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Why are human animacy 
judgments continuous rather than 
categorical? A computational 
modeling approach
Chris Westbury *

Department of Psychology, University of Alberta, Edmonton, AB, Canada

Introduction: The concept of animacy is often taken as a basic natural concept, 
in part I because most cases seem unambiguous. Most entities either are or are 
not animate. However, human animacy judgments do not reflect this binary 
classification. They suggest that there are borderline cases, such as virus, amoeba, 
fly, and imaginary beings (giant, dragon, god). Moreover, human roles (professor, 
mother, girlfriend) are consistently recognized as animate by far less than 100% 
of human judges.

Method: In this paper, I use computational modeling to identify features associated 
with human animacy judgments, modeling human animacy and living/non-living 
judgments using both bottom-up predictors (the principal components from a 
word embedding model) and top-down predictors (cosine distances from the 
names of animate categories).

Results: The results suggest that human animacy judgments may be relying on 
information obtained from imperfect estimates of category membership that are 
reflected in the word embedding models. Models using cosine distance from 
category names mirror human judgments in distinguishing strongly between 
humans (estimated lower animacy by the measure) and other animals (estimated 
higher animacy by the measure).

Discussion: These results are consistent with a family resemblance approach to 
the apparently categorical concept of animacy.
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1. Introduction

The word animacy is defined in the Oxford English Dictionary (2022) as “The quality or 
condition of being alive or animate; animate existence; an instance of this.” This definition seems 
clear and unambiguous on its surface. However, when humans are asked to make judgments of 
animacy, they identify many intermediate or anomalous cases. The goal of the present paper is 
to use computational modeling to shed light on the lack of unanimous binary animacy decisions 
by English speakers for many words, by modeling the decisions for the 72 words rated for 
animacy in Radanović et al. (2016) and for 1,200 English words rated living/non-living from 
VanArsdall and Blunt (2022). I will consider two models with different set of predictors and 
synthesize their contributions to the understanding human animacy judgments at the end, by 
considering whether and why the models make the same kinds of errors that humans do.

As examples of the lack of agreement in animacy ratings, Radanović et al. (2016) reported 
that their university-student judges rated the animacy of giraffes or babies at about 50 (out of 
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100, where 0 = inanimate and 100 = animate), though we  would 
normally think of the default state of these entities as living. This is 
approximately the same as the average ratings for balls (49.2) or snow 
(51.0), though we would not think of these entities as being alive. 
Other intermediate cases include imaginary beings such as ghosts 
(rated 41.7) and fairies (49.4); entities that imitate animate entities 
such as computers (52.2) and robots (33.1); and simple creatures such 
as amoebae (83.5) and viruses (69.4). Plants are a potentially 
ambiguous intermediate case, since they are animate by the Oxford 
English Dictionary’s definition, but we often interact with them in 
inanimate form. This may explain the lack of strong consensus about 
animacy in the ratings of words referring to plants such as cabbage 
(59.0), tomato (38.9), and orchid (59.0).

Languages that mark animacy grammatically can add additional 
complications within specific cultures. For example, in Cree, animal 
hides, trees (but not pieces of wood), and some (but not all) stones are 
marked grammatically as animate, perhaps (as suggested by Darnell 
and Vanek, 1976) reflecting that in Cree “a thing is classified as 
animate if it has power” (p. 164).

The role of animacy in semantic and lexical processing has been 
the focus of many studies (e.g., Cappa et al., 1998; Caramazza and 
Shelton, 1998; Grabowski et al., 1998; Mummery et al., 1998; Moore 
and Price, 1999; Tyler et al., 2000; Tyler and Moss, 2001; Radanović 
et  al., 2016). Some studies have reported behavioral and/or 
neurological differences in response to animate and inanimate stimuli 
(Perani et al., 1995; Martin et al., 1996; Perani et al., 1999). Other 
studies have failed to replicate these findings (Devlin et  al., 2002; 
Pilgrim et al., 2002; Tyler et al., 2003; Ilić et al., 2013). The linguistic 
encoding of animacy has been shown to affect many different aspects 
of psychological functioning, including the processing of relative 
clauses (Mak et al., 2002; Traxler et al., 2005; Gennari et al., 2012); 
attentional mechanisms (Bugaiska et  al., 2019); the detection of 
semantic violations in language (Grewe et al., 2006; Szewczyk and 
Schriefers, 2011); the learning of artificial languages (Vihman et al., 
2018); word recognition (Bonin et al., 2019) and the ability to recall 
words (Bonin et al., 2015; VanArsdall et al., 2015; Bugaiska et al., 2016; 
Popp and Serra, 2016, 2018; Nairne et al., 2017; Kazanas et al., 2020).

As Radanović et al. (2016) noted, one complication in studies 
using animacy is how stimuli are selected. Some studies have focused 
on only a few exemplars (i.e., tools versus animals, as in Perani et al., 
1995, 1999; Martin et al., 1996). Others including a wider range of 
animate and inanimate stimuli.

Animacy ratings have been gathered in many languages (e.g., 
Serbian/English: Radanović et al., 2016; Portuguese: Félix et al., 2020; 
Persian: Mahjoubnavaz and Mokhtari, 2022; English: VanArsdall and 
Blunt, 2022). This study focuses on the two sets of English ratings in 
this list.

The first set was the set of 72 ratings from Radanović et al. (2016). 
As noted above, these were rated from 1 (inanimate) to 100 (animate). 
The authors reported that the English ratings were strongly correlated 
with independent Serbian ratings of the same words (r = 0.89, 
p < 0.001). They included a wide range of words. The ratings are 
summarized by into categories in Table 1. There is notable variation 
in ratings within categories of animate things. Contrary to the some 
claims (see discussion in Radanović et al., 2016, p. 17) human beings 
are rated as lower in animacy (Average [SD] rating: 60.0 [16.6]) than 
other animals (Average [SD] rating: 79.8 [22.6]; t(14.39) = 2.18; 
p = 0.046). Since human beings are certainly animate, this result is 

puzzling. I  will consider it again in the conclusion section of 
this paper.

The other set is the recently released set of ratings from VanArsdall 
and Blunt (2022). They gathered living/non-living ratings from 1 to 7 
for 1,200 English words. Each word was rated a minimum of 19 times 
(average [SD]: 25 [1.62]). The ratings are also summarized by category 
in Table 1.

These two sets of ratings are along slightly different dimensions. 
Some things that are clearly non-living (for example, unicorns and 
Santa Claus) might reasonably be judged animate. However, the larger 
set of ratings makes it possible to cross-validate the models, which is 
not possible with the small number of ratings from Radanović et al. 
(2016). Moreover, the ratings are correlated. The 50 words that appear 
in both data sets have animacy and living/non-living ratings that 
correlate at r = 0.60 (p < 0.0001).

The models use two different sources of data, to allow us to 
consider the issue from both a bottom-up perspective (to what degree 
is animacy encoded in semantics/patterns of language use?) and a 
top-down perspective (to what degree is animacy determined by 
membership in categories of animate entities?). One model uses the 
principal components of vector representations of words from a word 
embedding model (explained in more detail in the next section) to try 
to predict human ratings. This can give us an idea of the extent which 
animacy is encoded into language use, a bottom-up approach to 
animacy. The second model uses the similarity of a word’s vector to 
the vector of the names of definitely animate categories such as 
human, animal, and plant. This can give us an idea of the extent to 
which animacy is derivable from the goodness of its categorical 
membership. For example, though they are animals, humans are 
generally considered to be  poor representatives of that class. It is 
possible that this is why humans are less likely to be judged as animate 
than other animals.

2. Model 1: introduction

The first model uses generalized additive models (GAMs) across 
the principal components (PCs) from a word-embedding model to 
predict human judgments. GAMs are able to capture non-linear 
relationships between predictors and a dependent measure but can 
also find linear relationships when they are the best fit for the data.

Word-embedding models are computational models that build 
vector representations of individual words that represent the average 
context in which that word appears in a large corpus of language. 
Perhaps the simplest way to do this is that used in the earliest model, 
Landauer and Dumais’s (1997) Latent Semantic Analysis (LSA), which 
built a word x document matrix in which the individual cells (prior to 
processing the matrix with singular value decomposition to reduce the 
dimensionality) recorded how often each word (rows) appeared in 
each document (columns). Since documents almost always have a 
semantic focus (they are usually about something), we  might 
reasonably expect that words whose untransformed vectors were 
similar (say, vectors for the words pet and cat) are words that have 
similar semantics. Importantly, LSA does not directly measure 
whether cat and pet occur together in the same documents, which is 
what we  call first-order co-occurrence. It measures whether the 
documents in which cat and pet appeared tended to contain the same 
words (a comparison of word context that we  call second-order 
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co-occurrence). It is possible for two words to have highly similar LSA 
vectors without ever appearing in the same document. For example, 
one can easily imagine that in some set of documents the informal 
word cat and the more formal word feline might never appear in the 
same document, but nevertheless would be  likely to occur in 
documents that share many other words.

The basic principle of constructing vector representations of a 
word’s context continues in more recent word-embedding models, but 
the methods of constructing the vectors have been refined. There are 
two main differences. One difference is that most contemporary 
models do not construct their vectors from co-occurrence within 
documents, but rather from co-occurrence within some smaller 
moving window of text (which may be  conceived of as very tiny 
documents, to keep the analogy with LSA precise). The second 
difference is that contemporary models do not merely count words but 
rather use more sophisticated computational methods to build the 
context vectors. In this paper I used a model called word2vec (Mikolov 
et  al., 2013a,b,c). Skipping over some minor computational 
complications, word2vec models use a neural network with a single 
hidden layer (which is what is used as the vector representation of the 
word) to either predict the context of a target word (called CBOW, for 
continuous bag of words) or the inverse: to use context to try to predict 
a target word (skipgram, because the target word has been ‘skipped’ 
with context on either side). This paper uses the skipgram model with 
a 300-unit hidden layer and a context defined as two words on either 
side of the target word. Although these parameters are arbitrary, these 
values are commonly used in language research. For a corpus, I used 
the 150,000 most frequent words from a 100 billion words subset of 
the Google news corpus.1 To increase the chances that the results 
might have a clear interpretation, I applied principal components 
analysis (PCA) to this matrix, retaining all 300 principal components 
(PCs). The magnitude of the PC can thereby give us an estimate of 
how much variance in the matrix is accounted for.

Four words of the 1,200 words from VanArsdall and Blunt 
(2022) were eliminated from this study. The word bluejay was 

1 https://code.google.com/archive/p/word2vec/

eliminated because it is confounded with the name of Canada’s 
favorite baseball team and appears only in capitalized form in the 
Google news corpus. The word is also problematic since the name 
of the bird is normally not considered a compound word but is 
rather composed of two words. Similarly, the word hornet 
appeared in the Google news corpus only in capitalized form 
(though it contained the plural form hornets), presumably 
referring to the name of the Marvel comic character. The word 
ghoul did not appear in the corpus, although ghouls did. The word 
sphinx did appear in the corpus, but only in capitalized form. The 
remaining dataset was randomly split into two sets of 598 words, 
with one half used for model development, and the other for 
cross-validation.

2.1. Model 1: method

All reported analyses were conducted in R 4.2.2 (R Core Team, 
2022) using R Studio (2022.12.0 + 353; Posit Software, 2022) for 
macOS. The GAMs were analyzed using the mgcv package (v. 1.8–41, 
Wood, 2022; see also Wood, 2017).

Ninety-seven of the 300 PCs were significantly (p < = 0.05) 
correlated by GAM (i.e., possibly non-linearly) with the human 
animacy ratings from Radanović et al. (2016). This included 13 
of the first 20 PCs (but not PC1). Since this provided more 
reliable predictors than there are data points, I used the 21 PCs 
that had a GAM whose output correlated with the human 
estimates at p  < = 0.001 to construct a full GAM model. All 
predictors were entered initially. Those with the highest value of 
p were removed one by one until all remaining predictors entered 
with p < 0.05.

Ninety-two of the of the 300 PCs were significantly (p < = 0.05) 
correlated by GAM with the human living/non-living ratings from 
VanArsdall and Blunt (2022). This also provided more predictors than 
datapoints, because each smooth in the GAM has nine parameters 
using the default rank value (number of possible turning points, or 
knots) of 10 (the tenth is eliminated by centering the predictors). 
I therefore used the same method as above, initially entering only the 
29 PCs that had a GAM whose output correlated with the human 

TABLE 1 Animacy ratings from Radanović et al. (2016), living/non-living ratings from VanArsdall and Blunt (2022), and model estimates of the latter, by 
category, ordered from most animate to least animate by human rating.

Radanović et al. VanArsdall and 
Blunt

Fitted

Category Average SD N Average N Model 2

Animal 79.8 22.6 9 96.2 96 89.2

Creature 76.1 18.3 8 94.0 33 90.1

Imaginary 64.2 18.5 7 49.1 18 62.7

Human 60.0 16.6 11 92.6 283 55.2

Plant 51.0 10.4 12 59.7 87 53.6

Natural 34.7 19.6 8 19.7 29 44.9

Artifact 33.0 22 17 17.1 273 50.0

The category ‘creature’ includes living beings other than mammals and birds, which are in the category ‘animal.’ The category ‘imaginary’ includes names for animate beings that do not actually 
exist, such as unicorn and ghost. The ‘natural’ category includes words referring to non-animate entities that occur naturally, such as mud and salt. The ‘artifact’ category includes words 
referring to non-animate entities constructed by human beings, such as guitar and hat. Radanović et al. are average animacy ratings, from 0 ‘Definitely inanimate’ to 100 ‘Definitely animate.’ 
The VanArsdall and Blunt (2022) living/non-living ratings have been converted from their original 7-point scale to be out of 100 as well. The final column includes fitted values from the living/
non-living Model 2.
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judgments at p < = 0.001. This included four of the first 20 PCs, but 
again, not PC1.

2.2. Model 1: result

Only two PCs entered the model of the animacy ratings: PC123 
and PC246. Together these PCs accounted for 56.6% of the variance 
in those ratings (p < 0.00001; see Figure 1).

I constructed a dictionary by taking the 75,000 most frequent 
words from Shaoul and Westbury, 2006. I eliminated words that did 
not appear in the Google news matrix, which does not include closed 
class words, as well as compounds words (or phrases) with spaces in 
them. The final dictionary contains 67,717 words. Applying the GAM 
to this dictionary suggested that the model may be over-fit to the 
small data set, since the words estimated most highly animate were 
not clearly exemplars of any animate category. The top 10 words were 
disclaims, threes, clientless, fouling, republication, desegregation, 
effigies, barriers, reflate, and mineralization.

Four PCs entered the living/non-living model: PC30, PC138, 
PC248, and PC225 (see Table 2). Together these PCs accounted for 
12.5% of the variance in the human ratings (p < 0.00001). The model 
did not cross-validate successfully. Its predictions were unreliably 
correlated (r  = −0.02, p  = 0.61) with the human living/non-living 
ratings in the validation set.

2.3. Model 1: discussion

Although the models did not generalize well to the full dictionary 
or to a validation dataset, we can draw some tentative conclusions 
from this initial model.

The lack of good generalization and the lack of concordance 
between the two models suggests that one conclusion we can draw is 
that little of the variance in animacy or living/non-living judgments 
can be derived from the PCs in a word embedding model. The failure 
of these ‘bottom-up’ models suggests that animacy or being alive are 
not strongly encoded in patterns of word use. More speculatively, 
we can conclude that animacy is not a basic component of lexical 
semantics, since many components considered to be basic can be well-
estimated from the PCs (e.g., see Hollis and Westbury, 2016; Hollis 
et al., 2017; Westbury and Hollis, 2019).

However, that said, the second conclusion is that animacy may 
be correlated with other aspects of semantics, since a large number of 
individual PC GAMs produced estimates that were reliably correlated 
with the human animacy ratings. The Radanović et al. (2016) are 
reliably correlated with the extrapolated estimates of human 
judgments of valence, dominance, and arousal from Hollis et  al. 
(2017). Higher animacy ratings are associated with lower valence 
(r = −0.29, p = 0.01), higher arousal (r = 0.35, p = 0.003), and lower 
dominance (r  = −0.33, p  = 0.005). The negative correlation with 
dominance reflects the fact that many small (i.e., low dominance) 
living things such as amoeba (83/100), bacteria (83/100), squirrel 
(95/100), worm (92/100), and spider (94/100) receive high animacy 
ratings. The animacy ratings are also positively correlated (r = 0.31, 
p = 0.007) with the measure of self-relevance (how strongly a word is 
associated with the first-person singular word I) that was defined in 
Westbury and Wurm (2022), where it was shown to strong predictor 
of the value of early PC values across a large dictionary. A GAM 
developed with all these values to predict the animacy ratings allowed 
in only arousal and self-relevance with p < 0.05. Together these two 
measures accounted for 21.2% of the variance in the ratings.

A third conclusion is that (tautologically) most of the error in 
predicting animacy is seen for words of ambiguous animacy. In 
Figure 1 there is a wide range of model estimates for words that were 
rated the mid-range of animacy by humans in Radanović et al. (2016).

3. Model 2: introduction

Word2vec vectors for category names (such as the vector 
representing the word animal) usually (though not necessarily) 
serve as centroids for the category they name. This means that 
words with vectors that are similar (by cosine distance) to the 
vector for a category name are often members of that category. For 
example, the twenty vectors most similar to the vector of the word 
vegetable are the vectors for the words tomato, potato, tomatoes, 
broccoli, sweet_potato, onion, onions, cauliflower, mango (oops!), 
kale, potatoes, mangos, cabbage, and melons. We  may perhaps 
forgive the model for sometimes confusing vegetables and fruit, 
since we ourselves routinely refer to the tomato fruit, the avocado 
fruit, the olive fruit, the cucumber fruit, the zucchini fruit, and 
several other fruits (strictly speaking, plants in which the edible 
part develops from a flower) as vegetables. If humans discuss fruits 
as if they were vegetables, we must expect that word embedding 

FIGURE 1

Human-rated (X-axis) versus GAM-estimated (Y-axis) animacy, using 
word2vec PCs as predictors. The gray-shaded area is the 95% 
confidence interval.

TABLE 2 Best GAM model to predict the living/non-living ratings from 
VanArsdall and Blunt (2022), using word-embedding PCs as predictors.

PREDICTOR RANK df F p

PC30 5.00 6.09 3.25 0.004

PC138 6.28 7.46 2.30 0.020

PC225 8.43 8.91 3.12 0.001

PC248 3.06 3.93 2.78 0.026
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models will reflect that. Of course, fruits and vegetables also do 
correctly both belong to many other categories: plant products, 
things we  eat, things that cannot thrive in freezing weather, 
domesticated products, things you  will find at the grocery store, 
everyday objects, things that can be composted, and so on. A word-
embedding model of categorization may be influenced by all these 
categories simultaneously since it can only induce the categories 
from the similarity of the contexts of words as encoded in the 
words’ vectors. It is possible that a super-ordinate category could 
be  better captured by patterns of word use than a more focal 
category, if people used language in a way that better reflected that 
super-ordinate category.

In the second model, this categorizing feature of word embedding 
models is used, by building models of the human ratings based on the 
distance from the vectors of the names of categories of unambiguously 
animate things.

3.1. Model 2: method

For predictors I used the cosine similarity of each word that had 
been classified by humans to five main category names of definitely 
animate and living things: plant, animal, insect, human, and bacteria. 
Of the five taxonomic kingdoms, three are captured by these categories 
(plant, animal, and bacteria/~monera). The other two (funghi and 
protista) are less relevant kingdoms when it comes to animacy. Insects 
and humans are broken out of the animalia kingdom to which they 
belong because they are regularly incorrectly classified as non-animate.

3.2. Model 2: results

The Pearson correlations between all the predictors and the 
ratings from Radanović et  al. (2016) are shown in Figure  2. The 
correlations between the human ratings for each word and the cosine 
distance of their word2vec vectors from the vectors of the category 
labels were reliable at p < 0.001 for all categories except plant (r = 0.13, 
p > 0.05).

The best GAM model to predict the Radanović et  al. (2016) 
ratings included only two predictors that entered with p < 0.05, insect 
and human. This model is summarized in Table 3. It accounted for 
28.8% of the variance in the human ratings. The relationship between 
the predictors and the model estimates for are shown graphically in 
Figure 3.

When the model was applied to the full dictionary, the 10 words 
estimated most animate were almost all insects: beetle, aphid, beetles, 
moth, pests, pest, aphids, wasps, wasp, and fungus.

The living/non-living judgments from VanArsdall and Blunt 
(2022) were modeled in the same way. Four predictors entered with 
p < 0.05: animal, bacteria, insect and plant (see Table 4). The model 
accounted for 26.7% of the variance in the human ratings in the 
development set and 23.7% of the variance in the validation set. The 
model was applied to the full dictionary. The 10 words estimated most 
animate were animal, insect, rodent, animals, owl, bird, reptile, critter, 
feline, and elephant. This list has high face validity, both because it only 
includes only words that name living things and because it includes 
many high-level living-thing category names. The relationship 
between the predictors and the living/nonliving judgments are shown 
graphically in Figure 4.

The predictions from this model are broken down into categories 
in the rightmost column of Table 1. The seven average categorical 
predictions from the model are highly correlated with the average 
categorical human ratings of both animacy (r = 0.91, p = 0.002 

FIGURE 2

Pearson correlations between category-name predictors and human 
ratings.

TABLE 3 Best GAM model to predict the animacy ratings from Radanović 
et al. (2016), using cosine distance to category label vectors as predictors.

Predictor Rank DF F p

Insect 1.00 1.00 9.64 0.003

Human 1.00 1.00 7.24 0.009

FIGURE 3

Model 2’s estimates of animacy (y-axis) graphed against the 
normalized cosine similarity of the vectors for the category labels of 
67,717 words (x-axis) The gray-shaded area is the 95% confidence 
interval.
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FIGURE 4

Relationships between human living/non-living ratings, Model 2’s estimates of those ratings, and vector cosine similarity of each word’s vector to five 
animate category labels.

TABLE 4 Best GAM model to predict the living/non-living ratings from 
VanArsdall and Blunt (2022).

Predictor Rank DF F p

Animal 1.91 2.40 25.79 <2e-16

Bacteria 1.67 2.10 5.57 0.004

Insect 2.87 3.62 3.10 0.020

Plant 3.34 4.13 2.54 0.041

Using cosine distance to category label vectors as predictors.

one-sided) and living/non-living (r = 0.81, p = 0.01 one-sided) 
(Table 4).

3.3. Model 2: discussion

The results from all models to predict human animacy and living/
non-living ratings are summarized in Table  5. There are two 
main findings.

One is that modeling human animacy and living/non-living 
judgments using distance from category names is more successful 
than modeling them using word2vec PCs. Although the word2vec 
PCs predicted the 72 animacy judgments relatively well (R2 = 0.57), 
that model had very low face validity when extended to the whole 

dictionary. Those word2vec vectors were also poor at predicting the 
living/non-living judgments. The best model accounted for only 
12.5% of the variance and failed to cross-validate at all. In contrast, the 
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model using distances from category names accounted for roughly the 
same variance in the animacy (28.8%) and living judgments (26.7%), 
although of course there are many more living judgments. That model 
cross-validated relatively well, accounting for 23.7% of the variance in 
the living/non-living judgment validation dataset. It also had high face 
validity when applied to a larger set of words.

The other finding of interest is that neither of models using 
categorical distance included distance from the category human. This 
is noteworthy because (as shown in Table 1 and discussed above) 
human categories tend to be rated low by humans on both animacy 
and (to a lesser extent) living/non-living judgments, where they 
received an average rating of 92.6/100, compared to 94.0/100 for 
mammals and birds and 94.0/100 for other living creatures.

4. General discussion

Of course, if we provided a model of animacy with categorical 
information, it would achieve perfect classification, since the five 
categories of plant, animal, insects, humans (which are of course also 
animals, but we generally do not speak of them this way), and bacteria 
cover the superordinate category of the animate almost perfectly. The 
fact that humans are not unanimous about their decisions suggests 
that human beings must not be relying on categorical information, 
which we already knew from their failure to accept members of these 
categories as animate with perfect accuracy.

The fact that the pattern of errors in the models is similar to the 
pattern of errors seen in humans suggests that human may be making 
animacy decisions based on contextual information (or the categories 
that may be  derived from that information) rather than on 
category membership.

The model which used cosine distance from category labels 
performed much better at classifying words as being animate than the 
analogous model that used PCs. We  can roughly conceive of the 
models as being bottom-up (PC predictors) versus top-down 
(category label predictors). These results therefore suggest that 
animacy is unlike valence or arousal, which are usually conceived as 
being components of semantics (Osgood et al., 1957). It is rather more 
like being expensive or being soft, an objectively grounded top-down 
classification that we learn from experience.

The second noteworthy finding supports this. That is the fact that the 
models built on cosine distance from the category name vectors make 
one of the same errors that humans do: they tend to rate humans as lower 
in animacy than animals. Table 1 shows that human beings rated human 
words (such as mother, boy, and professor) as animate at 60/100, 
compared to 79.8 for animal names. Similarly, the model rates humans 

at 55.2, compared to 89.2 for animals. This may reflect that humans are 
not generally conceived of (or, at least, written about) as animate.

The model also replicates humans in (erroneously) classifying 
plants as moderately animate. Humans rated plants at 51/100 
(Table 1). The model rates them at 53.6/100.

The top 200 most animate words according to the final model are 
reproduced in Supplementary Appendix 1. Animacy ratings for the 
full dictionary of 67,717 words are available at https://osf.io/k3cn9/.

It is obvious that humans do not make animacy decisions using 
category membership. If they did their animacy ratings would 
be unanimously high or low for many words that get intermediate 
ratings. The success of the category vector distance models at modeling 
human ratings suggests that humans are instead making animacy 
judgments by making rough animate category membership judgments 
(without considering the category of humans, according the best 
model discussed above). This may have implications for studies 
looking at animacy effects. The repeated finding that humans and 
living things outside of the animalia kingdom are poorly classified as 
animate by models using cosine distance from the vectors of category 
names suggests that language use does not present humans and living 
things outside of the animalia kingdom in contexts that highlight their 
animacy. These results suggest that humans make animacy ratings not 
by considering the category of each item, but rather by making family 
resemblance judgments to animate categories. The nature and 
direction of those judgments are reflected in word-embedding models.
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