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Deep knowledge tracing with
learning curves

Hang Su†, Xin Liu†, Shanghui Yang† and Xuesong Lu*

School of Data Science and Engineering, East China Normal University, Shanghai, China

Knowledge tracing (KT) models students’ mastery level of knowledge concepts

based on their responses to the questions in the past and predicts the probability

that they correctly answer subsequent questions in the future. Recent KT models

are mostly developed with deep neural networks and have demonstrated superior

performance over traditional approaches. However, they ignore the explicit

modeling of the learning curve theory, which generally says that more practices

on the same knowledge concept enhance one’s mastery level of the concept.

Based on this theory, we propose a Convolution-Augmented Knowledge Tracing

(CAKT) model and a Capsule-Enhanced CAKT (CECAKT) model to enable learning

curve modeling. In particular, when predicting a student’s response to the next

question associated with a specific knowledge concept, CAKT uses a module

built with three-dimensional convolutional neural networks to learn the student’s

recent experience on that concept, and CECAKT improves CAKT by replacing the

global average pooling layer with capsule networks to prevent information loss.

Moreover, the two models employ LSTM networks to learn the overall knowledge

state, which is fused with the feature learned by the convolutional/capsule

module. As such, the two models can learn the student’s overall knowledge state

as well as the knowledge state of the concept in the next question. Experimental

results on four real-life datasets show that CAKT and CECAKT both achieve better

performance compared to existing deep KT models.

KEYWORDS

knowledge tracing, learning curve theory, three-dimensional convolutional neural

networks, capsule networks, deep learning

1. Introduction

Knowledge tracing (KT) models a student’s changing knowledge state via tracking her

interactions with coursework. By observing a student’s answers to a sequence of questions,

a KT model can adjust her knowledge state over time and predict her future performance.

Due to the ease of interpretation and adoption, the philosophy of knowledge tracing has been

widely adopted in intelligent education platforms (Mcgreal et al., 2013; Kaplan andHaenlein,

2016; Zhang Y. et al., 2020).

Knowledge tracingmodels are used to be constructed using statistical cognitivemodeling

methods such as Bayesian inference with a Hidden Markov model (Corbett and Anderson,

1994; Yudelson et al., 2013) and factor analysis using logistic regressions (Cen et al., 2006;

Pavlik et al., 2009; Chi et al., 2011). In the past few years, researchers have turned to

train neural networks for knowledge tracing due to the availability of massive educational

data released by large MOOC platforms and educational institutions. In the pioneering

work (Piech et al., 2015), Piech et al. propose the DKTmodel using an LSTM network, which

significantly improves the overall accuracy of predicting students’ responses to questions.

Inspired by this work, a series of deep learning models have been proposed to target various

aspects in the knowledge tracing task, including DKVMN (Zhang et al., 2017), EKT (Huang

et al., 2019), AKT (Ghosh et al., 2020), CKT (Shen et al., 2020), IEKT (Long et al., 2021), and

CL4KT (Lee et al., 2022), etc.
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FIGURE 1

The “learning curve” in ASSISTments2017.

1.1. The motivation

Despite the major advances in predicting student performance,

we notice that existing deep KT models ignore the explicit

modeling of the “learning curve” theory, which generally states that

more practices would bring more improvement on a skill. Such

improvement may manifest itself as taking less and less time to

complete tasks that require the same skill, or resulting in a smaller

and smaller error rate, etc. Newell and Rosenbloom (Newell and

Rosenbloom, 1981) first theorize this ubiquitous phenomenon and

find that the error rate of performance and the amount of practices

have a power relationship in diverse learning tasks. They depict the

relationship using the following simple equation:

Y = aX−b, (1)

Where Y denotes the error rate or the cost to complete a task, X

is the number of previous trials using the skill needed by the task, a

is the difficulty of the skill and b is the learning rate of the skill.

Similarly, the learning curve phenomenon may also be depicted

using other equations such as exponential rise or fall and Sigmoid

curve (Ritter and Schooler, 2002; Leibowitz et al., 2010) based on

different assumptions. Nevertheless, they all reveal that the more

one practices on a skill, the better she performs on it. According

to the theory, in the scenario of education, we may expect that

the more questions a student answers about the same knowledge

concept, the less likely she will make mistakes on the concept, i.e.,

the mastery of the knowledge concept is enhanced.

Figure 1 shows a “learning curve” in the ASSISTments2017

dataset. The x-axis is the number of past practices on the same

concept, and the y-axis is the averaged error rate when a student

responds to the next question associated with the concept. It can be

observed that the error rate decreases generally with the increased

number of past practices, and the fitted curve clearly shows the

learning curve phenomenon.

Inspired by this phenomenon, we hypothesize that if we

incorporate the feature of past practices on the same knowledge

concept into knowledge tracing, we can better model such

enhanced mastery of the concept, thereby promoting the overall

accuracy for estimating the mastery levels of knowledge concepts.

Therefore, we propose to model the learning curve theory

to augment knowledge tracking, i.e., learning a student’s past

experience on the concept of the next question to be answered.

Surprisingly, we find that this simple idea has not been sufficiently

explored in existing models. DKT (Piech et al., 2015) and

DKVMN (Zhang et al., 2017) have not given a particular

bias to a student’s past experience of applying the knowledge

concept in the next question. In the models such as EERNN (Su

et al., 2018), EKT (Huang et al., 2019), SAKT (Pandey and

Karypis, 2019), and AKT (Ghosh et al., 2020), the heterogeneous

impacts of the past interactions are modeled using the attention

mechanism. As such, the prediction to the next question may

be influenced by the past practices on the questions with a

different concept. SKVMN (Abdelrahman and Wang, 2019) and

DKT+forgetting (Nagatani et al., 2019) have attempted to explicitly

model the impact of past performance on the same knowledge

concept. However, SKVMN needs to empirically define a threshold

for the similarity between two concepts and then pick the past

similar trials based on the threshold, whereas DKT+forgetting uses

handcrafted features to represent repeated practices on the same

concept. Both of them rely on empirically-determined settings.

1.2. Our solution

To bridge this gap, we propose to explicitly model a student’s

experience on the same knowledge concept with the one covered

by the next question, and combine the experience with the

student’s overall knowledge state to predict her response to the

next question. To learn the overall knowledge state, without loss

of generality, we train a two-layer LSTM network, where the input

at each step is the embedding of a student-question interaction.

To learn the knowledge state pertaining to a particular concept,

we need another module to extract the feature from previous

practices on the concept. One may use RNNs/LSTM (Rumelhart

et al., 1986; Hochreiter and Schmidhuber, 1997), self-attention

networks (Vaswani et al., 2017), or CNNs (LeCun et al., 1989) to

capture the feature. However, when using RNNs/LSTM or self-

attention, the input embeddings of student-question interactions

are the same with that of the two-layer LSTM network, so that the

extracted latent features are likely to be homogeneous and bring

limited performance gain. When using CNNs, a common method

is to arrange the input embeddings at all steps into a matrix (feature

map) and apply convolution operations on it. In this way, neither

the knowledge state contained in each embedding nor the evolution

of the knowledge state is well captured because the convolution

filters only focus on the local patterns in the feature map.

To enable better modeling of the knowledge state pertaining

to the same concept, we design two specific modules and form

two models. In the first model, inspired by the video processing

tasks (Tran et al., 2015, 2018), which extract features from

a sequence of frames, we propose to use three-dimensional

convolutional neural networks (3D-ConvNets) for capturing the

information from the recent student-question interactions on the
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same concept. Specifically, when predicting a student’s response to

the next question at time t+1 pertaining to a knowledge concept c,

we fetch k recent interactions of her before t+1 that also cover c,

and represent them using vectorized embeddings. Then we reshape

the embeddings into matrices and stack them in the chronological

order to form a three-dimensional tensor. This tensor represents

the student’s experience on applying c in the past. We then adopt

a 3D-ConvNets module to extract the latent knowledge state of the

student on the concept c from the tensor and use a standard global

average pooling layer to obtain the two-dimensional knowledge

state.

The rationale behind the design of the 3D-ConvNets module

can be seen as follows. On the one hand, we reshape the embeddings

into matrices so that we could leverage the convolutional module to

extract heterogeneous features from those extracted by the LSTM

network. On the other hand, the 3D-ConvNets use the first two

dimensions of the filters to capture the latent knowledge state in

each reshaped matrix (i.e., each step) and use the third dimension

to capture the evolution of the knowledge state. As such, the 3D-

ConvNets module may overcome the aforementioned problems of

using RNNs/LSTM, self-attention networks, or CNNs.

The global average pooling layer after the 3D-ConvNetsmodule

in the first model may introduce information loss on the knowledge

state tensor. As such, in the second model, we further propose to

replace the pooling layer with capsule neural networks (CapsNets)

and route dynamically the feature maps produced by the 3D-

ConvNets module. Specifically, the output tensors of the 3D-

ConvNets module are viewed as multiple types of capsules, where

the same type of capsules form a two-dimensional grid. Then we

devise a CapsNets module consisting of a convolution layer and

a voting (dynamic routing) layer to transform the tensors into

the two-dimensional knowledge state. As such, rather than using

pooling, each element in the final knowledge state is generated via

voting among the elements at the same position of different feature

maps, thereby circumventing the information loss problem induced

by the pooling layer.

Using the above two methods, we explicitly model the learning

curve theory by only extracting the feature from past trials on

c. Denote this latent feature by mt and denote by ht the overall

knowledge state output by the first LSTM layer, we use a fusion

gate to fuse mt and ht , which decides how much information of

each feature is fed into the second LSTM layer. The intuition is that

we need to combine both the overall knowledge state since there

might be other concepts relevant to c, and the particular knowledge

state of c since the past experience of applying c largely affects

the next response. Finally, the output of the second LSTM layer is

transformed to predict the student’s response to the next question

at time t+1.

For the convenience of presentation, below we refer to the

first model using only the 3D-ConvNets module as Convolution-

Augmented Knowledge Tracing, or simply CAKT, and refer to

the second model using both the 3D-ConvNets module and the

CapsNets module as Capsule-Enhanced Convolution-Augmented

Knowledge Tracing, or simply CECAKT.

In the experimental section, we demonstrate that both

CECAKT and CAKT outperform main existing deep KT models

as well as their alternative architecture designs. Between the

two models, CECAKT improves CAKT on all the experimental

datasets. Particularly, when students have a lot of repeated

practices on the same knowledge concept, the two models

perform much better than the comparative models, which

confirms the effectiveness of explicitly modeling the learning curve

theory.

1.3. Summary of contribution

Our contribution in this work can be briefly summarized as

follows.

1. We reveal the “learning curve” phenomenon in the real-life

dataset, which motivates us to propose the explicit modeling of

the learning curve theory in the deep knowledge tracing model.

In particular, when predicting a student’s response to a question

pertaining to a knowledge concept, we collectively learn the

latent feature of the student’s historical performance on the same

concept and the latent feature of her overall knowledge state (see

Section 1.1).

2. We propose two novel models, namely CAKT (see Section 4)

and CECAKT (see Section 5), that use three-dimensional

convolutional neural networks and capsule networks to

learn from the reshaped embeddings of the student-question

interactions regarding the same knowledge concept. To the

best of our knowledge, we are the first to introduce such an

architecture in the KT task. We discuss the rationale behind the

particular architecture designs (see Sections 1.2, 4, and 5).

3. We conduct the experiments to show the two models have

the overall best performance compared with the existing

deep KT models, and CECAKT improves CAKT on all the

experimental datasets. We analyze the datasets and discuss

when the two models can perform particularly better and when

the performance gain may be limited (see Section 6.5.1). The

results further confirm the effectiveness of explicit modeling the

learning curve theory. We also conduct an ablation study to

justify the choice of model components (see Section 6.7) and

illustrate the impact of modeling the learning curves via use

cases (see Section 6.8).

2. Related work

2.1. Deep learning for knowledge tracing

The Deep Knowledge Tracing (DKT) model (Piech et al.,

2015) first applies deep learning on the task. DKT uses an LSTM

network (Graves et al., 2013; Sutskever et al., 2014) to learn from

the student-question interaction sequences. At each step, the LSTM

unit takes as input an interaction tuple representing which question

is answered and whether the answer is correct. The output is a

vector of length equal to the number of knowledge concepts, where

each element is a probability representing the predicted mastery

level of a concept. When predicting a student’s response to the next

question, the element of the output vector corresponding to the

concept covered by the question is used to predict the probability

of correctness.
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Then inspired by memory-augmented neural networks (Graves

et al., 2016; Santoro et al., 2016; Zhang et al., 2017) propose

Dynamic Key-Value Memory Networks (DKVMN) to improve

DKT’s structure. DKVMN uses two memory matrices, where one

is static and used to store the latent knowledge concepts of the

questions, and the other is dynamic and used to represent the

student knowledge state. DKVMN updates the knowledge state

of a student by reading from and writing to the dynamic matrix.

Following this work, Abdelrahman and Wang (2019) propose

Sequential Key-Value Memory Networks (SKVMN) to capture the

dependencies between questions. They assume that the predicted

response to the next question only depends on the previous

interactions to the questions with similar concepts. At each step,

they introduce an additional hop-LSTM network before the output

layer of DKVMN,whose LSTMunits connect only the hidden states

of the steps pertaining to the similar questions.

More studies investigate the utility of recently proposed

architectures. For example, Pandey and Karypis (2019) propose

Self-Attentive Knowledge Tracing (SAKT), with the hope to

handle the data sparsity problem by using the Transformer

architecture (Vaswani et al., 2017). Ghosh et al. (2020) propose

Attentive Knowledge Tracing (AKT), which uses a series of

attention networks to draw connections between the next question

and past interactions. Nakagawa et al. (2019) propose Graph-

based Knowledge Tracing (GKT). They construct a graph to

connect related concepts. When a student answers a question

associated with a particular concept, GKT updates simultaneously

the student’s knowledge state of the concept and the related

concepts. Guo et al. (2021) propose Adversarial Training based

Knowledge Tracing (ATKT) to avoid the risk of overfitting in

existing deep KT models. They construct adversarial examples by

adversarial perturbations, and use them with the original examples

to jointly train ATKT. To tackle the problem of sparse interactions

between students and questions, Lee et al. (2022) propose several

learning history augmentationmethods and introduce a contrastive

learning framework for knowledge tracing. The proposed CL4KT

model reveals semantically similar or dissimilar examples of a

learning history and stimulates to learn their relationships.

Another line of work attempts to incorporate additional

features into the input. For example, EERNN (Su et al., 2018) uses a

Bi-LSTM network to obtain the text embedding of each question,

and concatenates the embedding with that of the corresponding

student-question interaction. EKT (Huang et al., 2019) extends the

idea and replaces the hidden states in the LSTM network with

hiddenmatrices. The DKT+forgetting (Nagatani et al., 2019) model

uses manually-constructed features pertaining to the forgetting

behavior in the learning process, and feeds the features as additional

information into the DKT model. MsaCNN (Zhang et al., 2023)

captures structured features from student grade records and

discovers relationships between courses, and finally integrates

multi-source features to predict learning performance. Other work

of this line includes DKT-DSC (Minn et al., 2018), CKT (Shen et al.,

2020), and HGKT (Tong et al., 2022), etc.

More recent studies focus more on simulating the learning

theories and behaviors. Wang et al. (2021) propose the HawkesKT

model, which investigates the temporal cross-effects between

different knowledge concepts, inspired by the fact that each past

interaction has a different time-sensitive impact on the next

interaction. Long et al. (2021) propose Individual Estimation

Knowledge Tracing (IEKT), which estimates a student’s knowledge

state before answering a question and assesses her sensitivity

to knowledge acquisition before updating the knowledge state.

Shen et al. (2021) propose Learning Process-consistent Knowledge

Tracing (LPKT), which monitors the knowledge state by directly

simulating the learning process and provides a new paradigm that

takes into account the consistency of students’ changing knowledge

state. Long et al. (2022) propose Collaborative Knowledge

Tracking (CoKT), which makes full use of the student-to-student

information for knowledge tracking, i.e., the responses of other

students who have answered similar questions.

2.2. Three-dimensional convolutional
networks

Inspired by the great success of convolutional neural networks

in the field of computer vision (Shi et al., 2016; He et al., 2017;

Redmon and Farhadi, 2018), three-dimensional convolutional

neural networks (Tran et al., 2015, 2018) are proposed to handle

video analysis tasks. A video can be viewed as a sequence of images

(frames) and formally represented using a D × H × W tensor,

where D represents the depth or time of the video, H and W

represent the height and width of each frame, respectively. The

filters of 3D-ConvNets have also three dimensions accordingly.

Tran et al. (2015) demonstrate that 3D-ConvNets can better model

the temporal information than two-dimensional convolutional

networks. When using two-dimensional convolutions, all the

frames are convolved using the same 2D filters and therefore

the temporal information is neglected, whereas 3D filters in 3D-

ConvNets preserve temporal information during the convolution

operations. We therefore leverage this property and use 3D-

ConvNets to learn from the sequence of reshaped interaction

matrices pertaining to the same knowledge concept, with the

expectation that both the knowledge state at each step and the

evolution of the knowledge state are learned.

2.3. Capsule networks

A capsule is a group of neurons whose vector represents the

instantiation parameters of a specific type of entity such as an

object or an object part. Based on this property, Sabour et al. (2017)

propose a framework of capsule networks that consist of a series

of convolutional capsule layers. The capsules in the lower layers

encode different partial properties of an object such as pose, texture

and deformation, and the capsules in the higher layers aggregate

these partial properties and encode more invariant features, such

as the existence of a certain object. As such, differently from

traditional CNNs, capsule networks are better at encoding the part-

whole relationships in the input data. Moreover, the aggregation of

capsules in a lower layer into the capsules in a neighbor higher layer

is performed using a so-called dynamic routing mechanism, which

overcomes the information loss problem induced by the pooling

layer in traditional CNNs. Specifically, the output of a capsule in the
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lower layer is scaled down by coupling coefficients that sum to 1 and

gets sent to appropriate capsules in the higher layer accordingly.

A larger coupling coefficient means larger contribution that the

capsule in the lower layer makes to a capsule in the higher layer.

Due to these advantages over traditional CNNs, capsule networks

quickly demonstrate superior performance in tasks such as image

segmentation (LaLonde and Bagci, 2018; Nguyen et al., 2021), face

recognition (Sepas-Moghaddam et al., 2021; Wu et al., 2021; Yu

et al., 2022), and sentiment classification (Chen and Qian, 2019; Du

et al., 2019; Zhang B. et al., 2020).

3. Problem definition

At each step, the knowledge tracing task takes as input a

sequence of previous student-question interactions and outputs the

prediction of the student’s response to the next question. Formally,

the problem of knowledge tracing can be defined as follows.

3.1. Definition of (deep) knowledge tracing

For each student, denote by qi the i
th question she answers and

by ai the corresponding response. At each step t, given a sequence of

previous student-question interactions X = {x1, x2, . . . , xt}, where

xi = (qi, ai), knowledge tracing predicts the student’s response at+1

to the next question qt+1, i.e., the probability p(at+1 = 1|qt+1,X)

that the student correctly answers the next question.

In the above definition, ai is a binary variable where 1 represents

the student’s answer is correct and 0 otherwise, qi is represented

using a one-hot vector ei with length M, where M is the number

of distinct questions/concepts1. Following previous studies (Piech

et al., 2015; Zhang et al., 2017; Huang et al., 2019), xi is encoded

using a one-hot vector xi of length 2M. If ai = 0, we concatenate

ei with a zero vector z of length M to form xi; otherwise, we

concatenate z before ei. The encoding process can be summarized

as follow:

xi =

{

[ei ⊕ z] if ai = 0,

[z⊕ ei] if ai = 1,
(2)

Where⊕ represents the concatenation operation.

4. The CAKT model

4.1. Model overview

First, we describe the CAKT model (Yang et al., 2022) that

adopts a 3D-ConvNets module to model the learning curve, i.e.,

capturing the feature from past trials on the same knowledge

concept. Figure 2A illustrates the architecture of CAKT, which

consists of the 3D-ConvNets module (top) and the two-layer LSTM

1 We follow the convention that each question covers exactly one

knowledge concept and all the questions covering the same concept are

considered as a single question. Thus, the questions with the same concept

have the same one-hot encoding.

network (bottom). The 3D-ConvNets module functions between

the two LSTM layers (left and right LSTM).

In the original input sequence X = {x1, x2, . . . , xt}, each

interaction xi is a one-hot vector of length 2M, as described in

Section 3. We employ an embedding layer to convert each xi into

a dense embedding x̃i ∈ R
de , as depicted in the leftmost part of

the architecture. The reasons are twofold. First, for datasets with

a large number of unique knowledge concepts, such as Statics2011

described in Section 6.1, a one-hot encoding can quickly become

impractically large (Piech et al., 2015). Second, compared to one-

hot encodings, it is much easier for convolutional neural networks

to find interesting patterns in the denser representations. Then the

first LSTM layer (left LSTM) learns from the entire sequence of

embedded interactions X̃ = {x̃1, x̃2, . . . , x̃t}, and outputs a latent

representation ht ∈ R
dh at each time step t, i.e., ht captures the

student’s historical performance on all the questions until t. This

is depicted in the bottom-middle of the architecture. Note that we

just draw the LSTM unit at time t and omit all previous units for

the sake of simplicity.

To incorporate the learning curve theory into the model, when

predicting a student’s response to qt+1 with knowledge concept c,

we additionally investigate how she has performed on the k most

recent questions before time t+1 covering the same concept c. The

structure is depicted in the top part of the architecture. Specifically,

we pick the k most recent embedded interactions x̃i1 , x̃i2 , ..., x̃ik
that contain c, as shown by the red rounded rectangles in the left

part of the architecture. If there are less than k interactions with

the concept before time t+1, we use the all-zero embeddings to

compensate. Before reshaping the embeddings to form a tensor,

we take into account the forgetting curve hypothesis (Ebbinghaus,

2013), which states that the humanmemory retention declines over

time, and thus give a different weight to each embedding according

to its time gap to t+1. The simplest way of simulating the hypothesis

is to use an exponential decay function (Woźniak et al., 1995).

Therefore, we propose the following equation to transform the

values in the k embeddings:

x̃i = exp(−
1ti

θ
)× x̃i, (3)

Where 1ti is the time gap between interaction x̃i and time t+1,

θ is a learnable parameter which controls the rate of decay. As such

the interactions in the long past have small impacts on the current

knowledge state. Then we reshape each of the k embeddings into a

matrix (feature map) with shape H × W, where H × W = de. In

CAKT, we setH = W, but in practice one may set it to any shape as

long as the equation holds. We stack the kmatrices in their original

chronological order and form a three-dimensional tensor of shape

k×H×W. Then we feed the tensor into the 3D-ConvNets module

which consists of four BasicBlocks. The architecture of BasicBlock

is depicted in Figure 2B and Section 4.2. The 3D-ConvNets module

outputs a tensor with the same shape as the input tensor, followed

by a global average pooling layer to squash the output tensor in the

time dimension into a matrix of shapeH×W. Finally, the squashed

matrix is stretched into the latent vectormt of size de. Without loss

of generality, we set de = dh so thatmt and ht have the same length.

The depth k of the tensor and the embedding size de (dh) are the two

hyperparameters to be tuned.
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FIGURE 2

(A) The overall architecture of CAKT. The red rounded rectangles represent the embeddings of the interactions that apply the same knowledge

concept with that of qt+1. The 3D-ConvNets and the left LSTM layer extract the features mt pertaining to the latent knowledge state on the concept

covered by qt+1 and the overall latent knowledge state ht, respectively. The component to the left of the tensor represents the exponential decay

function. The 3D-ConvNets module consists of four BasicBlocks depicted in (B). The fusion gate adaptively integrates the two features. Finally, the

right LSTM layer transforms the fused feature and outputs the integrated knowledge state yt. (B) Each BasicBlock consists of two 3D convolutional

layers, two batch normalization layers, two ReLU layers and one TSE layer. It also employs a residual connection between the input to the block and

the output of the TSE layer.

Nowwe obtain two hidden state vectors ht andmt , representing

the student’s overall latent knowledge state and the latent

knowledge state on concept c covered by qt+1, respectively. In

order to integrate the two features, we borrow the idea of the

threshold mechanism in LSTM/GRU and propose a fusion gate

to adaptively fuse them. The fusion gate outputs the hidden state

h̃t at each step t, which is fed as input to the second LSTM layer

(the LSTM on the right) in the figure. The second LSTM layer

finally outputs a prediction vector yt with length M, each element

of which represents the probability that the student has mastered

the corresponding knowledge concept at time t. Similarly to the

first LSTM layer, we omit in the figure all LSTM units except the

one of step t for the sake of simplicity. The predicted response to

the next question qt+1 can be directly read from the element in yt
corresponding to the concept covered by qt+1.

4.2. The 3D-ConvNets module

The 3D-ConvNets module takes as input the three-dimensional

tensor with shape k× H ×W, which wraps the information in the

k most recent interactions with the same concept covered by qt+1.

We design a block named BasicBlock as shown in Figure 2B, and

stack four BasicBlocks to form the 3D-ConvNets.

A BasicBlock consists of two three-dimensional convolutional

layers, each of which is followed by a batch normalization layer and

a ReLU layer. To facilitate the training, we use a residual connection

to sum the input to BasicBlock and the output before the second

ReLU layer. To ensure the input and output have the same shape,

we use a three-dimensional filter with size 1 × 1 × 1 to convolve

the input, which is depicted as the Downsample component in

Figure 2B. The residual connections force the BasicBlocks to learn

the residual features (He et al., 2016) from the input tensors,

thereby facilitating the network optimization.

In addition to the exponential decay function applied to the

input embeddings, we want the 3D-ConvNets to further adaptively

learn the importance of the feature maps at different time steps.

Inspired by the Squeeze-and-Excitation Networks (Hu et al., 2018),

we design a Timely-Squeeze-and-Excitation (TSE) layer and put it

right after the second batch normalization layer in each BasicBlock.

The architecture of TSE is shown in Figure 3. For the sake of

simplicity, we ignore the batch and the channel dimension of

the tensors. The input tensor to TSE with shape k × H × W is

squeezed into a vector of length k using global pooling. Then we

employ two fully-connected layers for excitation, where the first

layer transforms the squeezed vector to a vector of length k
2 and

uses ReLU for activation, and the second layer converts the vector

back to length k and uses the Sigmoid function for activation. Each

entry of the excited vector has a value between 0 and 1, which

indicates the importance of the corresponding feature matrix in the

input tensor to TSE. Finally, we scale the input tensor to TSE by

multiplying each feature matrix with its importance weight, and

form a new tensor with shape k × H × W, as depicted in the

rightmost part of Figure 3.

In total, the BasicBlock takes as input a three-dimensional

tensor with shape k × H × W and outputs a tensor with the

same shape. We stack four BasicBlocks to form the 3D-ConvNets

module. In the experiments we find that using small filters yields

better results. Hence, following the principles in VGG (Simonyan

and Zisserman, 2014) and FCN (Long et al., 2015), we use filters

with size 3 × 3 × 3 in all the BasicBlocks and discard the pooling

layers. We also use stride size with 1 and perform one zero-

padding to ensure the tensor size unchanged. The filter size and the

input/output shape in each BasicBlock are presented in Table 1.
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FIGURE 3

The architecture of the Timely-Squeeze-and-Excitation (TSE) layer. The squeeze stage uses global pooling to transform the input tensor with shape

k×H×W into a vector with length k. The excitation stage uses two fully-connected layers to transform the k entries in the vector into values between

0 and 1. The scale stage uses these k values as importance weights to multiply with corresponding feature matrices in the input tensor to TSE.

TABLE 1 The filter size and the input/output shape in the BasicBlocks.

Layer
name

Output
size

Filter
size

In
channel

Out
channel

BasicBlock1 k×H×W 3× 3× 3

3× 3× 3

1

4

4

4

BasicBlock2 k×H×W 3× 3× 3

3× 3× 3

4

8

8

8

BasicBlock3 k×H×W 3× 3× 3

3× 3× 3

8

4

4

4

BasicBlock4 k×H×W 3× 3× 3

3× 3× 3

4

1

1

1

After the convolution operations, we use a global average

pooling layer to squash the output tensor on the time dimension

into a matrix m̂t of shape H × W, which can be formulated as

follows:

m̂t =
1

k

k
∑

i=1

mi, (4)

Where k is the depth of the output tensor and mi is the ith

feature map in the output tensor. Then m̂t is further stretched into

a hidden vectormt of size de, which represents the latent knowledge

state on the concept covered by qt+1.

4.3. Adaptive feature fusion

In order to fuse ht and mt , we borrow the idea from the

threshold mechanism in LSTM/GRU and propose a fusion gate to

adaptively learn the weights of the features. The weights control

how much information of the two latent features should be

preserved. The process can be formulated as follows:

z1t = σ ([mt ⊕ ht]W
1
z + b1z), (5)

z2t = σ ([mt ⊕ ht]W
2
z + b2z), (6)

h̃t = z1t ⊙mt + z2t ⊙ ht, (7)

Where⊕ represents concatenating two vectors,W1
z andW

2
z are

two weight matrices with shape 2de × de, b
1
z and b2z are two bias

vectors with length de, σ represents the Sigmoid function and ⊙

represents the Hadamard product between two vectors. Generally

speaking, we concatenate mt with ht into a vector with length 2de,

and then use two fully-connected layers with Sigmoid activation to

transform the vector into two gates z1t and z2t , which are shown in

Equations (5), (6). The two gates control the information preserved

inmt and ht , respectively. We can then fuse the two features into a

single feature h̃t , as shown in Equation (7).

Finally, the second LSTM layer takes h̃t as input and outputs

the predicted knowledge state vector yt with length M, where each

element represents the probability that the student hasmastered the

corresponding knowledge concept at time t.

4.4. Objective function

The objective function is a binary cross-entropy loss function,

calculated using the predicted probability pt that qt is correctly

answered and the ground-truth response at , for all time step t.

As we discussed in the end of Section 4.1, pt can be directly read

from the element in yt−1 corresponding to the concept in qt . The

function can be formulated as:

L = −
∑

t

(at log pt + (1− at)log(1− pt)) (8)

As inference, we set 0.5 as the threshold probability for the

predicted responses, i.e., the answer to qt is predicted as correct if

pt ≥ 0.5, and is predicted as incorrect otherwise.

5. The CECAKT model

The CAKT model uses a global average pooling layer to squash

the tensor output by the 3D-ConvNets module and produces the

feature map representing the knowledge state on the concept of

the next question, as depicted in Equation (4). This layer would

ignore the relationships between the elements in the tensor and

also cause information loss during feature aggregation (squashing

of the tensor), i.e., the elements at the same position of different

feature maps are simply averaged. The implication in knowledge

tracing is that the previous latent knowledge states pertaining to
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the concept covered by the next question at different time steps are

equally weighted to compute the latent state of the current step, so

that the differences in contributions of latent knowledge states at

different steps are lost.

For more accurate modeling, we further propose to replace

the global average pooling layer with capsule networks (Sabour

et al., 2017) and obtain the CECAKT model. In order not to make

CECAKT a complex model, we design a simple CapsNets module

as follows. Specifically, we discard the BasicBlock4 layer in CAKT

and view the output of the BasicBlock3 layer as a group of primary

capsules (PrimaryCaps), i.e., 4 channels of kD capsules, where each

channel is an H × W grid consisting of the same type of capsules.

Then we use four two-dimensional convolutional filters of size 3×3

to transform the PrimaryCaps into a group of secondary capsules

(SecondaryCaps), which still contain 4 types of capsules organized

in 4 H × W grids. However, the capsules are convolved into

1D (i.e., a scalar), where each 1D secondary capsule captures the

relationships among a group of PrimaryCaps within the same area

across the 4 channels. Note that we set the number of PrimaryCaps

types and the number of SecondaryCaps types both to 4 for

simplicity. Finally, we adopt a voting (dynamic routing) layer to

transform the SecondaryCaps into a group of knowledge capsules

(KnowledgeCaps), which have only one type of 1D capsules in one

H × W grid, representing whether the corresponding knowledge

concept is mastered or not. Particularly, each knowledge capsule is

a weighted aggregation of the SecondaryCaps at the same position

across the 4 channels, i.e., along the time dimension, according

to the trainable coefficients of the SecondaryCaps. Compared to

performing average pooling along the time dimension in CAKT,

the voting mechanism reduces information loss by preserving the

differences in contributions of the SecondaryCaps at different time

steps. For knowledge tracing, this implies that the previous latent

knowledge states pertaining to the concept covered by the next

question contribute adaptively to the computation of the latent

state at the current step. The entire process is depicted in the upper

half of Figure 4.

Specifically, the voting layer works as follows. Denote by uti
a capsule i in the SecondaryCaps, where 0 ≤ i < H × W and

1 ≤ t ≤ 4 is the capsule type. The input si to the capsule i in the

KnowledgeCaps is calculated as follows:

ûti = wt × uti , (9)

si =
∑

t

cti û
t
i , (10)

Where wt is the weight shared among all the capsules of type t,

ûti is the so-called “prediction vector” (1D for the SecondaryCaps),

and cti is the routing coefficient of ûti . The routing coefficients are

determined by the dynamic routing algorithm, which is usually

computed as a “routing softmax”:

cti =
exp(bti )

∑H×W
l=0 exp(bt

l
)
, (11)

Where bti is the log prior probability that ûti should be routed

to the capsule i in the KnowledgeCaps and is learned during

optimization. Finally, the capsule vi in the KnowledgeCaps is

calculated using a non-linear “squashing”:

vi =
||si||

2

1+ ||si||2
si

||si||
, (12)

Where si is a 1D vector in our case.

In this way, the tensors output by the 3D-ConvNets module are

transformed into a two-dimensional feature map through dynamic

routing, where the important elements in each input feature map

and their relationships are preserved in the final map. To facilitate

training, we also add a residual link from the PrimaryCaps to the

KnowledgeCaps. The link uses a 3D convolutional layer to process

the PrimaryCaps, followed by an average pooling layer to obtain

a 2D residual feature map. This is depicted in the lower half of

Figure 4. The two feature maps are added together to obtain the

map m̂t , which was originally calculated using average pooling in

CAKT as depicted in Equation (4). The entire structure bounded in

the dashed rectangle is referred to as the CapsNets module. The rest

of the architecture in CECAKT is exactly the same as that of CAKT.

6. Experiments

6.1. Datasets

We perform empirical evaluation on four real-world datasets

that are commonly used in literature (Abdelrahman and Wang,

2019; Ghosh et al., 2020; Shen et al., 2020; Long et al., 2022). The

statistics of the datasets are shown in Table 2.

• ASSISTments20092: This dataset is gathered in the school

year 2009–2010 from the ASSISTments education platform.

We use the skill builder data of ASSISTments2009, which

consists of 110 distinct questions (knowledge concepts),

4,151 students and 325,637 exercise records (student-question

interactions).

• ASSISTments20153: This dataset is collected in 2015. It is an

updated variant to ASSISTments2009. It includes 100 distinct

questions, 19,840 students and 683,801 exercise records. This

dataset has the largest number of students, but the average

number of exercise records per student (34) is the smallest

among the four datasets.

• ASSISTments20174: This dataset is collected from the

ASSISTments education platform in 2017. It includes 102

distinct questions, 1,709 students and 942,816 exercise records

• Statics20115: This dataset is collected from a statistics course

at Carnegie Mellon University in the fall of 2011. It contains

1,223 distinct questions, 333 students, and 189,297 exercise

records.

Among these datasets, ASSISTments2017 and Statics2011 have

much longer interaction sequences than the two other datasets.

2 https://sites.google.com/site/assistmentsdata/home/2009-2010-

assistment-data

3 https://sites.google.com/site/assistmentsdata/datasets/2015-

assistments-skill-builder-data

4 https://sites.google.com/view/assistmentsdatamining

5 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
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FIGURE 4

The architecture of the CapsNets module in the CECAKT model.

TABLE 2 Statistics of the datasets.

Dataset #Questions (#Concepts) #Students #Interactions (#Exercises) #Interactions per student

ASSISTments2009 110 4,151 325,637 78

ASSISTments2015 100 19,840 683,801 34

ASSISTments2017 102 1,709 942,816 552

Statics2011 1,223 333 189,297 568

So following the methods in the related work (Piech et al., 2015;

Zhang et al., 2017), we conduct a fold operation on the two datasets.

In particular, when the length of a sequence exceeds 200, we

split the sequence into sub-sequences so that the length of each

sub-sequence is less than or equal to 200.

6.2. The hyperparameters and network
instance of CAKT and CECAKT

The important hyperparameters for tuning are the depth of

the input tensor k, the embedding size of the input interaction de,

the hidden state size of the first LSTM layer dh and the number

of capsule types in the PrimaryCaps and SecondaryCaps n. To

facilitate the fusion ofmt and ht , we set de = dh. Also, the reshaped

interaction matrix satisfies H × W = de, where H and W are the

height and width. Without loss of generality, we set H = W and

therefore de must be the square of an integer value. Nevertheless,

one may set H not equal to W as long as H × W = de holds. As

such we just need to tune k, H and n in the training phase. After

tuning, we set k = 6, H = 17 for CAKT and set k = 4, H = 15

and n = 4 for CECAKT (on ASSISTments2017, n = 8), to obtain

the main results in Section 6.5.1. We also present the results when

varying the hyperparameters of CECAKT in Section 6.6.

The 3D-ConvNets module in CAKT is constructed by stacking

four BasicBlocks, each of which contains a Conv-BN-ReLU layer

and a Conv-BN-TSE-ReLU layer with a residual link. We set the

filter size of the convolutional layers to 3 × 3 × 3 as discussed in

Section 4.2, and vary their channel sizes in the forward pass. The

sizes of the BN and ReLU layers are decided by the convolutional

layers. The two LSTM layers use the same hidden state size. The

3D-ConvNets module in CECAKT is constructed by stacking three

BasicBlocks. The filter size of the convolutional layer transforming

the PrimaryCaps into SecondaryCaps is set to 3× 3.

6.3. The comparative models

We compare our models with eight representative deep models

for the knowledge tracing task, namely DKT (Piech et al., 2015),

DKVMN (Zhang et al., 2017), SKVMN (Abdelrahman and Wang,

2019), SAKT (Pandey and Karypis, 2019), EKT (Huang et al., 2019),

CKT (Shen et al., 2020), DKT-F (DKT+forgetting) (Nagatani et al.,

2019), and AKT (Ghosh et al., 2020). Among the models, EKT

has two variants, which employ the Markov chain and attention

mechanism, respectively. We choose the variant using attentions

since it is reported to perform better. One issue is that EKT requires

the text information of questions as input. Since the datasets do not

contain text information, we slightly modify the input features of

EKT and obtain two variants for comparison. The first one uses

a fixed randomized embedding to represent the text information

for each distinct question, which is referred to as EKT-R. The

second one replaces the randomized text information embedding

with the knowledge concept embedding at each time step, which
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is referred to as EKT-C. The AKT model has also two variants

in Ghosh et al. (2020), namely AKT-R and AKT-NR. AKT-R

requires both knowledge ID and question ID as input, whereas

AKT-NR only requires knowledge ID as other models do. For

fair comparison, we choose the AKT-NR model since all other

models do not use the question ID information. In addition, the

datasets except ASSISTments2009 and ASSISTments2017 do not

contain the information of question ID (Ghosh et al., 2020). We

reimplement SKVMN and DKT-F since we have not found the

released source code.We use the source code on GitHub for DKT 6,

DKVMN 7, EKT 8, CKT 9 and AKT 10. We obtain the code for

SAKT from the original authors.

6.4. Model training and the evaluation
metric

We implement CAKT and CECAKT using Pytorch 1.6 and

train them on an NVIDIA Tesla-V100 card with 16GB memory.

We use the Adam optimizer to optimize the network parameters.

We set the L2 regularization term to 5e-5 and the initial learning

rate to 0.001, with a decay of 0.3 every 5 epochs. The source code is

available at https://github.com/Badstu/CAKT.

Similarly to the settings in Piech et al. (2015), Zhang et al.

(2017), Abdelrahman andWang (2019), and Ghosh et al. (2020), we

use 20% of the interaction sequences to form a testing set for each

dataset, and split the remaining sequences into five folds for cross

validation. For each dataset, the hyperparameters of each model

are determined when it has the best average performance on the

validation sets. Then we report the corresponding average results

on the testing set for each model on each dataset. The evaluation

metric on the testing set is the Area Under the ROC Curve, referred

to as AUC (Belohradsky et al., 2011), which is commonly used to

evaluate the performance of knowledge tracing models (Piech et al.,

2015; Zhang et al., 2017; Abdelrahman and Wang, 2019; Ghosh

et al., 2020). When AUC=0.5, it means that the prediction makes

no difference from a random guess. The higher value the AUC, the

better the prediction performance of the model. We also compute

the statistical significance of the results, verified using a 2-tailed

Student’s t-test.

6.5. The results of comparative evaluation

6.5.1. Main results
The main comparative results are reported in Table 3. For each

row, we use the bold font for the results of CAKT and CECAKT if

they both perform better than the comparative models. Otherwise,

we use the bold font only for the best result in each row. We

observe that CAKT performs better than the comparative models

on three datasets, namely, ASSISTments2009, ASSISTments2017

6 https://github.com/mmkhajah/dkt

7 https://github.com/jennyzhang0215/DKVMN

8 https://github.com/bigdata-ustc/ekt

9 https://github.com/shshen-closer/Convolutional-Knowledge-Tracings

10 https://github.com/arghosh/AKT

and Statics2011. On ASSISTments2015, CAKT performs slightly

worse but still very comparable with CKT and AKT-NR. On the

other hand, CECAKT further improves CAKT and performs the

best on all the four datasets. The results prove the effectiveness of

using the three-dimensional convolutional networks to model the

learning curve theory, and the effectiveness of replacing the average

pooling layer with the capsule networks to achieve more accurate

modeling.

By analyzing the results in detail, we notice that the

improvements of CAKT and CECAKT over the comparative

models on ASSISTments2009 and ASSISTments2017 are more

significant than that on the other two datasets. To explore the

reason behind, we calculate the average number of repeated

practices on the same knowledge concept per student in the

four datasets. The results are shown in Table 4. We observe that

on ASSISTments2009 and ASSISTments2017, students repeatedly

practice 11 and 13.2 times on average for the same knowledge

concept, respectively. As such the 3D-ConvNets module and the

CapsNets module could learn enough information from a student’s

past practices on a concept when predicting the next response to

the concept. Therefore, on the two datasets, the improvements of

CAKT and CECAKT over other models are larger. In contrast,

ASSISTments2015 and Statics2011 have a small average number of

repeated practices, which are 5.4 and 3.2 per student, respectively.

As a result, the 3D-ConvNets module and the CapsNets module

may not learn enough information about a student’s past experience

on applying the knowledge concept covered by the question to be

answered at each step, which in turn leads to smaller prediction

performance improvements on the two datasets. The results indeed

confirm the importance of explicitly modeling the learning curve

theory, especially when there are a sufficient number of past

practices on the same knowledge concept.

Furthermore, it is worth noting that CAKT and CECAKT

greatly improve the performance of DKT on all datasets. Remember

that the two models retain the LSTM structure used in DKT to

learn from the entire sequence in the past. Therefore, the big

improvements over DKT are mainly due to the explicit modeling of

the learning curve theory. While this proves the importance of the

modeling, more advanced structures may be used to replace LSTM

and further boost the prediction performance.

6.5.2. Convergence rate
In Table 3 we observe CKT and AKT-NR have the overall

closest performance to that of CAKT and CECAKT. In this section,

we further compare the convergence rates of the four models and

show the results on the ASSISTments2009 dataset in Figure 5. The

results on the other datasets are similar and thus omitted. However,

they are available upon request. We use the hyperparameters tuned

in the main results for each model. In particular, we set k = 6 and

H = 17 for CAKT, and set k = 4, H = 15 and n = 4 for CECAKT.

The initial learning rate is 0.001 with decay of 0.3 every 5 epochs,

and the L2 regularization term is 5e-5. Both CKT and AKT-NR

use learning rate 0.001. AKT-NR sets the L2 regularization to 1e-

5 and CKT does not have a regularization item. In the figure, we

observe that our CAKT and CECAKT model both converge within

10 epochs, which are faster than CKT andAKT-NR. CKT converges
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TABLE 3 The test AUC results (%) of all the models.

Dataset DKT DKVMN SKVMN SAKT EKT-R EKT-C DKT-F CKT AKT-NR CAKT CECAKT

ASSIST2009 81.19 80.02 67.39 76.59 76.46 76.45 81.88 82.13 81.84 82.37* 82.85*

ASSIST2015 71.95 72.33 67.01 73.27 70.65 70.35 72.96 73.45 73.43 73.31 73.45

ASSIST2017 64.47 68.53 56.95 64.85 60.25 61.56 73.48 72.16 72.06 73.68* 74.41*

Statics2011 79.00 80.42 78.41 81.43 75.65 77.73 82.76 82.38 82.74 82.78 83.41*

The results of CAKT and CECAKT are in the last two columns. For each row, CAKT and CECAKT are both bolded if they perform both better than the comparative models. Otherwise, the

best result in each row is bolded. An asterisk (∗) indicates p < 0.05 in the significance test.

TABLE 4 The average number of repeated practices on the same knowledge concept per student.

ASSISTments2009 ASSISTments2015 ASSISTments2017 Statics2011

# repeated practices 11.0 5.4 13.2 3.2

in about 20 epochs. AKT-NR does not converge even after training

for 200 epochs and becomes over-fitting after 75 epochs since the

validation loss turns to increase gradually. In the original paper of

AKT-NR (Ghosh et al., 2020), the authors perform early stopping

to avoid over-fitting. In summary, CAKT and CECAKT converge

much faster than CKT and AKT-NR, while achieving the better

performance in terms of AUC. CECAKT has the lowest training

loss and validation loss, and therefore performs the best in terms of

AUC on the testing set.

6.6. Sensitivity analysis

In this part, we explore how the three hyperparameters

discussed in Section 6.2 influence the performance of CECAKT.We

conduct sensitivity analysis on the number of recent interactions k

on the same knowledge concept, the height H of the input tensor

to the 3D-ConvNets module (i.e., the embedding size of the input

interaction de since we set H = W and de = H × W), and the

number of capsule types n in the PrimaryCaps and SecondaryCaps.

For each experiment, we fix two hyperparameters and adjust the

remaining one.

The first experiment focuses on the hyperparameter k, that is,

how many past interactions on the same knowledge concept are

needed for capture the experience. We fix H = 15 and n = 4,

and vary k from 4 to 10 with increments 2. The results on each

dataset are reported in Table 5. We observe that the performances

are relatively stable and a moderate k value can already bring the

overall best results. This is reasonable because the most recent

interactions have the highest impact on the current knowledge

state, according to the forgetting curve hypothesis (Ebbinghaus,

2013). Particularly, when k = 4, CECAKT achieves the

best performance on ASSISTments2009, ASSISTments2015 and

Statics2011. On ASSISTments2017, although the best performance

is obtained at k = 10, the results for different values of k are quite

close. The moderate value of k indicates that CECAKT just needs

a small 3D-ConvNets module, which reduces the complexity of the

model.

The second experiment focuses on the height of the input

tensor to the 3D-ConvNets moduleH. We fix k = 4 and n = 4, and

vary the value of H from 11 to 17 with increments 2. In CECAKT

we set H = W and H × W = de = dh, thus H decides the size

of the feature map, the input embedding size and the hidden vector

size of the LSTM layers and the CapsNets module. The results are

reported in Table 6.We observe that overall a biggerH brings better

results, since big feature maps or long vectors usually contain more

information. However, the values ofH are still moderate to achieve

the best results on the four datasets, making the sizes of both the

input tensor and the input embedding small.

The third experiment focuses on n, the number of capsule

types in the PrimaryCaps and SecondaryCaps. We fix H = 15

and k = 4, and vary n from 4 to 16 with increments 4. The

results are reported in Table 7. We observe that a small number

of capsule types can already bring the best results. In particular,

CECAKT achieves the best results at n = 4 on ASSISTments2009,

ASSISTments2015 and Statics2011, and achieves the best result

at n = 8 on ASSISTments2017. The small number of capsule

types also prevents the size of the entire model from becoming too

large.

6.7. Ablation study

In the first paragraph of Section 1.2, we enumerate the

possible choices of the architecture to capture the knowledge

state pertaining to the same concept, including RNNs/LSTM, self-

attention networks and CNNs, and discuss the shortcomings of

these choices. In this section, we empirically demonstrate the effect

of these alternative architectures. We do this by replacing the

3D-ConvNets module in CAKT with fully-connected networks,

LSTM, self-attention and ordinary CNNs, respectively, and obtain

four ablation models, namely, FC_KT, LSTM_KT, SA_KT and

CNN_KT. The two-layer LSTM network is retained. Furthermore,

we investigate the necessity of keeping the 3D-ConvNets module in

CECAKT, i.e., whether we can use the capsule networks solely in

CECAKT. We do this by removing the 3D-ConvNets module and

feeding the input tensor directly into the CapsNets module. The

resulted model is referred to as CEKT.

The results are reported in Table 8. We observe that the

CAKT model performs much better on all the datasets than the

corresponding ablation models. This justifies the design choice of

the 3D-ConvNets module and may verify our conjecture in the
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FIGURE 5

Convergence rate. The horizontal axis represents the number of epochs, and the vertical axis represents the loss values.

TABLE 5 The AUC results (%) for varying k.

H&n k ASSISTments2009 ASSISTments2015 ASSISTments2017 Statics2011

H = 15 k = 4 82.85 73.45 74.25 83.41

n = 4 k = 6 82.75 73.41 74.25 83.19

k = 8 82.74 73.39 74.30 83.30

k = 10 82.63 73.34 74.31 83.34

The best AUC in each column is bolded.

TABLE 6 The AUC results (%) for varying H.

k&n H ASSISTments2009 ASSISTments2015 ASSISTments2017 Statics2011

k = 4 H = 11 82.74 73.32 74.32 83.25

n = 4 H = 13 82.76 73.37 74.30 83.25

H = 15 82.85 73.45 74.25 83.41

H = 17 82.75 73.41 74.24 83.19

The best AUC in each column is bolded.

TABLE 7 The AUC results (%) for varying n.

H&k n ASSISTments2009 ASSISTments2015 ASSISTments2017 Statics2011

H=15 n = 4 82.85 73.45 74.25 83.41

k=4 n = 8 82.83 73.38 74.41 83.40

n = 12 82.81 73.31 74.25 83.37

n = 16 82.84 73.31 74.22 83.37

The best AUC in each column is bolded.

third paragraph of Section 1.2, i.e., the reason that 3D-ConvNets

are the better choice for modeling the learning curve theory. On

the other hand, if the 3D-ConvNets module is discarded from

CECAKT, the performance of CEKT significantly decreases on all

the four datasets. The results show that the 3D-ConvNets module

is still a necessary component in CECAKT, and that the CapsNets

module mainly tackles the information loss problem induced by the

pooling layer.
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TABLE 8 The AUC results (%) of ablation study.

Ablation models ASSISTments2009 ASSISTments2015 ASSISTments2017 Statics2011

FC_KT 81.01 71.73 72.22 79.55

LSTM_KT 80.57 71.63 71.82 79.23

SA_KT 80.46 71.56 72.32 79.56

CNN_KT 81.17 71.62 73.04 79.64

CAKT 82.37* 73.31* 73.68* 82.78*

CEKT 80.68 73.02 72.43 79.47

CECAKT 82.85* 73.45* 74.41* 83.41*

An asterisk (*) indicates p < 0.05 in the significance test. The results of CAKT and CECAKT are in bold because they both perform better than their corresponding ablation models.

FIGURE 6

Prediction accuracy for interactions with di�erent number of past

practices on the same knowledge concept, CECAKT Vs. DKT.

6.8. The impact of learning curve modeling

In this section, we study how the modeling of learning curves

impacts the performance of the proposed model. We first plot

the prediction accuracy of student-question interactions under

different numbers of past practices on the same knowledge concept.

In particular, we extract the interactions from all the four datasets

such that the corresponding student has previously practiced on

the concept of the question for 1, 2, 3, and 4 times, respectively,

and divide the interactions into four categories based on the

number of past practices. Then for each category of interactions,

we run CECAKT to predict the student responses, based on

which we calculate the statistics of prediction accuracy for each

category. We set 4 as the maximum number of past practices for

CECAKT because the model sets the hyperparameter k = 4, i.e.,

it only considers 4 past practices on the same knowledge concept

maximally. We do the same for CAKT, except that the maximum

number of past practices is set to 6 (because we set k = 6 for

CAKT). The results are plotted in Figures 6, 7. We plot the results

of DKT for comparison since the only different between DKT and

CAKT/CECAKT is whether the learning curve theory is modeled.

We observe that for each category of interactions, CECAKT and

FIGURE 7

Prediction accuracy for interactions with di�erent number of past

practices on the same knowledge concept, CAKT Vs. DKT.

CAKT both have higher average and third-quartile prediction

accuracy compared to DKT. The results prove that the modeling

of learning curves can increase the prediction accuracy when there

are multiple past practices on the same knowledge concept.

Second, we visualize the impact of learning curve modeling

through a use case. In Figures 8, 9, we plot the evolution of a

student’s knowledge state when she interacts with a sequence of

questions, predicted by CECAKT and DKT, respectively. In the

figures, q1, q2 and q3 are the questions related to the knowledge

concept Multiplication Fractions, Circle Graph and Number Line,

respectively, which are shown on the y-axis. In other words, each q1
denotes a distinct question pertaining to Multiplication Fractions,

and the similar notation applies to q2 and q3. The x-axis shows the

student’s true responses to the questions, i.e., correct or incorrect

answers. Each row of grids show the evolution of predicted mastery

probability of the corresponding concept. Comparing the two

figures, we may find that CECAKT predicts the knowledge states

much more accrurately than DKT, when the same knowledge

concept is involved in the past interactions. Take q2 for example, the

corresponding questions are related to the concept Circle Graph. At

the first time that the student answers q2, the mastery probabilities

of the concept predicted by CECAKT and DKT are 0.39 and
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FIGURE 8

The evolution of predicted knowledge states produced by CECAKT. The y-axis represents the knowledge concepts, and the x-axis represents the

student’s responses to a sequence of the questions. The grids represent the predicted knowledge states, i.e., the predicted probabilities that the

student has mastered the knowledge concepts.

FIGURE 9

The evolution of predicted knowledge states produced by DKT. The y-axis represents the knowledge concepts, and the x-axis represents the

student’s responses to a sequence of the questions. The grids represent the predicted knowledge states, i.e., the predicted probabilities that the

student has mastered the knowledge concepts.

0.22, respectively. Then for the second time that she answers

q2 (a different question from the first q2, which also contains

the concept Circle Graph), the mastery probability predicted by

CECAKT is 0.56, whereas the mastery probability predicted by

DKT is 0.49. Remember that we set 0.5 as the threshold probability

for the predicted responses (correct or incorrect answers). Since the

student correctly answers the question, the prediction of CECAKT

is right and the prediction of DKT is wrong. This is because

CECAKT has taken the previous practice into account. For the

last three answers to q2, CECAKT makes all the right predictions

and the predicted mastery probabilities are very high. On the

contrary, DKT makes one wrong prediction and the predicted

mastery probabilities are fairly low. Similar results can be observed

for q1 and q3. The observations suggest that modeling the learning

curve theory can largely increase the accuracy of the predicted

knowledge states.

7. Conclusion

In this paper, we propose two novel models CAKT and

CECAKT for the knowledge tracing task. Themodels are motivated

by the learning curve theory, which states more practices would

bring more improvement on a skill and is observed in the real-life

dataset. We discuss the possible architecture choices for explicitly

modeling the learning curve theory. Based on the discussion,

we design a module built with three-dimensional convolutional

neural networks to model a student’s latent knowledge state on

the concept covered by the question to be answered, and design

a module built with capsule networks to reduce information loss

and further improve the modeling accuracy. On the other hand

and without loss of generality, we employ an LSTM network

to learn the student’s overall knowledge state. We then design

a fusion gate to fuse the two types of latent features, and use

the fused feature to predict the student’s response to the next

question. As such, when predicting a student’s response to the

next question, we collectively consider her recent experience on

applying the concept covered by the question and her overall

experience on all the knowledge concepts. Experimental results

show that our CAKT and CECAKT models outperform current

representative models and their own variants for modeling

the learning curves. The major improvements on the two

datasets with a large number of repeated practices on the same

concept further verify the effectiveness of the learning curve

modeling.
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While the current work proves the importance of explicit

modeling of the learning curve theory, in the future we would

investigate structures other than two-layer LSTM networks for

capturing the overall knowledge state to further boost the KT

performance. Also, an interesting question is what heterogeneous

patterns the 3D-ConvNets module and the first LSTM layer have

learned from the interaction sequences, respectively. We leave this

for future work.
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