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Introduction: Shared decision-making (SDM) has received a great deal of attention

as an e�ective way to achieve patient-centered medical care. SDM aims to bring

doctors and patients together to develop treatment plans through negotiation.

However, time pressure and subjective factors such as medical illiteracy and

inadequate communication skills prevent doctors and patients from accurately

expressing and obtaining their opponent’s preferences. This problem leads to SDM

being in an incomplete information environment, which significantly reduces the

e�ciency of the negotiation and even leads to failure.

Methods: In this study, we integrated a negotiation strategy that predicts

opponent preference using a genetic algorithm with an SDM auto-negotiation

model constructed based on fuzzy constraints, thereby enhancing the

e�ectiveness of SDM by addressing the problems posed by incomplete

information environments and rapidly generating treatment plans with high

mutual satisfaction.

Results: A variety of negotiation scenarios are simulated in experiments and the

proposedmodel is compared with other excellent negotiationmodels. The results

indicated that the proposed model better adapts to multivariate scenarios and

maintains higher mutual satisfaction.

Discussion: The agent negotiation framework supports SDM participants in

accessing treatment plans that fit individual preferences, thereby increasing

treatment satisfaction. Adding GA opponent preference prediction to the SDM

negotiation framework can e�ectively improve negotiation performance in

incomplete information environments.

KEYWORDS

shared decision-making (SDM), agent, auto-negotiation, genetic algorithm, opponent

model

1. Introduction

Shared decision-making (SDM) is a treatment decision-making model proposed for

humanitarian considerations and the needs of medical ethics (Cathy et al., 1997; Drake and

Deegan, 2009; Stiggelbout et al., 2015), where at least one doctor and one patient participate

in the process of making a treatment plan, which is based on information sharing. The

resulting treatment plan considers the wishes of both parties. Unlike traditional decision-

making models, such as the paternalistic model, the informed decision-making model, and

the professional-as-agent model, SDM does not give decision-making power to either party

but fairly combines the treatment preferences of doctors and patients (Cathy et al., 1997).
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To some extent, SDM improves the compliance and satisfaction

of patients in the treatment process, which increases the effect of

treatment (Pieterse et al., 2019; Fiorillo et al., 2020).

The concept of SDM was first proposed by Veatch in 1972

(Veatch, 1972). In 1997, Cathy (Cathy et al., 1997) further clarified

its definition and characteristics. After more than 40 years of

development, SDM has gradually formed a complete system in the

West (Coulter et al., 2011, 2022), including a complete theoretical

system (Makoul and Clayman, 2006), patient decision-making aids

(Thomson et al., 2007; Elwyn et al., 2013), SDM evaluation tools

applied to different scenarios (O’Connor, 1995; Simon et al., 2006;

Scholl et al., 2012), and relevant legal and policy support. However,

at present, SDM is still a new concept inmany countries and regions

(Huang et al., 2015), and the clinical practice of SDM is not as

effective as expected. Many factors influencing the effectiveness

of SDM have been explored. According to Bomhof-Roordink

et al.’s (2019) study, which analyzed SDM models presented before

September 2019, the exchange of information on treatment plans

is key to SDM and also forms the basis for patient participation.

Many studies have come to similar conclusions and noted that

the medical literacy of the patient has a significant impact on the

exchange of information (Shen et al., 2019; Loftus et al., 2020;

Alsulamy et al., 2021). Doctors also play a crucial role in the

exchange of information. Song and Wu (Song and Wu, 2022)

suggest that doctors have a responsibility to elicit preferences from

patients, which requires good communication skills. However, a

factor that should not be ignored is the need for long-term doctor–

patient communication (Beach and Sugarman, 2019; Caverly and

Hayward, 2020). However, it is difficult for busy clinicians to find

enough time to implement SDM during consultations. Therefore,

the current obstacles in SDM practice can be placed into two

categories: (1) doctors are under heavy time pressure, which leads to

insufficient time for communication between doctors and patients,

and (2) subjective factors of both doctors and patients significantly

influence decision-making (Covvey et al., 2019; Shinkunas et al.,

2020).

To solve the above problems, this study suggests integrating

artificial intelligence (AI) into SDM to reduce unnecessary

subjectivity in decision-making and the high time cost associated

with manual negotiation. This method has been applied in the

research of clinical decision support systems (CDSSs) (Osheroff

et al., 2004; Magrabi et al., 2019; Yang et al., 2019), which are

software that matches the patient’s characteristics with existing

medical knowledge so as to provide doctors with evaluation

suggestions for patients. Such medical knowledge can be obtained

from a computerized medical knowledge base or from historical

diagnosis data mining using AI. Many studies (Bright et al.,

2012; Sutton et al., 2020) have proven that the application of a

CDSS can help doctors improve the efficiency of diagnosis and

reduce medication errors, thereby reducing department costs and

improving service quality. However, in the process of giving advice,

a CDSS considers the patient’s physiological characteristics instead

of the patient’s personal preferences. Loftus et al. (2020) suggest that

most CDSS methods are black-box models and are in conflict with

the concept of patient-centered care. Because patient preferences

are not considered in the recommendations, it is possible that

the predicted outcomes may differ significantly from the patient’s

preferences. Other studies (Deegan, 2010; Almario et al., 2018) have

proposed computerized decision aids to narrow the knowledge gap

between doctors and patients, which would help patients make

more informed choices according to their preferences, but the

abovementioned time pressure remains unresolved.

To better focus on doctor and patient preferences and reduce

time pressures, this study constructed an intelligent negotiation

framework to support decision-making based on the SDM model

(Elwyn et al., 2012). First, in the model, the doctor informs the

patient that reasonable options are available. Second, the doctor

lists the options and clearly describes their potential harm and

benefits. Finally, the doctor elicits an expression of preference from

the patient and judges whether to make a decision or postpone it.

Obviously, decision-related choices are directly related to patient

preferences. Doctors give professional advice to support patients in

decision-making, which reflects a preference derived from medical

expertise and diagnostic experience. Therefore, such choices can be

considered a problem of negotiation. In order to represent these

two individual preferences, an “agent” is used to represent doctors

and patients in negotiations, which is the key to automating the

negotiation framework.

An agent refers to a computer system in a complex and

changeable environment (Wooldridge and Jennings, 1995); it

has autonomy and social ability and is able to respond to the

environment. An agent is able to express knowledge, belief,

intention, and goal-oriented behavior. In other words, it always

attempts to retain maximum benefits for participants with the

goal of promoting the success of negotiation. Agent-based auto-

negotiation helps participants come to an agreement that can

bring them as much benefit as possible with reduced time costs

(Lomuscio et al., 2003). However, one important factor in a

successful negotiation is that the agent adapts its own strategy to

the available opponent’s information. Participants in SDM have

difficulty fully disclosing their preferences, which may be due

to failure in building trust between the doctor and patient or

the doctor’s inadequate conversation skills to make the patient

comfortable enough to express a preference. Hence, adding a

component of opponent preference predictions to the negotiation

framework is necessary.

Agent-based auto-negotiation has been applied in fields such as

electronic trade, power trading, resource distribution, and supply-

chain planning in recent years. Many negotiation models have

been proposed for different domains, mainly focusing on offer

evaluation, concession strategies, and opponent models.

Offer evaluations are quite different between linear and non-

linear negotiation domains. For continuous and linear negotiation

domains, a suitable linear function is usually designed to evaluate

the offer, as seen in the study by Amini et al. (2020). However,

dealing with the non-linear and discrete negotiation domain is

more complicated. Yang and Luo (2019) proposed a method

to evaluate offers by ranking demand. Mansour et al. (2022)

presented a hybrid negotiation method that adopts different

offer-generation mechanisms to tackle both quantitative and

qualitative issues. The preference-based method solves quantitative

issues by calculating the reservation intervals of the agent,

and the fuzzy similarity method solves qualitative issues by

finding the most similar counteroffer to the last offer from the

opponent. However, these methods do not consider uncertainty in

participant preferences.
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The concession strategy determines the agent’s behavior toward

giving up interests, including the opportunity and interval of the

concession if conflicts exist between participants. Such methods

can be divided into time-based strategies and behavior-based

strategies (Faratin et al., 1998). Mirzayi et al. (2021) proposed an

opponent-adaptive concession method that creates a concession

neighborhood around the target utility of each round, and the

radius of the neighborhood growth rate is determined by the

negotiation time. Mansour (2020) presented an imitation offer

ration tactic that considers both the current concession behavior

of the agent and that offered by its opponent.

Many studies use predictions of opponent preferences to

accelerate the convergence of incomplete information negotiation

and adopt various learning algorithms to improve the accuracy of

opponent models, such as Bayesian algorithms (Sim et al., 2008;

Pooyandeh and Marceau, 2014; Yi et al., 2021), neural networks

(Zafari and Nassiri-Mofakham, 2016), and reinforcement learning

(Bagga et al., 2021a). Most of the research and applications of agent-

based automatic negotiation models focus on linear values such as

electronic market transactions and power transactions. For SDM,

there are many non-linear problems. For example, the severity of

medical side effects is discrete and difficult to express with a definite

value, which means that the agreement of SDM has a large and

discrete value space, making it more difficult to learn about the

preferences of opponents.

Genetic algorithms (GAs) are also an effective method of

promoting agreement in negotiation (Holland, 1975; Matos et al.,

1998; Gao and Chen, 2010; de Jonge and Sierra, 2016). GAs use

Darwin’s “survival of the fittest” theory to simulate the evolution of

natural populations in order to find the optimal solution. GAs are

efficient in searching and are closer to the global optimum solution

when faced with a large solution space (Lambora et al., 2019). Thus,

many studies have used them for value-space searches. Bagga et al.

(2021b) proposed a method using a GA to find Pareto frontiers in

solving the problem of making Pareto optimal bids under uncertain

opponent preferences from a multi-objective optimization stance.

However, this study does not predict opponent preferences, as it

is not an incomplete information negotiation environment. Ayachi

et al. (2018) used GA in electronic trading to predict the reservation

values and deadlines of their opponents and then adjust the agent’s

bid strategy based on the predicted opponent model. Choudhary

and Bharadwaj (2019) developed a group recommendation system

based on multi-agent negotiation, where a GA is used in the

negotiation and recommendation-generation phases. First, the

GA is employed to find the offer of maximum utility for each

agent in the group and then to determine the ranking of the

minimum distance from the preferences of all agents. Few studies

have used GAs to predict opponent preferences in complex and

large negotiation domains, such as multiple issues and non-linear

domains. Particularly, in SDM negotiations, a treatment plan often

contains multiple linear or non-linear issues.

In summary, to address time pressures while focusing on

patient preferences in SDM, this study presents an agent-

based negotiation framework using fuzzy constraints and a GA

(ANFGA). The chromosome coding method, fitness function, and

evolutionary method of the GA are redesigned for the prediction

of an opponent model in a complex negotiation domain. The

contributions of this study are as follows:

• We establish an agent model of doctors and patients by taking

problems that need to be agreed upon in SDM as negotiation

issues. The agent describes the preferences of the participants

and uses fuzzy membership to represent the benefits of each

value (Lin et al., 2022).

• We use GA to solve the problems caused by an incomplete

information environment. The GA takes the bid as an

individual in the population and updates the cognition of the

opponent through population evolution.

• In experiments, we compare the prediction results of the GA

with the real preference settings of opponents to verify the

effectiveness of our model, and we compare the performance

with other excellent agent models to prove that our model has

better performance in SDM.

The rest of this article is structured as follows: In Section

2, we describe the definitions of problems and introduce

our proposed model, ANFGA. In Section 3, we evaluate the

negotiation presented and compare it with other state-of-the-art

agents. In Section 4, we conclude the paper and discuss future

research directions.

2. Method

2.1. Auto-negotiation framework for SDM

There are two types of agents in SDM, DA, and PA, which

represent doctors and patients, respectively. This study simulates

a bilateral negotiation scenario, which means that only one pair

of DA and PA are involved in the negotiation. The inputs

of the model are the preferences of the doctors and patients,

which are represented by a fuzzy membership function, and the

number of functions is determined by the number of issues. The

output of the model is a treatment plan, which is composed

of multiple issue values. More details are provided in the

section below.

2.1.1. Negotiation statement
Negotiation issues, which are denoted as I =

{I1, I2, . . . , Ii, . . . , In} here, indicate treatment plan choices

such as period, cost, and side effects. Each issue has a finite set

of k possible values, Ii = (vi1, v
i
2, . . . , v

i
j, . . . , v

i
k
), which denote

the options of a choice. Selecting a value for each issue forms an

offer, O = (v1, v2, . . . , vi, . . . , vn), which represents an available

treatment plan. All possible bid sets are called solution spaces.

The Stacked Alternating Offers Protocol (Aydogan et al., 2017)

is adopted in the framework, which means that the offers are

provided in turn in the negotiation process by DA and PA until the

negotiation concludes.

When receiving an offer from an opponent, the agent

has to respond to the opponent with one of the following

actions: accept, offer, or reject. The choice of action is based

on the agent’s preference and negotiation strategy, which are

introduced in Section 3. Preference includes a set of weights,

ω = {w1,w2, . . . ,wi, . . . ,wn}, as well as a set of satisfaction

functions, F = {F1, F2, . . . , Fi, . . . , Fn}, where ω represents the
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FIGURE 1

Trapezoid membership function image.

level of importance that the participants attach to each issue,

and F maps the participant’s preference for each value in the

issue to a real value. Thus, an aggregated satisfaction function

that expresses participants’ satisfaction with offer O is defined

as follows:

9 (O) =

n
∑

i=1

w∗
i Fi

(

vi
)

, (1)

where wi ∈ [0, 1] indicates the weight of the ith issue;
∑1

n wi =

1; Fi is the satisfaction function of the ith issue, and n is the number

of issues.

2.1.2. Fuzzy constraint satisfaction
Most problems in SDM are difficult to describe with precise

information. For example, the treatment period considered

appropriate by the patient is often an interval rather than

an exact value. Patients’ expectations are also not evenly

distributed over the interval values. In addition, there are

many constraining relationships between different issues that

are not precisely available but have a strong influence on the

negotiation results. To describe and deal with such situations,

a fuzzy theory proposed by Zadeh (1996) is integrated into

the negotiation framework of SDM (Liu et al., 2020, 2022).

Hence, the problem in the negotiation framework is formulated

as solving a fuzzy constraint satisfaction problem (FCSP).

Many studies (Safaeian et al., 2019; Bhuyan et al., 2021;

Deng et al., 2021) have demonstrated that fuzzy constraints

can be a good representation of the unclear and uncertain

preference relationships of different decision-makers for

common issues.

In our framework, participants’ preferences are represented as

a fuzzy membership function, A (X), which indicates the level of

belonging of X to fuzzy set A. For preference in SDM, X is a

solution option for the problem, and A (X) ∈ [0, 1] denotes the

satisfaction with this option. In this way, the participants’ uncertain

preference for the problem is transformed into an accurate value.

The trapezoid membership function is used in this study, as shown

in Eq. (2) and Figure 1.

A(X) = µi (x) =







































0, if x ≤ a

β

(

1 −

(

x−b
b−a

)2
)

, if a < x < b

1
β
, if b ≤ x ≤ c

β

(

1 −

(

x−c
c−d

)2
)

, if c < x < d

0, if x ≥ d

(2)

Among them, the parameters a, b, c, d, and β determine the

specific form of the function.X ∈ [b, c] can be expressed as the offer

that the agent is most willing to accept. X < a and X > d represent

the bid that the agent is most reluctant to accept. X ∈
[

a, b
]

or

X ∈
[

c, d
]

represent different levels of satisfaction. Thus, Equation

(1) can also be expressed as Equation (3):

9 (O) =

n
∑

i=1

w∗
i µi(v

i). (3)

2.2. Negotiation strategy

Although the agent prefers a high-satisfaction offer,

the opponents’ preferences are frequently different or even

contradictory. Appropriate concessions are necessary to prevent

the failure of the negotiation. The negotiation strategy is designed

to help the agent determine the appropriate concession pace

and time, thereby increasing the success rate of negotiation

and obtaining the maximum expected benefit. In incomplete

information negotiation, the ability of opponent models to predict

more information about opponents’ preferences is an important

factor in improving the efficiency of this process. Hence, an

opponent model based on a GA is added to our model. The bidding

process is similar between DA and PA. Figure 2 shows the progress

of ANFGA with PA first offering a solution. PA sends an offer first,

and if the current round is still before the deadline, the receiver

calculates the concession value and decides whether to accept

the offer. If accepted, the negotiation reaches an agreement, and

the offer becomes the final solution. Otherwise, the counteroffer

is generated and sent to the opponent via the GA update of

the opponent model. In this section, we further introduce the

negotiation strategist used in ANFGA, including the concession

strategy and the opponent model.

2.2.1. Concession strategy
Concession strategies help users reduce their expectations at

the appropriate moment to promote successful negotiation. To

make more sensible decisions, the agent calculates the pace of

concessions by evaluating three states: the opponent’s response

state, the agent’s own internal state, and the environment state.

These states represent the opponent’s desire, the agent’s own desire,

and the environmental constraints. The method used in this study

improves on the work of Chia-Yu et al. (2016).

For the opponent’s response state, R, the agent considers the

difference between offer A generated in the previous round and

the current offer B received from the opponent, as well as the
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FIGURE 2

The process of ANFGA with a PA first o�er.

initial offer, A0, and counteroffer, B0. The calculation is shown in

Equation (4):

σ = 1−
G (A0,B0) − G (A, B)

G (A0,B0 )
. (4)

eG (A, B) is a measure of the distance between A and B for

negotiation issue IiǫX, as shown in Equation 5:

G (A, B) =

√

∑Ni
i= 1 L(Ai,Bi)

2

n
, (5)

where Ai and Bi denote the possibility distribution of

A and B for negotiation issue IiǫX, and n denotes the number of

negotiation issues.

The agent’s own internal state, M, considers the level of

satisfaction, ρ, associated with the latest offer, A, and its tightness

with the acceptance threshold, ε, where

ρ = 9(A), (6)

δ = 1− (ρ − ε). (7)

The environmental constraint E to which the agent is subjected

during the SDM negotiation process is primarily a time constraint.

Therefore, it can be expressed as a function of time (Faratin et al.,

1998), as shown in Equation 8:

τ = λ + (1− λ ) (
r

rmax
)
1
β
. (8)

In this equation, r is the current round, rmax denotes the

negotiation deadline, and τ denotes the time constraint imposed on

the agent during negotiation. λ ∈ [0, 1] represents the minimum

concession value when first receiving a counteroffer from the

opponent. If λ is large, the concession value will be high, and the

acceptance threshold will be low at the beginning of the negotiation,

whichmay lead to the agent easily accepting a low-satisfaction offer.

β ∈ [0, 1] is the concession rate for time, controlling the pace at

which the threshold falls. If β is low, the less the concession value

decreases each round, and the slower the acceptance threshold

decreases, which may result in more negotiation rounds.

Based on Equation (8), we can obtain the opponent response

state, R = {σ }, the agent’s internal state, M = {ρ, δ}, and

the environment state, E = {τ }. Thus, we can calculate the

concession value:

ε =
(

µρ (ρ) 3µδ (δ) 3µσ (σ ) 3µτ (τ )
)ω

. (9)

The specific form of Equation (9) in this study is

ε =

(

1− σ+ρ+δ
3 + τ

)

4

ω

. (10)

Furthermore, the acceptance threshold of the agent at each

round of negotiation can be calculated:

εr = εr−1 − ε, (11)

Actionr =

{

Accept, 9 (Or) ≥ εr

Offer, 9 (Or) < εr
(12)

where εr is the acceptance threshold of round r, Or is the

offer from the opponent in round r, and Actionr represents the

response from the agent (Accept or Offer). If the satisfaction of Or

is more than εr , the agent will accept the offer; otherwise, the agent

generates and sends a new offer to the opponent.

From Eqs (9–11), it can be known that ω adjusts the rate of

concessions. ω < 1 implies a slower concession rate and expresses

that the agent is unwilling to abandon too much interest in the

negotiation, which represents a competitive concession strategy.

ω = 1 implies a faster concessions rate and expresses that the

agent wants to facilitate a quick agreement by reducing the benefits,
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FIGURE 3

Opponent preference prediction process using GA.

which represents a collaborative concession strategy. ω > 1

implies a win–win concession strategy, which lies between the first

two strategies.

2.2.2. Opponent model
As it is difficult for both sides of the SDM to publish their

preferences accurately and clearly, negotiations are conducted in

an incomplete information environment. Furthermore, opponent

information is necessary to accelerate the rate of negotiation

convergence. Therefore, we use a GA-based approach to learn

information about an opponent’s preferences. There are three

important components of GA: population, fitness, and evolution.

These will be described in detail in this subsection. Figure 3 shows

the process of the method, where A and B are the histories of the

agent and opponent offers.

2.2.2.1. Population initialization

As defined in Section 2, the preference profile of the opponent

has two parts: a set of weight preferences, ω, and a set of

satisfaction functions, F. These parts form a binary set, � =

{(w1, F1), ..., (wn, Fn)}and wi ∈ ω,Fi ∈ F, i = 1, ..., n, which

represents the agent’s preferences on each issue. � is a member

of potential solution space, with multiple � forming a population

� = {�1,�2, . . . ,�j, . . . ,�m}, where m is less than the size of the

solution space.

The GA randomly generates m individuals to form the initial

population, which is its starting point for searching for the

optimal solution. In the two parts of �, we assign each weight

wi by generating random numbers between 0 and 1 and then

regularizing them to initialize the weight preferences of �. For the

satisfaction functions, we assume that the shape of the opponent

preference function is consistent with that of the agent. Hence,

five parameters are used to describe the opponent’s satisfaction

function: a, b, c, d, and β. Considering the agent’s own preference

(a and d are the boundary values that the agent is willing to

accept on the issue) and the convergence speed of the opponent’s

preference population, the parameters a and d can be fixed and

kept consistent with those of the agent. Therefore, the satisfaction

preference information ofΩ can be initialized by assigning random

numbers to b and c, and β is fixed to 1.

2.2.2.2. Fitness

The fitness function supports population evolution by

evaluating the suitability of the individual in the current

environment and current state. Excellent individuals will have a

greater probability of being “inherited” by the next generation,

which helps the population approach the optimal solution.

As the goal of SDM negotiations is to reach an agreement with

the highest possible satisfaction for both parties, the fitness function

can be defined as

f
(

�j

)

= f
(

�k, �k
j

)

=
1

Nr

(

Nr
∑

r=1

9k(Ar)
∗9k

j (Br)

)

, (13)

where �j is an individual of the opponent’s preference

population,�k is the agent’s preference profile,�k
j is the opponent’s

preference profile, Ar and Br are the offers of the agent and

the opponent in round r, respectively, and Nr is the current

negotiation round.

2.2.2.3. Evolution and generation of next populations

According to the principle of survival of the fittest, individuals

with weak fitness in the population will be eliminated, whereas

individuals with strong adaptability will survive and reproduce. In

the algorithm proposed in this study, a certain number of excellent

individuals are retained in the population evolution. The selection

of individuals in the population adopts a method that combines an

elite retention strategy with roulette selection.

The elite retention strategy refers to retaining a certain number

of the best individuals in the population (the number in thismethod

is e), as needed before individual crossover, which is directly

inherited by the offspring population. This strategy method can

prevent the optimal solution of a generation from being destroyed

by crossover andmutation operations during the evolution process,

thereby effectively improving the convergence of the GA.

Roulette selection, also known as proportional selection, refers

to the probability of each individual being selected is proportional

to its fitness. Its specific operations are as follows:
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• Let �k be an individual in the population, and its probability

of being selected is:

P (�k) =
f (�k)

∑m
j=1 f (�j)

. (14)

• The individual is given a random number, r ∈

[0,
∑m

j=1 f (�j)]; if
∑k

j=1 f (�k) >r, �k joins the next

generation population; otherwise, the loop continues.

• Repeat step bm− e times.

In order to ensure the diversity of the population, two excellent

individuals from the population are selected as “parents” to

generate new individuals (i.e., “crossover”). At the same time,

there may be some “potential stocks” in the population, that is,

individuals with a fitness level that is low currently but may increase

after a few generations. To keep the potential stocks from being

eliminated, they randomly get the chance to crossover. The parent

individuals produce a child according to the crossover rules:

• The child copies partial preference information from the

parents separately to form a complete individual preference.

• The child takes the average of the parents’ preference

information to form its own preferences.

In addition, there is a mutation rate that allows the child’s

partial preferences to possibly be assigned random values. This

randomness can further help the model jump out of a local optimal

solution and better approach the global optimal solution.

2.2.2.4. Termination

Based on the GA, populations evolve to obtain the best

individuals for their environment. During this process, the

population terminates when it reaches the maximum number of

iterations, namely, when it runs out of environmental resources and

can no longer evolve. At this point, the best individuals from the

latest generation are selected as the optimal solution.

2.2.2.5. Optimal individual optimization

To avoid the uncertainty caused by multiple factors, a

classification learning method is used to optimize the weighting

information of the learned opponents. The specific process is

as follows:

• The set of issues is divided into n categories based on the

number of issues n: C = (C1,C2, . . . ,Ci, . . . ,Cn), where

Ci is a concession on the issue of the current counteroffer

and
∑

IiǫI
Ci is the sum of the concession values after

several negotiations.

• Variable c, assigned to each category C, is used to mark the

concession value of each variable on issue I.

• Suppose that Di is the value domain of issue i, and the

opponent makes a minimum concession each round in order

to obtain a higher satisfaction value. In the multi-issue

negotiation process, a larger overall concession for the issue

implies a smaller weight. Hence, the proportional relationship

between the weights can be expressed as

w1 :w2 : . . . ,wi : . . . :wn =
1
c1
D1

:

1
c2
D2

: . . . :
1
ci
Di

: . . . :
1
cn
Dn

. (15)

• Performing the standard transformation,
∑

1≤i≤n wi = 1, we

give weight to issue Ii:

wi =

1
(ci
Di
)

∑n
i= 1

1
(ci
Di
)

. (16)

• The final predicted opponent weights are expressed as follows:

wi =
w
g
i + wc

i

2
. (17)

As the negotiation proceeds, the agent’s estimate of the

opponent’ issue weights is continuously updated and approaches

the true weights.

3. Experiment and result

To evaluate the proposed model, we simulate experiments

using the ANFGA for multiple negotiations in different scenarios.

The measures used to evaluate the model and the results of the

experiments are presented in this section.

3.1. Evaluation metrics

The following three common metrics are used in this paper to

evaluate the proposed model:

• Average Joint Satisfaction is the average joint satisfaction of the

two parties who finally reached the negotiation, which reflects

the fairness of the negotiation and is calculated as follows:

AJS =

∑Tsuc
t=1 9 (At) + 9 (Bt )

Tsuc
, (18)

where Tsuc is the number of successful negotiations.

• The average negotiation round represents the speed of

successful negotiation and is calculated as follows:

ANR =

∑Tsuc
t= 1 Rt

Tsuc
, (19)

where Rt is the rounds of the t− th successful negotiation.

• Negotiation Success Rate represents the ratio of the number

of successful negotiations to the number of negotiations and is

calculated as follows:

NSR =
Tsuc

Tall
, (20)

where Tall is the number of negotiations.

Frontiers in Psychology 07 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1124734
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Lin et al. 10.3389/fpsyg.2023.1124734

TABLE 1 Description of the agent used in the experiment.

Agent Negotiation strategy

ANFGA-Competition ANFGA uses a competitive strategy

ANFGA-Collaboration ANFGA uses a collaborative strategy

ANFGA-Win-Win ANFGA uses a win–win strategy

FCAN (Lin et al., 2022) It uses the same concession strategy as the ANFGA but

does not consider opponent preference prediction

ANF-TIME Time-based negotiation strategy (Faratin et al., 1998)

with fuzzy constraints

Complete information ANFGA in a complete information environment

3.2. Experimental design

Table 1 shows the agent used in the experiment. To verify

the validity of the performance of the negotiation model and the

prediction of the opponent model, two types of experiments were

designed:

• ANFGA is compared with ANF-TIME, which uses a time-

based negotiation strategy under different time constraints

and size solution spaces using three concession strategy types:

competition (ω = 1.2), collaboration (ω = 0.8), and win–win

(ω = 1).

• The negotiation results are compared using ANFGA in two

different environments: incomplete information and complete

information. Complete information means that participant

preferences, including weights and satisfaction functions,

are public. In the incomplete information environment, an

additional FCAN is added as a reference for the performance

improvement of the opponent model.

Each agent performs 200 times in the different experiments (i.e.,

Tall = 200). The two parameters of the concession strategy used in

Equation (8) are set to λ = 0.1 and β = 0.25, which means that

we assume that all ANFGA participants are not overly concerned

with time constraints. The parameters for the GA of ANFGA are

as follows: Population < uscore > Size = 100, MaxIteration =

50, MutationRate = 0.5, and Elite < uscore > Rate = 0.1,

which are determined by execution efficiency and

model effectiveness.

The preference data used in the experiment are from the same

questionnaire given in the Department of Pediatrics at Xiamen

Hospital of Traditional Chinese Medicine as in the study by Lin

et al. (2022). For the purpose of simulating more decision-making

scenarios, including some extreme situations (e.g., a large number

of issues or heavy time pressure), we generated more simulation

preference data based on real data. Table 2 shows an example

of preference data with five issues, which we use as input to

demonstrate the model process more specifically. As shown in

Table 2, preference is composed of the satisfaction function and

weight for each issue, and the issue domain is below the issue

name. Participants’ satisfaction with each issue’s value is determined

by a trapezoid membership function, which is expressed as a

four-tuple (Section 2.1.2). For example, PA’s satisfaction on issue

TABLE 2 Participants’ preference input on five issues.

Issue Preference

PA DA

Cost (0–8k RMB) (2, 3.5, 4, 6)F (0.2)W (4, 5, 7, 8)F (0.25)W

Effective (1–10

rank)

(8, 9, 10, 10)F (0.1)W (6, 7, 8, 9)F (0.15)W

Side-effects

(0–100%)

(0, 0.05, 0.1, 0.2)F (0.2)W (0.1, 0.15, 0.2, 0.25)F (0.3)W

Risk (0–100%) (0, 0.02, 0.05, 0.15)F (0.3)W (0.05, 0.1, 0.15, 0.2)F (0.2)W

Convenience (1–10

rank)

(8, 9, 10, 10)F (0.2)W (6, 7, 8, 9)F (0.1)W

F means the satisfaction function of the issue, andW means the weight of the issue.

FIGURE 4

Acceptance threshold curve of PA and DA.

Cost is (2, 3.5, 4, 6)F , meaning that the acceptable range of

treatment cost is 2,000 to 6,000 RMB, and they are most willing

to accept a treatment costing 3,500–4,000 RMB. Furthermore,

weight is represented by a decimal value from 0 to 1, reflecting

the importance of participants on the issue. For this case, the risk

degree of the treatment plan is the most important for PA, whereas

DA pays more attention to side effects.

In addition, assuming that both PA andDA adopt collaboration

strategies, the concession coefficient can be set as ω = 0.8, so that

the concession value and acceptance threshold can be calculated

by Eqs (4–11). Through the process described in Section 2, PA

and DA reach an agreement after seven rounds of exchange offers,

and the aggregate satisfaction of both participants is 0.76 and

0.75, respectively. The acceptance threshold curve in each round

and more details of the agreement are shown in Figure 4 and

Table 3, respectively. Thus, the doctor and patient can determine

the specific treatment content by comparing the negotiated results

with the actual disease treatment plan.

3.3. Experimental results

To simulate negotiation scenarios with different time

constraints, the deadline for the number of negotiations is

Frontiers in Psychology 08 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1124734
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Lin et al. 10.3389/fpsyg.2023.1124734

TABLE 3 Agreement.

Issue Agreement

Cost 5.16

Effective 9

Side-effects 0.158

Risk 0.108

Convenience 9

Aggregate satisfaction PA: 0.76, DA: 0.75

FIGURE 5

The negotiation success rate for the three concession strategy types

for ANFGA and ANF-TIME in di�erent deadlines.

FIGURE 6

Average negotiation round for the three concession strategy types

for ANFGA and ANF-TIME in di�erent deadlines.

increased from 10 to 30, and the number of issues is fixed at N = 5.

Figures 5–7 and Table 4 show the results for ANF-TIME and the

three concession strategy types for ANFGA.

As Figure 5 shows, only ANFGA-Collaboration and ANF-

TIME are able to maintain a 100% NSR at any deadline, and the

other two agents show varying degrees of loss. In Figure 6, ANFGA-

Collaboration requires the lowest ANR; in contrast, ANFGA needs

more time to negotiate. Meanwhile, at larger deadlines, the ANR

of ANF-TIME is more than that of ANFGA-Win-Win but still less

than that of ANFGA-Competition. Figure 7 shows that ANFGA-

Competition is able to reach the highest AJS under deadline = 15,

whereas ANF-TIME maintains a lower AJS than the other two

ANFGA types.

FIGURE 7

Average joint satisfaction for the three concession strategy types for

ANFGA and ANF-TIME in di�erent deadlines.

The above results show that ANFGA-Collaboration

outperforms ANF-TIME for all metrics at any deadline, as

ANF-TIME’s concessions only depend on the deadline without

considering retaining their own interests and updating strategies

from the state of the environment or opponent. In addition,

although ANFGA-Competition brings greater satisfaction to both

parties of the negotiation, it also involves more time costs and

a higher risk of failure, as competitive strategies make the agent

willing to spend time to receive more benefit for itself.

To simulate the negotiation scenario in different solution

spaces, the negotiation deadline was fixed at N = 20, and

experiments were conducted with the number of issues being

set at 1, 3, 5, 7, and 9. The results are shown in

Figures 8–10 and Table 5.

In Figure 8, all agents except ANFGA-Competition maintain

100% NSR under all issue numbers. In Figures 9, 10, similar to the

first experiment, ANFGA-Competition is able to give the highest

AJS agreement, but it still takes the most time. Furthermore,

ANFGA-Collaboration outperforms ANF-TIME in all metrics.

From the above results, it can be seen that as the number of

issues increases, the time required for negotiation becomes longer,

and joint satisfaction decreases. Increasing the number of issues

means the solution space becomes larger, making the search more

difficult. At the same time, it takes more time for both parties to

agree on all issues. Compared with ANF-TIME, ANFGAmaintains

a better and more stable performance in large solution spaces.

To validate the performance of the proposed model for

opponent preference prediction, we used the same strategy

to negotiate in both complete and incomplete information

environments. In the complete information environment, the

agent is allowed to obtain the opponent’s satisfaction function

and weight of issues without prediction and then substitute

them into Eqs (12), (16) directly. Figure 11 shows the results of

this process at different deadlines. It can be seen that ANFGA

has a better AJS compared with FCAN, but the former does

not significantly improve ANR. ANFGA has ∼0.1 distance to

the complete information on both metrics. Figure 12 shows the

negotiation results under different issue numbers. The distance

between the three agents is smaller when the issue number is small,

but when the issue number is large, ANFGA performs significantly

better and is closer to the complete information than FCAN. As
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TABLE 4 AJS and ANR of ANF-TIME and three concession strategy types for ANFGA in di�erent deadlines.

Deadline Metrics ANF-TIME ANFGA

Collaboration Competition Win–win

10 AJS 1.076 1.313 0.000 1.319

ANR 8.075 7.130 10.000 9.197

15 AJS 1.047 1.312 1.525 1.348

ANR 12.010 7.414 15.000 10.110

20 AJS 1.089 1.313 1.398 1.346

ANR 13.600 7.500 19.583 10.600

25 AJS 1.095 1.292 1.415 1.371

ANR 16.460 7.610 22.295 10.665

30 AJS 1.082 1.293 1.361 1.368

ANR 19.765 7.665 25.245 10.690

Bold means the best performance among all comparison items.

FIGURE 8

The negotiation success rate for the three concession strategy types for ANFGA and ANF-TIME in di�erent issue numbers.

FIGURE 9

Average negotiation round for the three concession strategy types

for ANFGA and ANF-TIME in di�erent issue numbers.

can be seen from the above results, the addition of the opponent

model provides a more satisfactory agreement between the parties

and decreases the number of rounds required for negotiation,

which effectively mitigates the problems caused by an incomplete

negotiation environment.

FIGURE 10

Average joint satisfaction for the three concession strategy types for

ANFGA and ANF-TIME in di�erent issue numbers.

4. Discussion

Two experiments are conducted with three metrics to evaluate

our model. The experimental results show that ANFGA has better

performance than comparison work in both heavy time pressure
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TABLE 5 AJS and ANR of ANF-TIME and three concession strategy types for ANFGA in di�erent issue numbers.

Deadline Metrics ANF-TIME ANFGA

Collaboration Competition Win–win

1 AJS 1.405 1.477 1.494 1.486

ANR 6.460 5.720 16.610 7.625

3 AJS 1.360 1.604 1.744 1.720

ANR 10.715 5.615 13.085 6.605

5 AJS 0.812 1.313 1.398 1.365

ANR 16.925 7.500 19.583 10.635

7 AJS 0.563 1.105 1.177 1.111

ANR 19.000 8.200 20.000 11.527

9 AJS 0.729 1.069 1.143 1.101

ANR 19.000 9.500 20.000 12.527

Bold means the best performance among all comparison items.

FIGURE 11

(A) Average joint satisfaction of negotiation between complete

information and incomplete information in di�erent deadlines.

(B) Average negotiation round of negotiation between complete

information and incomplete information in di�erent deadlines.

and complex negotiation domains. Thus, our model is more

adaptable to the real negotiation scenario of SDM. Among the

three concession strategies of ANFGA, the results of the first

experiment showed that the competition strategy required more

negotiation rounds but possessed the highest joint satisfaction,

the collaboration strategy needed the fewest rounds but had the

lowest joint satisfaction, and the win–win strategy was a trade-off

between the former two. These results are in accordance with our

FIGURE 12

(A) Average joint satisfaction of negotiation between complete

information and incomplete information in di�erent issue numbers.

(B) Average negotiation round of negotiation between complete

information and incomplete information in di�erent issue numbers.

assumption that our negotiation strategy is effective in expressing

the concession preferences of different participants. In practice,

doctors and patients can adopt different concession strategy types

depending on their expectations of the outcome. The results of

the second experiment showed that the effect of ANFGA in

the incomplete information environment is closer to the effect

of the complete information environment than the comparison

model, which demonstrates that our model can deal well with
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the problem of incomplete obtaining of opponent preferences

in SDM.

5. Conclusion

SDM is considered an effective method for achieving patient-

centered healthcare but is hampered by time constraints and

personal subjective factors such as illiteracy of medical knowledge

and lack of communication skills in its implementation. To reduce

these negative effects and facilitate the implementation of SDM, this

study proposes an agent-based auto-negotiation framework that

aims for SDM participants to get close to the desired treatment

plan with only a vague description of their preferences. For

this purpose, to represent the uncertainty of doctor and patient

preferences, a fuzzy member function is used to express this

information. In addition, the above barriers also leave SDM in

an incomplete information environment, with the preferences of

the opponent being unavailable, making the SDM unsatisfactory

and inefficient. Thus, GA-based opponent preference prediction

was added to the negotiation framework, which helps the auto-

negotiation model to converge faster and obtain a more satisfying

solution. To verify the model, we performed simulated experiments

with different information environments and different constraints.

From the two metrics, AJS and ANR, it is evident that the

proposed model has better performance than the agent without

an opponent preference prediction strategy and remains stable

under conditions of high time pressure and large solution space.

The results also show that this model has promising potential

when implementing the SDM between doctors and patients in real

medical environments.

In the future, we will continue to maintain close

contact with the clinic, collect relevant data, and conduct

experiments in a real clinical environment in the next stage

of our work. We also aim to improve the convergence

and robustness of the model based on the results of

its implementation.
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