively search
for common substring and part-of relations across individual
languages. This will result in many matches that do not reflect
true non-grammatical morphemes, but we may hope to handle the
noise when considering a large enough amount of languages from
different families and areas. In order to further facilitate the search
for partial colexifications, it is additionally useful to restrict the
search space by working with a narrower notion of shared similarity
than the one reflected in the common substring and the part-of
relation between sequences. Thus, instead of searching whether
a word form A expressing a concept X is part of a word form
B expressing a concept Y, we can ask if A is identical with the
beginning or the end of B, or—to put it in other terms—, if A is
a prefix or a suffix of B (in the sense in which prefix and suffix are
used in computer science). Similarly, we can ask if A and B overlap,
that is, if they share a common substring which is either a prefix or
a suffix of both sequences.

The search for these potential affix and overlap colexifications
can be further restricted by setting thresholds for the length of
the substring which the sequences should share, and by setting
thresholds for the length of the remaining parts of the sequences
which they do not share. Here, the fact that our multilingual
wordlist is now available in the form of fully segmented,
standardized phonetic transcriptions, comes in handy, since it
allows us to set up thresholds for a certain number of sounds rather
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than a certain number of symbols which often reflect individual
sounds only in combination.

3.1.3. Representing partial colexifications in
networks

Affix and overlap colexifications, as they were introduced
before, are special cases of the part-of and the common
substring relation between sequences. Like part-of relations, affix
colexifications entail a directional relation (one sequence is a part
of the other sequence, in this specific case, appearing in the
beginning or the end). Like common substring relations, overlap
colexifications do not entail a directional relation.

In contrast to the well-known undirected weighted network
models used for the representation of full colexification networks
(List et al., 2013) which can be easily visualized, both interactively
(Mayer et al., 2014) and statically (using edge thickness to account
for differences in the weights for the links connecting individual
concepts, see List et al., 2018), weighted directed networks draw
a link from one concept A to another concept B only in those
cases where an affix colexification from A to B can be attested.
As an example, consider the words German Finger “finger” and
Fingernagel “fingernail.” Here, the word Finger is an affix (in the
sense in which affix is used in computer science) of the word
Fingernagel, and we can therefore draw a link from the concept
“FINGER” to the concept "FINGERNAIL” in an directed network.
When visualizing these networks, we may have links pointing in
both directions. While we would not necessarily expect links for
“finger” and “fingernail” to go in both directions, this may happen
with other concept pairs, depending on the underlying lexical
motivation.

Overlap colexifications can be handled in the same way in
which one would handle full colexifications. The difference is
that one should internally store the individual suffixes that make
up for the overlap connection. Thus, while it is enough to
store one word form for a colexification in a full colexification
network (since words colexifying two or more concepts are by
definition identical), it is important—for the sake of transparency—
to indicate the actual suffix that recurs across two words in an
overlap colexification network. Figure 1 contrasts the three types
of colexification networks along with some simplified examples.

3.2. E�cient inference of full and partial
colexification networks

A naive implementation of a simple search for partial
colexifications (be they affix or overlap colexifications) would
take all word forms from one language and then compare each
word against each other word in the sample, storing observed
commonalities. While this procedure is easy to understand and
certainly yields the desired results, it is far away from being efficient.
As a result, specifically when dealing with large cross-linguistic data
collections, it is advisable to use efficient search strategies.

For the computational of full colexifications, an efficient search
strategy consists in the use of associative arrays as a major
data structure, which consists of a key that allows to access a
given value. In the Python implementation used by the CLICS

database (List et al., 2018; Rzymski et al., 2020), the keys consist of
the individual word forms for a given language, while the values
are a list of the concepts that the form links to. In order to infer
colexifications for a given language, the method iterates over all
words for a given language in a wordlist and subsequently adds
them to the associative array, storing the concept that the word
form expresses in the list that constitutes the value of the associative
array. If a given word form has already been added to the array,
the associated list is expanded by adding the new concept in
question. In a second stage, the method iterates over all keys in the
associative array and adds all pairs of diverging concepts in the list
to the growing network of colexifications across several languages.
Detailed descriptions of this procedure can be found in a tutorial
accompanying Jackson et al. (2022) and in List (2022). Figure 2
shows the structure resulting from applying this method to a small
wordlist of three German words.

In our approach to partial colexifications, we proceed in a
similar fashion, by iterating over the wordlist of each individual
language twice. In order to find potential affix colexifications,
however, the associative arrays are filled with affixes of varying
size, and the list serving as the value is then filled with tuples of
the corresponding full word form and its concept. The affixes are
computed by iterating from the left and the right of the sound
sequence representing the word form. Affix sizes are limited by two
thresholds. The first threshold (default set to 2) limits the minimum
size of the affix to 3 sounds. The second threshold makes sure
that the size of the remaining word part is larger than a certain
minimum (default set to 2). In combination, both thresholds
guarantee that the affix we infer has a reasonably large size, and
that the full word form to which we link it is also large enough to
increase the chances that we detect compounding structures rather
than cases of inflection. With these thresholds, we can detect all
potential affix candidates for a given word in a first run and store
them in our associative array. In a second step, we then iterate over
all original words in the data, sorted by length, starting with the
longest word. For each of the word forms, we then check if it occurs
in the array of affix candidates. If this is the case, this means that the
word appears as the affix of one of word forms linked as a value to
this array, and we can add them to our network, by adding a link
from the word recurring as affix to the word containing the affix
(see Figure 3).

For the identification of overlap colexifications, we pursue
the same strategy as for affix colexifications in the first stage,
by populating an associative array with affix candidates for the
word forms in our wordlist. Due to the increase in noise when
searching for overlap colexifications the default thresholds for
the length of the affix are set to 4 and the threshold for the
length of the remaining part are set to 3. In the second stage,
we iterate over the array with affix candidates itself, which has
been sorted by the length of the affixes serving as keys in reverse
order (starting from the longest affix found in the data for a
given language). For each affix, we then compare all word pairs
in which this affix recurs and check that neither of the two
forms appears as a suffix or a prefix of the other form. If these
conditions are met and the forms are also not identical (which
would correspond to a full colexification), we store the forms as
overlap colexifications along with the affix by which the forms
overlap.
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FIGURE 1

Overview of three major colexification types discussed in this study. (1) Provides an example for a full colexification in Yaqui (data from CLICS3

Rzymski et al., 2020), (2) shows an example for the directional representation of a�x colexifications with an example from Guìlín Chinese (data from
Liú et al., 2007), and (3) shows an example for overlap colexification in Fúzhōu Chinese (data from Liú et al., 2007).

FIGURE 2

E�cient search for full colexifications using associative arrays. Data are represented in JSON format for a wordlist consisting of three German word
forms Erde “EARTH,” Erde “WORLD,” and Welt “WORLD.” The top-left box shows the initial format of the data (a wordlist consisting of two columns,
one storing the concept and one storing the word form in IPA. The top-right box shows the resulting associative array, in which the forms serve as a
key and concepts expressing this form are added to the same array as a value. The bottom-right box shows the resulting colexification inferred from
this example.

FIGURE 3

E�cient search for a�x colexifications, illustrated for a wordlist of three German words Hand “HAND,” Schuh “SHOE,” and Handschuh “GLOVE” (lit.
“hand-shoe"). Starting from the original wordlist in the top-left box, each word form is represented by all possible prefixes and su�xes that match the
two-threshold criterion (see text) in the associative array in the top-right box. When iterating over the word forms in the original concept list, we find
that two words, Hand and Schuh are stored in the array and we can therefore infer an a�x relation between the two words and the word Handschuh,
represented in the form of a directed graph in the box at the bottom of the figure.
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As can be easily seen from the descriptions, the
complexity of the three methods for the inference of full
colexifications, affix colexifications, and overlap colexifications
differs. The search for full colexifications requires the
least amount of computation time, followed by the search
for affix colexifications, and by the search for overlap
colexifications.

With the methods for the inference of full and partial
colexifications in individual languages above, we can construct
full and partial colexifications networks by applying the search
strategies to multiple languages and iteratively growing a
colexification network, in which we add edges when new
edges are inferred for a particular language, or increase
edge weights when edges have been already attested during
the iteration. The networks computed in this form are all
annotated in various ways. For the nodes, we store the
number of word forms that can be found in the data, the
number of language families in which these words are
attested, and the actual word forms in each language. For the
links between the nodes, we store the number of concrete
word forms which exhibit the colexification relation, the
number of language families, in which these colexifications
can be found, and the actual word forms (including the
colexifying parts for partial colexifications) in which the
colexifications occur. For affix colexifications, we infer a directed
network, while the network for full and overlap colexifications
is undirected.

3.3. Analyzing partial colexification
networks

In order to understand major differences between full
colexification networks and the two new types networks introduced
here, one can compare their degree distributions. The degree of a
node in a network is the number of its edges (Newman, 2010, p.
133–135). The weighted degree of a node in a network is the sum of
the edge weights of its edges. While we have only one type of degree
for undirected networks, we have two possible degrees for network
with directed edges, the in-degree and the out-degree, with the
former representing the number (or the sum of the edge weights)
of incoming edges of a given node, and the latter representing
the number (or the sum of the edge weights) of outgoing edges
of a given node in the network. In order to compare the degree
distributions of two networks constructed from the same set of
nodes, we can compute the Spearman rank correlation (Spearman,
1904), which tell us to which degree those nodes that show a
very high degree in one network also show a high degree in the
other network, and to which degree nodes with low degrees in one
network also tend to show low degrees in the other one.

In addition to the comparison of degree distributions, it is
also useful to visualize the networks and to zoom in to interesting
parts that illustrate where major differences can be found. This
can be done quite conveniently now with the help of software
packages for network visualization, such as Gephi (Bastian et al.,
2009) or Cytoscape (Shannon et al., 2003; Smoot et al., 2011). For
the visualizations reported here, Cytoscape is used.

3.4. Implementation

The methods reported here are implemented in Python and
shared in the form of Python library that can be used as a plugin to
the CL Toolkit package (https://pypi.org/project/cltoolkit; List and
Forkel, 2021). CL Toolkit was designed to allow to access CLDF
Wordlists that conform to the standards proposed by the Lexibank
repository (List et al., 2022) conveniently from Python scripts or
from the Python interactive console. For the handling of graphs,
the NetworkX package was used (Hagberg et al., 2008), and for
the inference of communities, the Igraph package was used (Csárdi
and Nepusz, 2006). The computation of rank correlations was done
with SciPy (Virtanen et al., 2020). The Supplementary material
offers access to all data and code necessary to replicate the results
reported here.

4. Results

4.1. Computation time of e�cient
colexification inference

In order to test whether the newly proposed method for the
inference of affix colexifications is indeed more efficient than a
conceptually much simpler comparison of all word against all
words in a word list, a small experiment was designed in which
the CLDF dataset of Bai dialects derived from Allen (2007) was
analyzed several times and computation times were calculated.
The results of this test indicate that the new method is indeed
much more efficient in terms of computation time than the naive
iteration. In various experiments on different Linux machines,
computation time differences show that the naive all-to-all word
comparison needs more than five times as much time than the
new efficient approach, while both produce exactly identical results
(detailed examples on this test are provided in the Supplementary
material accompanying this study). While computation time may
be less important when working with small datasets of only about
a dozen of languages, it can become a bottleneck when working
with large datasets such as the Intercontinental Dictionary Series.
For this reason, the efficient solution proposed here, is proving very
useful. This does not mean, however, that the solution is perfect,
and it may well be the case that there are more efficient solutions
available (e.g., using suffix trees, see Gusfield, 1997, p. 122–180) that
could be implemented in the future.

4.2. Comparing degree distributions

Having computed colexification networks for full
colexifications, affix colexifications, and overlap colexifications,
the Spearman rank correlation was computed for the weighted
degree distributions of all three colexification types, splitting
affix colexifications into two types of degree distributions, the
in-degree and the out-degree. The results of this comparison are
given in Table 1. As can be seen from this table, two moderate
correlations can be observed for the total of six pairings. The degree
distribution of the full colexification network correlates moderately
with the out-degree distribution of the affix colexification network
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TABLE 1 Comparing the Spearman rank correlations for the four di�erent

kinds of degree distributions.

Colexification
type A

Colexification
type B

Nodes ρ P-value

Full colexification Affix colexification
(in-degree)

1,308 0.0960 < 0.0001

Full colexification Affix colexification
(out-degree)

1,308 0.5034 < 0.0001

Full colexification Overlap
colexification

1,307 0.1179 < 0.0001

Affix colexification
(in-degree)

Affix colexification
(out-degree)

1,308 –
0.0830

< 0.0001

Affix colexification
(in-degree)

Overlap
colexification

1,307 0.4212 < 0.0001

Affix colexification
(out-degree)

Overlap
colexification

1,307 –
0.0488

0.0104

As can be seen, we can observe significant moderate correlations for Full Colexifications

as compared to the out-degree of affix colexifications (0.5) and for the in-degree of

affix colexifications compared to overlap colexifications (0.42). For the other pairings, no

significant correlations can be observed.

(ρ = 0.50, p < 0.0001), and the degree distribution of the
overlap colexification network correlates moderately with the
in-degree distribution of the affix colexification network (ρ = 0.42,
p < 0.0001).

Interpreting these results may not seem straightforward at
the first sight, and additional research will be needed to confirm
the explanations given in the following, but it seems to me
that both correlations reflect two properties of concepts: lexical
root productivity and compoundhood. The correlation between the
weighted degree of concepts in full colexification networks and the
out-degree of concepts in affix colexification networks points to a
tendency according to which concepts that are often fully colexified
with other concepts also seem to be frequently reused as compounds
or affixes in complex words.While this findingmay seem to be quite
reasonable or even obvious, it was so far not possible to confirm
it in cross-linguistic studies. Partial colexification networks thus
point us to an important property of concepts that tend to colexify
frequently across the languages in the world: their propensity to
be reused in word formation processes to form new words. This
property, which I propose to call lexical root productivity (the
term is inspired by a discussion with Alexandre François; see
List, 2019a,b), plays a key role in lexical motivation, the process
underlying the formation of new word forms in the languages of
the world (Koch, 2001).

The correlation between the weighted degree distribution of
overlap colexifications with the out-degree distribution of affix
colexifications has an even more straighforward explanation.
Concepts that exhibit many overlap colexifications across a larger
sample of languages are concepts that are often expressed with the
help of compounds or morphologically complex words. The same
holds for those concepts that have many incoming edges in an affix
colexification network. As a result, the correlation between the two
degree distributions is not very surprising. It shows, however, that
both the weighted in-degree of affix colexification networks and the
weighted degree of overlap colexification networks can be used as
a proxy to measure the compoundhood of concepts (a term inspired

by Martin Haspelmath, p. c.), that is, the tendency of concepts to be
expressed by compound words or morphologically complex words.

4.3. Inspecting colexifications through
subgraphs

While the investigation of the degree distributions already gives
us a nice impression about the commonalities and differences
between different kinds of colexification networks, a closer
investigation of smaller parts of the graphs can help us to see these
differencesmuchmore clearly. In order to provide a fruitful sample,
the Infomap algorithm (Rosvall and Bergstrom, 2008) was used
to compute communities from the full colexification network. In
a second step, 23 concepts which show different properties with
respect to their full and partial colexifications, were selected and the
corresponding subgraphs for full, affix, and overlap colexification
networks were extracted and visualized with the help of Cytoscape
(Shannon et al., 2003; Smoot et al., 2011).

As can be seen from the visualizations shown in Figure 4, the
three networks show a remarkable difference in their individual
structures, although they all involve the same concepts. Thus,
while the concept EYE has only one spurious link in the full
colexification network to SPRING (A), it is completely isolated in
the overlap colexification network (B), while appearing as a rather
central concept with a high out-degree in the affix colexification
network (C). When inspecting connected components in all three
networks, we find huge differences between the concepts that are
fully connected with each other, while it is easy to spot semantic
or morphological connections that give rise to these patterns. Thus,
we find a cluster ofBLIND,TEAR,EYELASH,EYEBROW,EYELID,
and BLINK in the overlap colexification network that clearly seems
to result from the fact that the words expressing these concepts
all contain a morpheme for EYE. The central position of EYE
in the affix colexification network confirms this role, and we find
similar structures for WATER as another central concept in the affix
colexification network. A systematic comparison of these different
kinds of colexification networks allows us to identify semantic key
players (Lee et al., 2020) that play an important role in contributing
morphological material to the construction of the lexicon of many
of the world’s languages.

5. Discussion

This study has presented new ideas regarding the inference
of partial colexification networks from multilingual wordlists. It
has introduced new models that can be used to handle partial
colexification patterns and proposed new efficient methods and
workflows for the inference of partial colexification networks. Two
new models for colexification networks were introduced, namely
affix colexification networks and overlap colexification networks.
Using these new types of colexification patterns to infer affix and
overlap colexification networks from large multilingual wordlist
revealed some interesting properties of both network types.
While overlap colexification networks allow us to measure the
compoundhood of individual concepts across the world’s languages,
affix colexification networks could be used as an initial proxy
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FIGURE 4

Comparing full (A), overlap (B), and a�x (C) colexifications for subgraphs of the IDS dataset. Line width indicates the weight of the colexifications,
colors other than light gray indicate communities inferred for the full colexification network, and link directions in the a�x colexification network (B)

are displayed with the help of arrows. Concept labels are taken from the Concepticon project. Concept labels with an asterisk were modified to to
enhance the visualization.

to measure lexical root productivity across languages. Apart from
being interesting for people working in the field of lexical typology,
there is hope that these new types of colexification networks
can be very useful for many additional scientific fields in the
future, including most notably computer science (and approaches
to computational semantics) and psychology.
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