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Background: Quantification of change is crucial for correctly estimating the 
effect of a treatment and for distinguishing random or non-systematic changes 
from substantive changes. The objective of the present study was to learn 
about the performance of two distribution-based methods [the Jacobson-Truax 
Reliable Change Index (RCI) and the Hageman-Arrindell (HA) approach] that were 
designed for evaluating individual reliable change.

Methods: A pre-post design was simulated with the purpose to evaluate the 
false positive and false negative rates of RCI and HA methods. In this design, a 
first measurement is obtained before treatment and a second measurement is 
obtained after treatment, in the same group of subjects.

Results: In relation to the rate of false positives, only the HA statistic provided 
acceptable results. Regarding the rate of false negatives, both statistics offered 
similar results, and both could claim to offer acceptable rates when Ferguson’s 
stringent criteria were used to define effect sizes as opposed to when the 
conventional criteria advanced by Cohen were employed.

Conclusion: Since the HA statistic appeared to be a better option than the RCI 
statistic, we have developed and presented an Excel macro so that the greater 
complexity of calculating HA would not represent an obstacle for the non-expert 
user.
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Introduction

In the field of applied research, having objective and reliable measures to assess the change 
experienced after an intervention is crucial, for example in a clinical context, the interpretation 
of the results of a treatment will influence clinical decision-making, including the safety and 
efficacy of the patient (Page, 2014). In recent decades, there has been an increase in pre-post study 
designs that include measures to assess the efficacy of an intervention or treatment, in an effort 
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to redirect practice in a more oriented to “Evidence-Based Practice” 
(Page, 2014). The pre-post design studies are especially useful in the 
clinical context since they allow to measure the variations in a variable 
of interest (e.g., depression and/or anxiety symptoms, consumption 
patterns of any substance, etc.) before and after an intervention and 
therefore evaluate the success of the strategy used, like to define the 
clinically meaningful change in the GAD-7 scale (Bischoff et al., 2020); 
compare different treatment approaches as multi-family groups (MFG) 
(Vardanian et al., 2020); or assess clinical change in mental health with 
psychiatric patients (Shalaby et al., 2022). Although the quantification 
of this change is essential to correctly estimate the effect of a treatment, 
this itself is not enough since it must also be able to distinguish random 
or non-systematic changes from substantive changes.

In this context, a clinician or researcher could draw any of four 
conclusions: correctly conclude that change has taken place (true 
positive); correctly conclude that no change has taken place (true 
negative); erroneously conclude that significant change has taken 
place (the result is positive), when in reality such a change has not 
taken place (false positive); or erroneously conclude that no significant 
change has taken place (the result is negative), when in reality 
meaningful change has taken place (false negative).

Among the available strategies for assessing change, distribution-
based methods are the most used (see 1). These are a set of techniques 
designed for identifying clinically meaningful change, based on the 
statistical properties of magnitude estimates of change and data 
variability, this mean that, can be estimated based on the distribution 
of observed scores in a relevant sample (Revicki et al., 2008).

These methods have been designed in the context of assessing 
clinically meaningful change to identify reliable change, i.e., minimum 
variations that should occur in the patients’ answers to be able to 
conclude that significant change has been made (McGlinchey et al., 
2002; Crosby et  al., 2003; Gatchel and Mayer, 2010; Turner et  al., 
2010). To accomplish this purpose, distribution-based methods must 
be able to identify those substantive changes (true positive) other than 
randomness from randomly attributable changes (true negative).

For these reasons, some studies were conducted to compare the 
accuracy of the performance of the different methods by identifying 
misclassifications in simulated scenarios, specifically the quantity of 
changes detected when the variations were only random (false positive) 
(Pardo and Ferrer, 2013) and the amount of undetected changes when 
the variations were systematic (false negative) (Ferrer and Pardo, 2019).

More than three decades have elapsed since Jacobson, Follette 
and Revenstorf (Jacobson et al., 1984) proposed the reliable change 
index (RCI) for assessing individual change as an alternative to the 
assessment of group change offered by the classical null hypothesis 
significance tests and measures of effect size. Along these years, the 
RCI has undergone some corrections by his own promoters 
(Jacobson and Truax, 1991; Jacobson et al., 1999) and many other 
researchers have proposed alternatives procedures for trying to 
improve accuracy and effectiveness in identifying significant or 
reliable changes (see, for example, Nunnally and Kotsch, 1983; 
Christensen and Mendoza, 1986; Hsu, 1989, 1995, 1996; Speer, 1992; 
Crawford and Howell, 1998; Hageman and Arrindell, 1999; Maassen, 

2004; Wyrwich, 2004; Crawford and Garthwaite, 2006; Botella et al., 
2018). It is important to emphasize that to estimate these measures 
of individual change, we require a distribution of observed data as a 
reference, which could be obtained from previous studies or field-
related reference studies.

Despite the alternative proposals, the RCI statistic has become the 
most widely used index for assessing individual change in pre-post 
designs in clinical settings (according to “Web of Science,” the 
Jacobson and Truax paper (Jacobson and Truax, 1991) has received 
6,843 citations until December 2022). However, the fact that a method 
is widely used does not mean that it is free of problems. In a study 
designed to assess the performance of different indices of individual 
change, Ferrer and Pardo (2019) have shown that false positive rates 
obtained with RCI are unacceptably high: depending on the context, 
these rates oscillate between 0 and 39.7% (between 5.0 and 34.3% 
when working with normal distributions), when in fact the expected 
values due to the cutoff points established should be around 5%.

RCI versus HA

Several researchers have proposed similar methods to RCI in an 
attempt to improve their performance (for a review, see Crosby et al., 
2003; Ferrer and Pardo, 2019). Many of these methods have been 
compared with each other to determine whether or not they made 
equivalent classifications; and results of these studies have shown 
some consistency (Estrada et al., 2019, 2020).

McGlinchey et  al. (2002) compared five distribution-based 
methods: the reliable change index (RCI) (Jacobson et al., 1984); the 
Edwards-Nunnally method (EN) (Speer, 1992); the Gulliksen-Lord-
Novick method (GLN) (Hsu, 1989; Maassen, 2004); a method based 
on the hierarchical linear modeling (HLM) (Speer, 1992); and the 
Hageman-Arrindell method (HA) (Hageman and Arrindell, 1999). 
McGlinchey et al. (2002) concluded that all methods offer similar 
results, with the exception of the HA method, which tends to be more 
conservative, this means that it tends to identify fewer changes than 
the other methods: “…there will need to be relatively greater change 
with the HA method for an individual to be  considered reliably 
improved” (p. 543).

In a similar way, Ronk et al. (2012) found that the HA method 
yielded different results from the rest of the methods studied (RCI, 
GLN, EN, and NK) (22), which offered similar performances to each 
other. Bauer et  al. (2004), after comparing five distribution-based 
methods (RCI, GLN, EN, HLM and HA), conclude that the HA 
method is “the most conservative.” Despite that Ronk et al. (2016), in 
a comparative study between RCI and HA, conclude that there is no 
discernible advantage in the use of one method over the other, the 
results reported in this study (see Table  3, p.  5) shown that the 
percentage of patients classified as “recovered” were systematically 
lower with the HA method than with the RCI method.

The results obtained on these empirical studies are in close 
agreement with those obtained from simulation studies. Atkins et al. 
(2005) have found that “the HA method is the most conservative” 
(p. 986) of the four compared (RCI, GLN, EN, HA), i.e., it is the 
method that classifies less cases as recovered. Indeed, Pardo and Ferrer 
(2013) have shown that, although both RCI and HA offer unacceptably 
high false positive rates, the HA method offers a rate systematically 
lower than the one obtained with RCI.

Abbreviations: RCI, The reliable change index; EN, The Edwards-Nunnally method; 

GLN, The Gulliksen-Lord-Novick method; HLM, The hierarchical linear modeling; 

HA, The Hageman-Arrindell method; SEM, Standard error of measurement.
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In this context, one may wonder what makes HA work differently 
from RCI and other distribution-based methods. We believe that the 
answer to this could be that the HA statistic incorporates some details 
not taken into account by the RCI statistic (or by any other method 
based on distribution). While the RCI statistic is obtained by Jacobson 
et al. (1984, p. 14).
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(Xi = individual pre-test score; Yi = individual post-test score; 
SX = standard deviation of pre-test; RXX = reliability of test), the HA 
statistic (Jacobson et al., 1999, p.1173) is obtained by
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(MX = mean of the pre-test scores; MY = mean of the post-test 
scores; RDD = reliability of the pre-post differences).

The approach of Hageman and Arrindell (1999) tries to improve 
the accuracy of RCI by incorporating the reliability of the pre-post 
differences. Since working with pre-post differences has generated a lot 
of controversy among those who theorize about the psychometric 
properties of tests from classical test theory (due to the possible lack 
of reliability of this type of scores; see Lord, 1956, 1963; Rogosa and 
Willett, 1983), ignoring pre-post differences reliability does not seem 
the best way to proceed.

Therefore, the most remarkable difference between RCI and HA 
is that HA includes the reliability of differences (RDD). If RDD is perfect 
(RDD = 1), RCI and HA take identical values. If RDD is not perfect 
(RDD < 1), the HA formula does not clearly show what happens 
(because RDD plays a different part in the numerator and denominator), 
but both empirical and simulation studies indicate that as the value of 
RDD decreases, so does the value of HA, and that is why HA tends to 
make classifications more conservative than other distribution-
based methods.

How to estimate reliability

The confirmation that HA produces more conservative 
classifications than RCI (and more conservative than other 
distribution-based methods) is important considering that these 
methods tend to offer too high false positives rates.

But why do all distribution-based methods (including HA) offer 
excessively high false positives rates? The RCI and HA equations 
shown above (including the equations of other distribution-based 
methods) show that both statistics are based on the standard error of 
measurement (SEM), which is obtained by

 SEM S RX XX= −1

As we can see in the above equation, SEM depends on (a) the 
standard deviation of the pretest scores SX and (b) test reliability 
RXX. Now while there is only one way to calculate SX, there are many 
ways to calculate RXX. Each of these different approaches has 

advantages and disadvantages, but in the field of health sciences, the 
strategies most used are based on internal consistency (usually 
estimated by Cronbach’s coefficient alpha) (Cronbach, 1951) or on 
temporal stability (usually estimated by the test–retest correlation). 
Martinovich et al. (1996), after reflecting on the pros and cons of 
both strategies in the field of individual change assessment, 
recommended estimating reliability using internal consistency, 
especially for clinical populations, because test–retest reliability is 
reduced by the presence of true individual test–retest change, even 
without patients being on therapy during that period. and Wyrwich 
et  al. (1999) also recommended estimating reliability by the 
alpha coefficient.

However, the psychometric literature contains numerous studies 
that advise against using alpha to estimate reliability (Schmitt, 1996; 
Bentler, 2009; Green and Yang, 2009; Revelle and Zinbarg, 2009; 
Sijtsma, 2009; Dunn et al., 2014; Crutzen and Peters, 2017). On the 
one hand, there is evidence that Cronbach’s alpha is not really an 
indicator of the internal consistency of a test (see, for example, Sijtsma, 
2009). On the other hand, if a test is unidimensional, it is known that: 
(a) Only when the tau-equivalent assumption is assumed does the 
alpha coefficient produce results that are comparable to those of other 
measures of internal consistency (Graham, 2006), and (b) the 
reliability estimated through the alpha coefficient is higher than the 
one estimated using the test–retest correlation (Becker, 2000; Hogan 
et al., 2000; Green, 2003; Schmidt et al., 2003).

When this is considered, it seems that the recommendations given 
by Martinovich et al. (1996), and Wyrwich et al. (1999) would lead to 
evaluating statistically reliable change through the use of an 
underestimated value of SEM; and this is precisely what could justify, 
at least partially, the high false positives rate found in simulation 
studies. As a matter of fact, Pardo and Ferrer (2013) have proved that, 
when reliability is estimated through the test–retest correlation, both 
RCI and HA offer acceptable rates of false positives (which does not 
happen when reliability is estimated through Cronbach’s alpha).

Therefore, estimating reliability through the test–retest correlation 
implies not only working with a more realistic SEM, but also working 
with a value of SEM that has the direct consequence of reducing the 
false positive rate. But using the test–retest correlation to estimate the 
reliability of a test has a serious drawback: its value depends on the 
time-interval between first testing and the retest. If that interval is too 
short, there is a risk of overestimating the true reliability due to the 
recall of the subjects and their desire to be congruent; if the elapsed 
time is too long, there is a risk of underestimating true reliability 
because what is being measured may have changed. Since there is no 
way of knowing what the ideal time-interval should be between the 
two measurements, the estimates based on the test–retest correlation 
include an arbitrary component that is difficult to quantify and justify.

Accordingly, in this context, it is felt that the most reasonable 
measure for bypassing the interval issue would be  to resort to 
alternative ways of estimating reliability. And among the available 
alternatives, McDonald’s omega (ωh) coefficient has been postulated 
as the most widely accepted and optimal measure of internal 
consistency (Shevlin et al., 2000; Zinbarg et al., 2005; Revelle and 
Zinbarg, 2009; Dunn et  al., 2014). And what is more interesting, 
results obtained by Revelle and Zinbarg, (2009) in several groups of 
data show that ωh coefficient takes values systematically smaller than 
Cronbach’s alpha. Of course, this would indicate that ωh could be a 
good option for trying to reduce the rate of false positives associated 
with RCI and HA when reliability is estimated by Cronbach’s alpha.
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Objectives

This study has two main aims. First, we intend to make a detailed 
comparison of the RCI and HA statistics in various scenarios 
incorporating the use of a new way of estimating reliability (ωh). This 
will allow us to assess the false positive and false negative rates 
associated with each method in many new scenarios.

Second, since neither RCI nor HA can be calculated with the most 
widely used computer programs, we put forward to offer to non-expert 
users can Excel macro to easily calculate these statistics given the 
conceptual advantage of the HA method, it does not seem reasonable 
to suggest that the choice for RCI above HA should be based solely on 
the fact that it is easier to calculate RCI, as suggested by Ronk 
et al. (2016).

Methods

To evaluate the false positive and false negative rates of RCI and 
HA methods, a pre-post design were simulated. In this design, a first 
measurement is obtained before treatment (X, or pre-treatment score) 
and a second measurement is obtained after treatment (Y, or post-
treatment score), in the same group of subjects.

The simulated scores were generated assuming no change (null 
effect size) and different changes (different effect sizes) between pre- 
and post-measures. The general simulated scenario was a 10 items 
pre-test measurement (pre-test score was computed by the arithmetic 
mean of these 10 items), with equal factorial loadings (a tau-equivalent 
scenario in classic test theory), to estimate the reliability (by internal 
consistency). A post-test score fixed to Pearson’s correlation coefficient 
of 0.8 (RXY = 0.80) with the pre-test score to represent common levels 
of test–retest reliability (Cicchetti, 1994) (for a detailed comparison of 
the effects of different test–retest correlation sizes, see Pardo and 
Ferrer, 2013; Ferrer and Pardo, 2019). To generate the different 
simulated situations, we used four criteria:

 (a) The shape of the pre- and post-treatment score distribution. 
Given that moderate and severe deviations from normality are 
often found in applied contexts (Micceri, 1989; Blanca et al., 
2013), we simulated different values for skewness, ranging from 
extremely negative to extremely positive, and kurtosis. Using 
the Pearson distribution system as a reference, we generated 
five different distributions, four of which represent different 
degrees of deviation from normality. The degree of deviation 
from normality was controlled manipulating the value of the 
skewness (g1) and kurtosis (g2) indexes in the following 
manner: (a) normal distribution: g1 = 0, g2 = 0; (b) negative very 
asymmetric distribution: g1 = −4, g2 = 18; (c) negative moderately 
asymmetric distribution: g1 = −2, g2 = 4; (d) positive moderately 
asymmetric distribution: g1 = 2, g2 = 4; (e) positive very 
asymmetric distribution: g1 = 4, g2 = 18.

 (b) The sample size (n): 25, 50, 100. We selected different sample 
sizes with the intention of representing what is known in the 
clinical field as small, medium, and large sizes (see, for example, 
Crawford and Howell, 1998).

 (c) The effect size (δ): 0, 0.2, 0.5, 0.8, 1.1, 1.4, 1.7 and 2 standard 
deviations of the differences. These values correspond to the 
systematic increase in the post-scores Y expressed in standard 

deviation of pre-post differences, in the different simulated 
conditions. Because individual changes have greater variability 
than average changes, we have chosen effect sizes that range 
from small (0.2 standard deviations) to very large (2 standard 
deviations), with increases of 0.3 points. First effect size (0.0) 
represent a non-change scenario to estimate the false positive 
rates; the remaining values correspond to the systematic 
increase on the post scores Y in the different simulated 
conditions to estimate the false negative rates.

  For a pre-post design, the effect size is usually computed as the 
standardized pre-post difference (Cohen, 1988). However, 
standardization can be carried out in two different ways: by 
dividing the mean of the pre-post differences between the 
standard deviation of pre-test scores (SX), or between the 
standard deviation of pre-post differences (SD). Following 
recommendations of some authors (Cohen, 1988; Cumming 
and Finch, 2001), we use the standard deviation of the pre-test 
(SX) as a standardizer since the natural reference for thinking 
about original scores is the variability in the pre-test scores (SX).

 (d) Factorial loadings in the pre-test (λ): 0.40, 0.50 and 0.60. These 
values were selected to represent common values observed in 
psychometrics factorial analyses (Peterson, 2000) and were 
used to estimate reliability (by internal consistency) using 
Cronbach’s alpha and McDonald’s omega coefficients.

A total of 5(distributions) × 3(sample sizes) × 8(effect 
sizes) × 3(factorial loadings) = 360 conditions were defined combining 
these four criteria, and a thousand samples were generated for each of 
these 120 conditions. Details of the simulation are included in the 
additional documentation (see supplementary files).

For data analysis, we made the necessary computations to obtain 
RCI and HA in each simulated sample. Finally, the performance of 
each statistic was assessed by applying the corresponding criterion, 
that is, recording the observed false positive and false negative rates. 
We considered that a false positive occurred when, with effect size = 0, 
a pre-post difference exceeded the corresponding cut-off point 
established as the change criterion: ≥ 1.65, in absolute value, for both 
RCI and HA, so make false positives and negatives rates were also 
comparable. We considered that a false negative occurred when, with 
effect size >0, a pre-post difference did not exceed the corresponding 
cut-off point. The 1.65 criterion corresponds to the reference point in 
a normal distribution that should be below the distribution in 95% of 
the cases, that is, the cut-off point at which one would expect to 
observe a false-positive rate of approximately 5%.For simulation, and 
for many of the calculations, we used the MATLAB 20009b program. 
To compute the mean results from the samples of each condition, 
we used the IBM SPSS Statistics v. 22 program.

Results

Since publishing limitations prevent us from including all the 
results generated by the collection of simulated conditions, the present 
report only includes percentages of false negatives and false positives.

Table  1 offers the percentage of false positives (when effect 
size = 0) and false negatives (when effect size >0) associated with 
the RCI statistic. Table 2 offers the same percentages for the HA 
statistic. These percentages were obtained by calculating the 
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TABLE 1 RCI: mean (standard deviation) percentage of false positives and false negatives.

Effect size (δ)

λ g1, g2 0 0.2 0.5 0.8 1.1 1.4 1.7 2.0

n = 25

0.4

0, 0 13.9 (0.08) 84.7 (0.08) 78.5 (0.10) 68.1 (0.13) 55.3 (0.15) 41.5 (0.15) 29.5 (0.15) 18.8 (0.13)

2, 4 13.1 (0.07) 86.4 (0.07) 82.9 (0.08) 74.9 (0.11) 63.0 (0.18) 46.3 (0.23) 31.1 (0.23) 18.9 (0.20)

−2, 4 13.5 (0.07) 85.1 (0.08) 77.7 (0.14) 61.1 (0.21) 44.4 (0.24) 31.7 (0.22) 22.8 (0.18) 17.0 (0.15)

4, 18 11.4 (0.06) 88.8 (0.06) 85.8 (0.11) 71.4 (0.26) 54.9 (0.32) 40.3 (0.33) 29.0 (0.31) 20.0 (0.27)

−4, 18 11.0 (0.06) 87.3 (0.08) 77.2 (0.19) 58.7 (0.32) 42.8 (0.35) 31.2 (0.33) 22.5 (0.28) 16.5 (0.24)

0.5

0, 0 20.6 (0.09) 77.6 (0.10) 68.9 (0.11) 55.5 (0.14) 40.0 (0.14) 26.3 (0.14) 16.1 (0.12) 8.7 (0.09)

2, 4 17.7 (0.08) 82.0 (0.08) 76.8 (0.10) 64.2 (0.17) 45.2 (0.22) 28.0 (0.21) 15.6 (0.16) 7.8 (0.12)

−2, 4 18.8 (0.09) 78.8 (0.10) 65.7 (0.18) 45.6 (0.22) 30.3 (0.19) 20.7 (0.15) 14.4 (0.12) 10.4 (0.10)

4, 18 13.2 (0.07) 86.9 (0.07) 77.9 (0.20) 58.1 (0.32) 41.5 (0.33) 29.2 (0.31) 21.1 (0.28) 14.7 (0.24)

−4, 18 13.2 (0.07) 84.1 (0.09) 65.9 (0.26) 44.0 (0.34) 30.0 (0.33) 21.5 (0.29) 15.4 (0.24) 11.1 (0.19)

0.6

0, 0 30.3 (0.11) 67.4 (0.11) 57.5 (0.12) 42.3 (0.13) 27.2 (0.12) 15.4 (0.10) 7.7 (0.07) 3.5 (0.04)

2, 4 23.5 (0.09) 76.1 (0.09) 67.9 (0.14) 47.7 (0.20) 28.6 (0.19) 15.7 (0.15) 7.9 (0.11) 3.3 (0.07)

−2, 4 24.1 (0.09) 72.3 (0.11) 53.7 (0.20) 33.0 (0.20) 21.6 (0.16) 14.5 (0.12) 10.0 (0.10) 7.0 (0.08)

4, 18 16.2 (0.08) 83.6 (0.08) 64.7 (0.28) 42.7 (0.33) 29.4 (0.31) 20.4 (0.27) 13.9 (0.23) 9.4 (0.20)

−4, 18 15.7 (0.07) 80.4 (0.11) 54.1 (0.31) 34.4 (0.33) 23.3 (0.30) 16.5 (0.26) 12.0 (0.21) 8.8 (0.18)

n = 50

0.4

0, 0 14.2 (0.05) 84.5 (0.06) 78.5 (0.07) 67.8 (0.09) 54.4 (0.10) 40.4 (0.11) 27.7 (0.10) 17.3 (0.09)

2, 4 12.3 (0.05) 86.9 (0.05) 83.5 (0.05) 77.4 (0.07) 66.0 (0.13) 48.0 (0.18) 29.0 (0.18) 15.6 (0.14)

−2, 4 12.3 (0.05) 86.8 (0.05) 80.4 (0.09) 64.5 (0.16) 44.3 (0.19) 29.7 (0.15) 20.6 (0.11) 14.9 (0.08)

4, 18 10.1 (0.04) 89.9 (0.04) 88.4 (0.05) 79.6 (0.17) 60.5 (0.28) 40.9 (0.30) 26.4 (0.27) 15.9 (0.21)

−4, 18 10.3 (0.05) 88.9 (0.05) 82.7 (0.12) 64.6 (0.27) 44.0 (0.32) 29.1 (0.29) 19.3 (0.23) 12.5 (0.17)

0.5

0, 0 21.1 (0.06) 77.1 (0.07) 68.7 (0.08) 55.2 (0.09) 40.1 (0.10) 26.2 (0.09) 15.3 (0.08) 7.8 (0.06)

2, 4 17.5 (0.06) 82.1 (0.06) 77.7 (0.07) 66.2 (0.12) 45.2 (0.17) 25.4 (0.16) 12.5 (0.11) 8.8 (0.07)

−2, 4 17.5 (0.06) 80.4 (0.07) 68.1 (0.13) 48.7 (0.17) 28.5 (0.14) 18.8 (0.10) 13.4 (0.07) 9.4 (0.06)

4, 18 12.6 (0.05) 87.4 (0.05) 82.7 (0.11) 61.5 (0.28) 39.6 (0.31) 24.9 (8.27) 15.3 (0.22) 9.2 (0.17)

−4, 18 12.4 (0.05) 85.9 (0.06) 72.3 (0.19) 46.1 (0.31) 27.8 (0.28) 17.4 (0.22) 11.4 (0.17) 7.8 (0.13)

0.6

0, 0 29.9 (0.07) 67.9 (0.07) 57.6 (0.09) 42.3 (0.09) 27.0 (0.09) 15.0 (0.7) 7.1 (0.05) 3.0 (0.03)

2, 4 23.3 (0.07) 76.7 (0.07) 69.1 (0.09) 47.0 (0.16) 25.3 (0.14) 12.3 (0.09) 8.5 (0.04) 2.1 (0.02)

−2, 4 23.3 (0.07) 73.0 (0.08) 53.0 (0.15) 30.0 (0.14) 18.8 (0.10) 12.4 (0.07) 8.4 (0.06) 5.7 (0.05)

4, 18 14.8 (0.05) 84.9 (0.05) 71.0 (0.21) 41.7 (0.30) 23.5 (0.26) 13.8 (0.19) 08.1 (0.14) 4.8 (0.10)

−4, 18 14.8 (0.05) 82.0 (0.07) 57.5 (0.26) 30.6 (0.29) 17.5 (0.22) 10.7 (0.17) 7.2 (0.13) 5.2 (0.10)

n = 100 0.4 0, 0 14.0 (0.4) 84.9 (0.04) 78.8 (0.05) 68.2 (0.06) 54.8 (0.07) 40.7 (0.08) 27.7 (0.07) 17.1 (0.06)

2, 4 12.1 (0.03) 87.1 (0.03) 83.9 (0.04) 78.0 (0.05) 66.8 (0.09) 46.9 (0.14) 25.7 (0.13) 11.9 (0.08)

−2, 4 12.1 (0.03) 87.2 (0.04) 81.5 (0.06) 65.9 (0.12) 43.8 (0.14) 28.2 (0.10) 19.6 (0.07) 14.5 (0.05)

4, 18 9.2 (0.03) 90.8 (0.03) 89.6 (0.03) 84.8 (0.10) 66.7 (0.23) 42.2 (0.27) 23.6 (0.23) 12.3 (0.15)

−4, 18 9.3 (0.03) 90.1 (0.03) 85.5 (0.07) 69.0 (0.20) 42.4 (0.27) 22.7 (0.22) 12.4 (0.14) 8.3 (0.14)

0.5 0, 0 21.1 (0.05) 77.1 (0.05) 68.4 (0.06) 54.8 (0.07) 39.3 (0.07) 25.0 (0.06) 14.0 (0.05) 6.9 (0.03)

2, 4 17.4 (0.04) 82.2 (0.04) 77.8 (0.05) 66.4 (0.09) 43.0 (0.14) 21.6 (0.11) 9.9 (0.06) 4.2 (0.03)

−2, 4 17.2 (0.04) 80.8 (0.05) 69.3 (0.09) 45.5 (0.13) 27.2 (0.10) 18.2 (0.06) 12.9 (0.05) 9.1 (0.04)

4, 18 12.0 (0.03) 88.0 (0.03) 85.5 (0.06) 65.4 (0.23) 37.3 (0.26) 19.0 (0.20) 8.5 (0.12) 4.8 (0.06)

−4, 18 11.8 (0.03) 86.8 (0.04) 76.3 (0.12) 46.7 (0.26) 22.5 (0.22) 12.0 (0.14) 7.6 (0.08) 5.6 (0.05)

0.6 0, 0 29.9 (0.05) 67.9 (0.5) 57.6 (0.06) 42.2 (0.06) 26.6 (0.06) 14.3 (0.05) 6.6 (0.03) 2.7 (0.02)

2, 4 23.1 (0.04) 76.6 (0.04) 69.5 (0.06) 46.4 (0.12) 22.2 (0.09) 10.2 (0.04) 4.5 (0.02) 1.9 (0.01)

−2, 4 23.0 (0.04) 73.6 (0.05) 54.4 (0.11) 29.0 (0.09) 17.7 (0.06) 11.9 (0.04) 8.0 (0.03) 5.3 (0.03)

4, 18 14.1 (0.04) 85.6 (0.04) 76.3 (0.15) 41.8 (0.27) 19.6 (0.20) 9.9 (0.13) 5.4 (0.08) 3.1 (0.04)

−4, 18 14.3 (0.04) 83.3 (0.05) 62.0 (0.19) 26.5 (0.23) 12.2 (0.14) 7.3 (0.09) 5.1 (0.05) 3.9 (0.03)
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TABLE 2 HA: mean (standard deviation) percentage of false positives and false negatives.

Effect size (δ)

λ g1, g2 0 0.2 0.5 0.8 1.1 1.4 1.7 2.0

n = 25

0.4

0, 0 5.3 (0.15) 89.5 (0.21) 69.9 (0.34) 50.6 (0.39) 39.1 (0.43) 34.2 (0.45) 32.3 (0.45) 31.6 (0.46)

2, 4 6.7 (0.14) 89.3 (0.18) 75.5 (0.29) 55.0 (0.40) 40.4 (0.44) 36.0 (0.46) 34.8 (0.47) 34.6 (0.47)

−2, 4 5.9 (0.10) 91.0 (0.18) 71.5 (0.32) 48.5 (0.39) 39.8 (0.42) 36.3 (0.44) 34.4 (0.45) 33.3 (0.46)

4, 18 7.5 (0.10) 90.9 (0.15) 74.7 (0.27) 51.9 (0.40) 40.6 (0.45) 38.1 (0.47) 37.1 (0.47) 36.8 (0.48)

−4, 18 7.5 (0.11) 90.2 (0.16) 72.8 (0.32) 47.8 (0.42) 41.2 (0.45) 40.0 (0.45) 40.0 (0.46) 38.5 (0.46)

0.5

0, 0 8.9 (0.13) 85.1 (0.18) 60.8 (0.289) 36.6 (0.30) 21.6 (0.30) 14.7 (0.30) 11.8 (0.30) 10.8 (0.30)

2, 4 11.1 (0.14) 85.6 (0.17) 68.9 (0.28) 39.8 (0.33) 21.8 (0.33) 16.2 (0.34) 14.6 (0.34) 14.3 (0.34)

−2, 4 11.2 (0.13) 84.2 (0.18) 59.5 (0.30) 33.9 (0.31) 24.0 (0.31) 19.3 (0.32) 16.9 (0.33) 15.4 (0.33)

4, 18 10.1 (0.13) 88.5 (0.16) 73.6 (0.30) 40.3 (0.38) 30.3 (0.41) 27.7 (0.42) 26.4 (0.43) 26.0 (0.43)

−4, 18 9.9 (0.11) 86.6 (0.17) 61.6 (0.34) 36.0 (0.39) 29.5 (0.41) 28.1 (0.41) 27.3 (0.42) 26.8 (0.42)

0.6

0, 0 17.1 (0.11) 77.8 (0.14) 54.5 (0.19) 29.5 (0.18) 13.4 (0.14) 5.4 (0.11) 2.4 (0.09) 1.3 (0.09)

2, 4 16.2 (0.12) 81.6 (0.14) 64.9 (0.22) 30.5 (0.24) 13.8 (0.22) 8.0 (0.22) 5.9 (0.22) 5.5 (0.22)

−2, 4 16.3 (0.12) 78.0 (0.17) 50.1 (0.27) 25.1 (0.23) 16.0 (0.21) 11.2 (0.21) 8.4 (0.21) 6.7 (0.21)

4, 18 12.9 (0.10) 86.2 (0.12) 62.5 (0.31) 28.3 (0.32) 19.9 (0.33) 17.1 (0.34) 15.5 (0.35) 14.7 (0.35)

−4, 18 12.5 (0.11) 82.7 (0.16) 48.0 (0.36) 25.2 (0.34) 18.8 (0.33) 17.4 (0.33) 16.6 (0.34) 16.0 (0.34)

n = 50

0.4

0, 0 3.8 (0.14) 90.6 (0.21) 63.4 (0.34) 37.2 (0.36) 24.9 (0.37) 20.7 (0.38) 19.5 (0.39) 19.2 (0.39)

2, 4 4.5 (0.09) 90.8 (0.15) 72.1 (0.30) 44.7 (0.39) 30.7 (0.42) 27.8 (0.44) 27.2 (0.44) 27.1 (0.44)

−2, 4 4.3 (0.10) 93.1 (0.17) 67.3 (0.34) 40.5 (0.38) 32.2 (0.41) 29.1 (0.42) 27.5 (0.43) 26.7 (0.43)

4, 18 5.0 (0.07) 92.5 (0.14) 81.5 (0.28) 50.8 (0.40) 38.7 (0.45) 36.4 (0.47) 35.6 (0.47) 35.4 (0.47)

−4, 18 6.0 (0.10) 92.6 (0.13) 72.8 (0.31) 58.0 (0.41) 35.2 (0.43) 33.8 (0.44) 33.0. (44) 32.4 (0.45)

0.5

0, 0 6.5 (0.07) 88.2 (0.12) 62.0 (0.21) 31.5 (0.20) 12.5 (0.16) 4.9 (0.13) 2.5 (0.13) 2.0 (0.13)

2, 4 8.3 (0.09) 88.3 (0.12) 71.5 (0.22) 35.6 (0.27) 14.2 (0.25) 9.0 (0.25) 7.6 (0.25) 7.4 (0.26)

−2, 4 8.8 (0.09) 88.3 (0.13) 61.5 (0.26) 29.3 (0.25) 18.2 (0.25) 13.2 (0.26) 10.6 (0.26) 9.2 (0.26)

4, 18 8.1 (0.07) 89.8 (0.12) 76.3 (0.26) 32.6 (0.33) 20.5 (0.35) 18.0 (0.36) 17.0 (0.36) 16.5 (0.36)

−4, 18 8.4 (0.10) 89.1 (0.14) 63.0 (0.31) 27.7 (0.34) 21.1 (0.34) 19.5 (0.35) 18.5 (0.35) 17.7 (0.36)

0.6

0, 0 16.0 (0.08) 79.7 (0.09) 57.9 (0.13) 31.1 (0.13) 12.7 (0.09) 4.0 (0.05) 1.2 (0.03) 0.4 (0.03)

2, 4 14.4 (0.08) 83.7 (0.08) 68.2 (0.14) 28.6 (0.17) 9.7 (0.12) 4.1 (0.12) 2.1 (0.12) 1.7 (0.12)

−2, 4 14.5 (0.07) 80.9 (0.11) 50.1 (0.20) 21.9 (0.14) 12.0 (0.12) 7.3 (0.11) 4.4 (0.11) 2.9 (0.11)

4, 18 11.0 (0.07) 87.3 (0.11) 67.8 (0.26) 20.7 (0.23) 10.8 (0.22) 8.5 (0.23) 7.2 (0.23) 6.5 (0.23)

−4, 18 11.2 (0.08) 85.8 (0.12) 52.3 (0.31) 20.0 (0.27) 13.7 (0.26) 12.0 (0.26) 11.0 (0.27) 10.3 (0.27)

n = 100 0.4 0, 0 2.0 (0.10) 91.7 (0.20) 56.3 (0.32) 24.8 (0.30) 13.3 (0.29) 10.7 (0.30) 10.2 (0.30) 10.2 (0.30)

2, 4 3.4 (0.09) 91.7 (0.15) 67.5 (0.31) 32.2 (0.36) 18.8 (0.36) 16.9 (0.37) 16.6 (0.37) 16.5 (0.37)

−2, 4 3.0 (0.08) 92.8 (0.21) 64.8 (0.33) 31.9 (0.35) 23.6 (0.37) 20.7 (0.38) 19.6 (0.38) 19.2 (0.38)

4, 18 3.8 (0.08) 92.9 (0.15) 77.2 (0.32) 40.3 (0.40) 30.1 (0.43) 28.7 (0.44) 28.3 (0.44) 28.2 (0.44)

-4, 18 3.8 (0.06) 92.7 (0.16) 71.3 (0.33) 35.9 (0.40) 30.6 (0.42) 29.1 (0.43) 28.4 (0.43) 27.9 (0.43)

0.5 0, 0 5.3 (0.04) 90.3 (0.06) 63.7 (0.15) 29.9 (0.15) 9.8 (0.08) 2.5 (0.04) 0.6 (0.03) 0.2 (0.03)

2, 4 7.5 (0.07) 89.5 (0.07) 72.5 (0.17) 30.5 (0.20) 7.9 (0.13) 3.1 (0.13) 2.0 (0.13) 1.9 (0.13)

−2, 4 7.2 (0.06) 90.5 (0.11) 61.6 (0.21) 22.6 (0.14) 11.0 (0.12) 6.0 (0.11) 3.4 (0.11) 2.1 (0.11)

4, 18 7.2 (0.06) 91.0 (0.11) 80.5 (0.21) 27.0 (0.25) 12.6 (0.26) 10.2 (0.27) 9.1 (0.27) 8.7 (0.27)

−4, 18 7.0 (0.6) 90.2 (0.13) 64.7 (0.28) 20.8 (0.27) 14.7 (0.28) 12.9 (0.28) 11.9 (0.28) 11.1 (0.29)

0.6 0, 0 15.1 (0.05) 80.4 (0.06) 59.2 (0.08) 31.9 (0.09) 12.5 (0.06) 3.7 (0.03) 0.9 (0.01) 0.2 (0.00)

2, 4 13.9 (0.05) 84.1 (0.05) 70.4 (0.08) 27.8 (0.11) 8.1 (0.04) 2.4 (0.01) 0.5 (0.00) 0.1 (0.00)

−2, 4 13.9 (0.05) 83.0 (0.06) 54.2 (0.14) 21.4 (0.07) 11.1 (0.05) 5.8 (0.03) 2.9 (0.02) 1.4 (0.01)

4, 18 10.1 (0.04) 89.0 (0.06) 74.9 (0.19) 18.4 (0.17) 7.9 (0.16) 5.5 (0.16) 4.2 (0.17) 3.5 (0.17)

−4, 18 10.3 (0.04) 87.7 (0.07) 56.3 (0.24) 12.5 (0.14) 7.1 (0.12) 5.4 (0.12) 4.3 (0.12) 3.5 (0.12)
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number of false positives and false negatives in the 1,000 samples 
for each condition. Following the liberal criterion of Bradley 
(1978), percentages of false positives between 2.5 and 7.5% were 
considered acceptable (and shaded). Following a similar logic, the 
percentages of false negatives under 25% were considered correct 
(and shaded).

Information regarding the accuracy of the performed simulation, 
provided evidence that the simulated data reproduced the imposed 
conditions reasonably well (see Simulation Tables in the 
supplementary files). However, as in other studies (Pardo and Ferrer, 
2013; Ferrer and Pardo, 2019), only skewness and kurtosis deviated 
from what was expected (the smaller the sample size, the greater the 
deviation). This occurred because the standard errors of the statistics 
used to evaluate skewness and kurtosis increased as the sample size 
decreased (Wright and Herrington, 2011).

False positives

Percentages of false positives obtained with the RCI statistic were 
systematically higher than the standard nominal level: where one 
would have expected to find values around 5%, we found values that 
ranged from 9.2 to 30.3%. These percentages were not significantly 
altered, neither by the shape of the simulated distributions nor by the 
different sample sizes used in the present study.

The percentages of false positives obtained with the HA statistic 
were more acceptable; in fact, these percentages took correct values 
when λ = 0.4 (regardless of the shape of the distribution and of the 
sample size) and when λ = 0.5 if n = 100 (regardless of the shape of the 
distribution). In the rest of the simulated conditions, percentages 
higher than the nominal level were obtained, although in no case were 
values observed as high as those obtained with the RCI statistic.

False negatives

RCI and HA were better comparable in terms of the percentage of 
false negatives they generated. With the RCI statistic, these percentages 
tended to improve as the value of λ increased; but correct percentages 
were only obtained if δ was greater than 1. With the HA statistic, the 
percentages of false negatives were also better when λ equaled 0.5 or 
0.6 than when it equaled 0.4, but some correct percentages were also 
obtained when δ = 0.8. It also occurred that the percentages of false 
negatives improved slightly as sample size increased (this occurred in 
relation to both the RCI and the HA statistic).

Discussion

The aim of the present study was to estimate the rate of false 
positives and false negatives associated with RCI and HA, 
incorporating the use of a new way of estimating reliability. Since false 
positives and false negatives represent classification errors, it would 
be reasonable to expect a good diagnostic method to be able to make 
proper classifications while maintaining low rates of false positives and 
false negatives.

It is commonly assumed that the false positive rate should 
be around 0.05. How low the false negative rate should be is also a 

subjective issue, but in applied research and clinical practice, it is 
common to consider that this rate should not exceed 20% (Cohen, 
1988, 1992). Taking these two conventional values as a reference (5 
and 20%, respectively), the results of the present study indicate that:

 a. RCI offers unacceptable false positives rates in all simulated 
conditions. As this occurs when reliability is estimated by 
Cronbach’s alpha coefficient (Ferrer and Pardo, 2019), when 
reliability is estimated by the omegah coefficient, false positive 
rates associated with RCI take values well above the nominal 
value. These unacceptable values increase slightly when λ 
increases. When the samples come from normal distributions, 
they also tend to be  higher than when they come from 
asymmetric distributions.

 b. HA offers acceptable false positive rates in some simulated 
conditions. When λ = 0.4, all false positive rates take correct 
values (regardless of the sample size and the shape of the 
simulated distributions). When the value of λ increases, the 
false positives rate also increases. The presence of acceptable 
rates of false positives in several of the simulated conditions 
indicates that significantly better results are obtained when 
using the omegah coefficient to estimate reliability than when 
estimating reliability with the alpha coefficient. It is true that 
estimating reliability with the test–retest correlation provides 
better results than estimations through alpha (Ferrer and 
Pardo, 2019); however, estimates based on the omegah 
coefficient do not have the aforementioned drawbacks that 
estimates based on the test–retest correlation have.

 c. Both RCI and HA offer unacceptable rates of false negative. All 
false negative rates decrease as the effect size increases: this is 
to be expected if we take into account that the greater the mean 
of the pre-post differences, the greater a randomly selected 
individual difference is to be expected. But, even though false 
negative rates should not exceed 20% (25% applying a criterion 
similar to the criterion of Bradley for false positives), with RCI 
statistic rates were found that ranged from 67.4 to 90.8% when 
the effect size was 0.2 (a small effect size according to Cohen’s 
criteria); and rates that ranged from 12.2 to 66.8% when the 
effect size was 0.8 (a large effect size according to Cohen’s 
criteria). With the HA statistic, rates were found that ranged 
from 77.8 to 93.1% when the effect size was 0.2; and rates that 
ranged from 12.5 to 58.0% when the effect size was 0.8. 
Therefore, neither RCI nor HA perform well regarding false 
negative rates.

Nevertheless, to be able to correctly interpret these results, it is 
necessary to take into account some considerations related to Cohen’s 
standardized difference (δ) and the reference values specifically 
proposed by Cohen (1988) to interpret δ. The cut-off points proposed 
by Cohen to identify small, medium, and large effect sizes (0.2, 0.5, 
and 0.8, respectively) do not seem to have been sufficiently justified in 
order to be accepted as reference values. Indeed, both Cohen and 
other experts recommended using these cut-off points as mere guides 
and not as fixed, rigid criteria (Cohen, 1992; Snyder and Lawson, 
1993; Thompson, 2002). Ferguson (2009), for example, based on 
previous reviews (Franzblau, 1958; Lipsey and Hurley, 2009), 
proposed reference values that depart markedly from those proposed 
by Cohen. Ferguson’s specific proposal is as follows: 0.41 for a 
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minimum effect, 1.15 for a moderate effect and 2.70 for a strong effect. 
It is clear that the criteria initially proposed by Cohen (criteria 
considered valid by most researchers) differ meaningfully from those 
proposed by Ferguson.

One illustration will suffice. At the evaluation level, for example, the 
observation of a large therapeutic effect (δ = 0.80 according to Cohen) in 
the positive direction (i.e., less complaints/negative affect or greater well-
being/positive affect) suggests that 19.9% of the clients obtain pre-post 
differences that represent a reliable change (i.e., differences that surpass 
the cutoff point 1.645, the 95th percentile of a normal distribution). When 
a large effect size is achieved following the directives of Ferguson (δ = 2.70), 
85.4% of clients obtain pre-post differences that represent a reliable 
change (in calculating these percentages we  assume that pre-post 
differences are normally distributed).

These considerations about the cut-off points used to define small, 
medium and large effect sizes lead to the following conclusion: taking 
1.15 (instead of 0.5) as a reference value for an effect of medium size, 
the false positive rates associated with the HA statistic seem quite 
correct when λ > 0.4. Therefore, the false negative rate obtained does 
not seem as unacceptable as it initially appeared.

Finally, classifications resulting from the application of these 
cutoffs could be  improved if the results obtained by applying 
distribution-based methods such as RCI and HA were supplemented 
by information provided by anchor-based methods (Barrett et al., 
2008; de Vet and Terwee, 2010; Houweling, 2010; Turner et al., 2010) 
or the cumulative proportion of responders (Farrar et  al., 2006; 
McLeod et al., 2011; Wyrwich et al., 2013). This, however, is an area in 
need of further research.

Conclusion

The objective of the present study was to learn about the false 
negative and false negative rates associated with two distribution-
based methods (RCI and HA) designed to evaluate individual change 
(reliable change) in pre-post designs. The novelty of this study is that 
reliability has been estimated by the omegah coefficient rather than 
with the alpha coefficient or the test–retest correlation.

Regarding the rate of false positives, only the HA statistic provides 
acceptable results. Regarding the rate of false negatives, both statistics 
offer similar results, and both can claim to offer acceptable rates when 
Ferguson’s stringent criteria are used to define effect sizes rather than 
when the conventional criteria advanced by Cohen is employed.

Since the HA statistic seems to be a better option than the RCI 
statistic, we have developed an Excel macro (see Supplementary files) 
so that the greater complexity of calculating HA does not represent an 
obstacle for the non-expert user.

The methods used to establish the minimally reliable change 
analyzed in the present study offer an opportunity to assess the change 
experienced by a person or a group of people as a consequence of an 
intervention. So far, we have used the clinical context as an example, 
but this approach could be used in a wide range of contexts, e.g., in 
educational, community, and/or social intervention areas, to assess the 
effectiveness of skills training program, to test interventions in the 
organizational area, to evaluate cognitive stimulation and/or learning 
programs, etc.

However, some considerations must be taken into account 
before applying these reliable change measures. This approach is 
used in pre-post research designs; the trait or symptoms of 
interest should be  susceptible to change as a result of the 
intervention; the scales used must have evidence of validity and 
sufficient reliability (because reliability is an important parameter 
within the equation for its estimation); and certain minimum 
reference information must be  available or there must be  a 
sufficient sample to estimate this information. For example, it 
could be applied with scales commonly used in psychotherapeutic 
contexts, e.g., the Beck Depression Inventory (BDI), the Hamilton 
Anxiety Rating Scale (HAM-A), and the Global Assessment of 
Functioning (GAF).
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