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The video-based commonsense captioning task aims to add multiple commonsense 
descriptions to video captions to understand video content better. This paper aims 
to consider the importance of cross-modal mapping. We propose a combined 
framework called Class-dependent and Cross-modal Memory Network considering 
SENtimental features (CCMN-SEN) for Video-based Captioning to enhance 
commonsense caption generation. Firstly, we develop class-dependent memory for 
recording the alignment between video features and text. It only allows cross-modal 
interactions and generation on cross-modal matrices that share the same labels. 
Then, to understand the sentiments conveyed in the videos and generate accurate 
captions, we add sentiment features to facilitate commonsense caption generation. 
Experiment results demonstrate that our proposed CCMN-SEN significantly 
outperforms the state-of-the-art methods. These results have practical significance 
for understanding video content better.
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1. Introduction

Progress has been made in describing human activity in videos thanks to significant 
advances in deep learning. However, most research (Ramanishka et al., 2017; Wang et al., 2019; 
Tan et al., 2020; Zhang H. et al., 2020) efforts to date have focused on identifying objects and 
actions and thus composing sentences that describe events. Its task is to provide one or more 
text descriptions that correspond to the content of the video. The generated captions can 
be  used for video retrieval in the future and directly assist visually impaired people in 
understanding reality. Recently, research on video-based commonsense captioning (Fang et al., 
2020; Yu et al., 2021) has gained traction, which can reason about the underlying aspects of 
the video rather than simply describing the events in the video. Given an input video, the 
video-based commonsense captioning task aims to simultaneously generate captions and three 
types of commonsense descriptions (intention, effect, attribute). An example is shown in 
Figure 1. When humans watch the video, they can not only describe the event of “a man 
hugging his coach and friends after a wrestling match,” but also understand the intention of 
“to share the joy of victory,” the effect of “getting better at playing matches” and the attribute 
“victor.”
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Video-based commonsense captioning is a cutting-edge research 
topic, and Video2Commonsense (Fang et al., 2020) executes separate 
networks to learn different types of commonsense separately. The 
current best-performing HybridNet (Yu et al., 2021) learns from various 
sources of information through multi-modal fusion based on multiple 
commonsense semantic interactions and records historical prediction 
sequences through memory modules. Although these methods have 
achieved remarkable results, we believe they need to be improved in 
three aspects. Firstly, they have limited ability to make full use of the 
information in videos and captions. The limitation comes from focusing 
on semantic relationships between texts while ignoring video-text 
correspondences and the lack of suitable model design to learn cross-
modal correspondences. Existing methods focus on learning the 
semantic relationships between texts when generating captions while 
neglecting the importance of cross-modal interactions, which are critical 
for dealing with complex video and text semantic relationships. Each 
word in a human description of a specific event is associated with the 
previous word and video information. Second, they did not focus on the 
effect of video type on the results. Humans’ commonsense descriptions 
of videos of the same type will be more similar and consistent. There 
may be noise in the interaction between different types of videos and 
text. We should consider commonsense reasoning in a broader sense, 
considering the interaction between other modalities and the effect of 
video type on the results.

Furthermore, compared with image captions, video captions usually 
show more complex semantic patterns that contain more sentimental 
features. Previous studies only focused on the characters’ behavior in the 
video and ignored their sentimental attributes. Sentiment is a critical 
component of user-generated videos. Sentimental factors are present in 
human activities in videos. The sentimental content of videos can 
be  used to help create commonsense descriptions. When a video’s 
sentiment is positive, we can easily infer that the generated description 
should also be positive. However, the current study does not consider 
sentimental features, instead relying solely on motion features. The 
recent research may result in the predicted words being biased or taking 
longer to correct.

To address the abovementioned issues, we implement sentiment 
control in Figure 2A, which learns to generate texts corresponding to 

bipolar sentiment types. Then, we implement cross-modal interaction 
in Figure 2B, making the aligned video and text features point to the 
same content. Specifically, the class-dependent cross-modal memory 
network (CCMN) is our memory. The triangle and rhombus represent 
video and text features within the same representation space. Each node 
is a storage vector. The arrow indicates that information is stored in this 
node, and the shared information of video and text features will point 
to the same node. The whole process can be summarized as follows: the 
shared information of video and text features is recorded in memory so 
that the whole learning process can be explicitly mapped between video 
and text. In this paper, we propose a novel Class-dependent and Cross-
modal Memory Network considering SENtimental features (CCMN-
SEN) framework by cleverly integrating them into our model. 
Experimental results on the benchmark dataset V2C confirm the 
effectiveness and efficiency of our proposed model, achieving state-of-
the-art performance. Ablation experiments and example visualizations 
are also performed to analyze the impact of different components of our 
model and to show that our model can generate commonsense captions.

For sentiment control, we use bipolar sentiment and the sentimental 
content in the video to facilitate text generation corresponding to 
sentiment. As a control variable (a given condition), sentiment 
encourages the model to generate text that matches the control variable. 
Our model uses sentiment control to go from positive to negative. For 
example, if the given control variable is positive in sentiment, the model 
will make generating text that reflects positive sentiments easier. The 
sentiment feature we introduced represents the SENtimental Dimension 
(SD). Furthermore, we use multi-modal fusion to combine 1D audio 
features, 2D appearance features, 3D motion features, and SD sentiment 
features, allowing our model to learn to generate commonsense captions 
from different sources of information.

To consider the interaction between different modalities and the 
importance of video type, we propose a class-dependent cross-modal 
memory network to record the alignment of video and text to facilitate 
interaction between modalities. Specifically, we use prior information to 
initialize a shared memory network matrix and use it to perform 
memory queries and memory responses on video and text features. For 
memory queries, we measure the similarity of cross-modal features and 
memory vectors under the same label and select the vectors with the 

FIGURE 1

The example of the video-based commonsense caption generation.
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highest similarity to interact with cross-modal features, and calculate 
their weights. The memory responses are generated by weighting the 
memory vector of the query and then feeding the responses 
corresponding to the input video and text features to the encoder and 
decoder to generate commonsense captions from learned interactions 
of cross-modal information.

Our contributions are summarized below:

 • We propose a combined framework called Class-dependent and 
Cross-modal Memory Network considering SENtimental features 
(CCMN-SEN) to generate relevant commonsense captions.

 • A class-dependent cross-modal memory network is proposed to 
record the alignment of video and text to facilitate interaction 
between modalities.

 • Sentimental Dimension (SD) is introduced, making generating text 
corresponding to video sentiment easier.

 • Extensive experiments and analyses demonstrate the effectiveness 
and superiority of our proposed model.

2. Related work

2.1. Commonsense knowledge

In recent years, commonsense knowledge has increasingly become 
a research hotspot in the field of NLP and even multi-modal (Jin et al., 
2016; Zhang and Peng, 2019) and interdisciplinary. Pre-trained language 
models represented by BERT (Devlin et  al., 2018) have achieved 
outstanding performance in tasks such as entity recognition, machine 
translation, and sentiment analysis. Integrating commonsense 
knowledge into machine learning has become a promising solution. 
More and more researchers are focusing on visual understanding by 
targeting visual commonsense reasoning (Ostermann et  al., 2018; 
Rashkin et  al., 2018; Talmor et  al., 2018; Tandon et  al., 2018). 
Commonsense-based reasoning tasks have multiple datasets (Luo et al., 

2016; Speer et al., 2017; Bosselut et al., 2019; Zhang Y. et al., 2020) for 
reasoning about various types of commonsense. Zellers et al. (2019) 
proposed a visual commonsense reasoning task that not only provides 
a question answer but also predicts the correct rationale behind the 
answer based on the question and images. Recently, commonsense-
based text generation has been explored through the ATOMIC dataset 
(Sap et al., 2019), a corpus of 877 k textual descriptions of inference 
knowledge organized into relations. For video-based commonsense 
captioning, Fang et al. (2020) innovatively use the ATOMIC dataset to 
generate commonsense descriptions from visual input. Compared to 
these studies, we  propose a combination model to add multiple 
commonsense descriptions to video captions. It leverages cross-modal 
information flow and sentimental features to understand video content 
better, resulting in more accurate captions.

2.2. Video captioning

Captioning is essential for understanding visual effects. The task of 
video captioning (Guo et al., 2019; Shi et al., 2020; Xu et al., 2021; Zhang 
et al., 2021) is to imitate human learning to connect vision and language. 
Usually, video captions simply describe observable objects and events in 
one sentence. To develop video captioning, some researchers tend to use 
open-domain video captioning datasets (Das et al., 2013; Xu et al., 2016). 
Recently, Fang et  al. (2020) attempted to link video captions with 
commonsense, exploring commonsense descriptions in videos and 
proposing a dataset named V2C (Fang et  al., 2020). Furthermore, 
current deep learning-based video captioning performs sequence-to-
sequence learning in the codec paradigm. Zhou et al. (2018) use the 
CNN features of the frame-by-frame image to the transformer and then 
input it to the decoder through TCN to generate captions. Jin et al. 
(2016) use all the available data to perform multi-modal fusion through 
a fusion network and then input it to the decoder side to get captions. 
Zhang and Peng (2019) extract the video’s key objects, build the 
bidirectional sequence diagram optimization features, and finally fuse 
the global features to generate captions. Zhong et al. (2020) generate 

A B

FIGURE 2

(A) We implement sentiment control which learns to generate texts corresponding to sentiments given bipolar sentiment types. (B) Cross-modal 
interaction makes the aligned video and text features point to the same content.

https://doi.org/10.3389/fpsyg.2023.1124369
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Xiong et al. 10.3389/fpsyg.2023.1124369

Frontiers in Psychology 04 frontiersin.org

captions by sampling the scene graph obtained from the image by 
multiple subgraphs, and then the subgraphs are used to generate 
captions. Fang et al. (2020) use an encoder-decoder approach to model 
specific generic captioning individually without using commonsense 
correlation, which lacks commonsense interactivity. Yu et al. (2021) 
work by generating commonsense descriptions in videos from semantic-
level and word-level reasoning. It adds commonsense relevance to the 
model but focuses on the interaction between text and text and ignores 
the interaction between video and text. Different from these works, 
we use a class-dependent cross-modal network and sentimental features 
to facilitate the generation of commonsense video captions. Specifically, 
we first improved the memory network module to record the cross-
modal alignment relationship between video and text rather than simply 
recording the relationship between text. Secondly, our query and 
response processes are class related. Cross-modal learning is only 
performed on the shared matrix with the same label, not in all matrices. 
Finally, we  introduce the sentimental features of video ignored by 
previous studies and fuse them with appearance, motion, and audio 
features to help the model better understand the video content. 
Compared with other studies, we  consider the interaction between 
different modalities, the effect of video type on the results, and the 
influence of sentimental features. So, our model can generate more 
accurate descriptions of commonsense.

3. Class-dependent and cross-modal 
memory network considering 
sentimental features

This section describes the architecture and design of our proposed 
CCMN-SEN. It records the alignment between video features and text, 
allowing cross-modal interactions and generation to take place on cross-
modal matrices that share the same labels, facilitates cross-modal 
interactions, and leverages sentiment to facilitate commonsense 
captioning generation. As illustrated in Figure 3, our CCMN-SEN is an 
encoder-decoder architecture that includes a video encoder, a class-
dependent cross-modal memory network, a caption decoder, and three 

commonsense decoders. Given a video input, there are four pre-trained 
models to extract multiple features, including audio features (1D), 
appearance features (2D), motion features (3D), and SENtiment features 
(SD). Then the features are sent to a class-dependent cross-modal 
memory network module (CCMN) to measure the similarity between 
their feature representation. The cross-modal model memory vector 
under the same label as the video selects the top vector with the highest 
similarity to interact with the feature representation, obtain memory 
responses, and apply a linear layer to integrate video features and 
memory responses. Secondly, the multi-modal fusion method combines 
the extracted features into multi-modal features. Input the ground truth 
captions into the caption decoder to obtain the caption encoding. The 
commonsense decoder then uses multi-modal features and caption 
encoding as input to generate the commonsense description. Finally, 
we send the text features to the class-dependent cross-modal memory 
network to obtain memory responses. It is worth noting that our 
sentiment features make generating sentiment words that match easier.

Consider a video V consisting of what is described in sentence 
S. Our framework can be  used for generating commonsense 
descriptions C in the setting. In the setting (Completion task), we use 
ground-truth captions to guide the generation of commonsense 
captions. This task can be seen as a complement to captions. The setting 
can be formulated as:

 
C f V Scom = ( ),

 
(1)

where V is the video and S is the ground truth caption.
The following subsections detail and discuss our contributions, 

which primarily focus on the design of class-dependent cross-modal 
memory networks.

3.1. Encoder

Given a video, we use pre-trained models, including ResNet152 (He 
et al., 2016), SoundNet (Aytar et al., 2016), I3D (Carreira and Zisserman, 

FIGURE 3

The overall architecture of our proposed CCMN-SEN includes a video encoder, a cross-modal memory network, a caption decoder, and three common 
sense decoders. Video and text features can be recorded in the memory network to form a mapping between video and text.
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2017), and Bert (Devlin et al., 2018), to extract appearance features, 
audio features, motion features, and sentiment features, respectively. 
We use feature-level fusion to fuse the information extracted from each 
modality, which avoids scaling and normalizing features because fusion 
involves concatenation and no overlapping, merging, or combining. As 
shown in Figure 3, we feed the features to the cross-modal memory 
network to obtain memory responses, use LSTM (Hochreiter and 
Schmidhuber, 1997) to encode different features separately, and utilize 
the last hidden state of the LSTM as the final representation. Finally, 
we concatenate multi-modal features by adding customized positional 
and segment encodings to the final representation. Take the appearance 
features, the concatenating process can then be formulated as:

 
E LSTM V SE PED D D D2 2 2 2= ( ) + +

 
(2)

where E D2  is the encoded appearance feature, and V D2  is the 
appearance feature. The SE D2  is 2D segment encoding, and PE D2  
means 2D positional encoding. Similarly, we can obtain the encoded 
audio feature, encoded motion feature, and encoded sentiment feature. 
Then we  can concatenate them to get multi-modal features using a 
multi-modal fusion method.

3.2. Decoder

The video encoding is fed into two transformer language decoder 
networks (a robust architecture that achieves state-of-the-art on many 
tasks). Our commonsense decoder network uses multi-commonsense 
learning similar to Yu et  al. (2021) to improve each commonsense 
semantics’ advanced reasoning ability. Our model predicts the current 
event directly from the video and then generates the commonsense 
captions to go with it. The caption decoder uses video encoding and 
ground truth caption as input to generate caption encodings. In contrast, 
the commonsense decoder uses the video and caption encodings to 
generate commonsense descriptions. The memorized responses of 

caption and commonsense features are functionalized as inputs to the 
decoder networks to improve the generation process.

3.3. Sentimental dimension

Video provides humans with an emerging channel to express 
sentiments, which play a crucial role in human life. These sentiments 
can be defined as complex psychological states such as anger, disgust, 
amusement, awe, etc. Sentiments can be positive or negative, and they 
belong to different sentiment categories (positive or negative). In this 
paper, we introduce Sentiment Dimension (SD) in the preprocessing 
stage, aiming to help create commonsense descriptions. The SD 
represents the SEN in our proposed model. Specifically, we use the 
pre-trained model Bert to get each video’s sentiment category (positive 
or negative) and then convert the sentiment category into a 
768-dimensional sentiment representation. The resulting representation 
is used as the source input for all subsequent modules.

3.4. Class-dependent cross-modal memory 
networks

There could be correlations between different modalities of video 
and text for the video-to-commonsense captioning task. These 
associations can be  an excellent reference to aid in the generation 
process. It is also possible to record the alignment of cross-modal 
representations such as video and text. At the same time, there may 
be noise in the interaction between different types of video and text, and 
it can be more accurate only to allow interaction between the same type 
of video and text. To take advantage of this relationship, we use CCMN 
to improve the mapping relationship, make cross-modal video and text 
interaction more effortless, and make commonsense caption 
generation easier.

As shown in Figure 4, given a source sequence x x xD D
S
D

1
1

2
1 1
, , ,{ }  

from the audio feature, we feed it to this module to obtain the memory 

FIGURE 4

Our cross-modal memory network records video features and text features, and the yellow and purple dashed boxes show the process of memory query 
and response, respectively.
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responses of the audio features r r rx x xD D
S
D

1

1

2

1 1, , ,{ } . Similarly, we can 
obtain the memory responses from the appearance, motion, and 
sentiment features. Given a generated caption sequence 
y y yCAP CAP

t
CAP

1 2 1
, , , −{ } , it is also fed to the cross-modal memory 

networks to output the memory responses of the textual features 
r r ry y yCAP CAP

t
CAP

1 2 1
, , ,

−{ } . We also can obtain the textual responses from the 
commonsense description. The cross-modal memory network uses the 
matrix to store the information from the encoding and decoding 
processes. Each row of the matrix records certain cross-modal 
information connecting videos and texts. We  denote the matrix as 
M m m m mi= { }1 2, , , , ,   , where   represents the number of 
memory vectors, and mi d∈  indicates the memory vector at row i  
with d  referring to its dimension.

Instead of randomly initializing matrices, as in previous studies, which 
may hinder subsequent matrix learning, we  utilize prior information. 
Specifically, for the same type of video, we utilize pre-trained models to 
extract video and text features separately and combine them, then employ 
K-Means to cluster each feature set into Np clusters and use the mean of 
the features in each cluster as the initial value in the matrix. CCMN 
operates with two main steps during the report generation process, namely 
querying and responding, which are described in detail below.

3.4.1. Memory querying
Our cross-modal matrix query first measures the similarity between 

its feature representation and the cross-modal model memory vector 
under the same label as the video and selects the top vector with the 
highest similarity to interact with the feature representation. We apply 
multi-thread querying to perform this operation, wherein each thread 
of the querying process follows the same procedure. We  linearly 
transform each memory vector in M and the input features to ensure the 
input video and text features are in the same representation space. 
Taking audio features and caption text features as examples, the linear 
transform process is formalized as:

 ⋅=i i kk m W  (3)

 
= ⋅1 1D D

s s qq x W
 

(4)

 
= ⋅CAP CAP

t t qq y W
 

(5)

where Wk  and Wq  are trainable weights for the conversion. Then 
according to the distance of video features and text features, the most 
relevant memory vectors are extracted respectively:

 
=

⋅1
1

i

D
sD i

s
q k

A
d



 
(6)

 
=

⋅
i

CAP
tCAP i

t
q k

A
d



 
(7)

where the number of extracted memory vectors can be controlled 
by a hyper-parameter   to regularize how much memory is used. 

We only select the most similar vector to respond to the query vector. 
We denote the queried memory vectors as k k k ks s s sj1 2

, , , , , 

{ }  and 
k k k kt t t tj1 2
, , , , , 

{ } . Afterward, the importance weight of each 
memory vector concerning audio and caption text features is obtained 
by normalization over all distances by:

 

( )
( )

exp

exp
=

=
∑

1
1

1
1

i

i

j

D
sD

s D
sj

A
W

A

 

(8)

 

( )
( )

exp

exp
=

=
∑ 1

i

i

j

CAP
tCAP

t CAP
tj

A
W

A

 

(9)

3.4.2. Memory responding
The responding process is also conducted in a multi-thread manner 

corresponding to the query process. For each thread, we first perform a 
linear transformation on the queried memory vector via:

 ⋅=i i vv m W  (10)

where Wv  is the trainable weight for mi . So that all memory vectors 
ν ν ν νs s s sj1 2
, , , , , 

{ }  are transferred into ν ν ν νt t t tj1 2
, , , , , 

{ } . 
Then, we  obtain the memory responses for audio and caption text 
features by weighting over the transferred memory vectors:

 =
= ∑1 1

1
is i

D D
sx s

i
r Wí



 
(11)

 =
= ∑ 1

1
it i

CAP D
ty t

i
r Wí



 
(12)

where 1
i

D
sW  and 1

i

D
tW  are the weights obtained from memory 

querying. Like memory querying, we apply memory responding to all 
the threads to obtain responses from different memory 
representation subspaces.

Considering possible noise responses, we first concatenate single-
modal features with their associated responses. A linear layer is then 
applied to fuse unimodal features and cross-modal vectors. This research 
makes it possible to focus on essential differences and filter out noisy 
signals. The process is defined as:

 
G FC Concat x rs s xs= ( )( ),

 
(13)

 
G FC Concat y rt t yt= ( )( ),

 
(14)

where FC denotes the fully connected layer, and Concat  is the 
concatenating function.
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4. Experiments

4.1. Datasets and evaluation

We evaluate our proposed CCMN-SEN and compare it to other 
methods on the Hybrid Network (HybridNet; Yu et  al., 2021) 
benchmark, a representative video-based commonsense captioning 
dataset (Fang et al., 2020) containing 121,618 captions for 9,721 video 
scenes. The dataset is divided into two parts: a training set with 6,819 
videos and 85,100 captions and a test set with 2,903 videos and 36,518 
captions. We  follow this data partitioning in all experiments. 
We  measure the performance of our proposed model by Meteor 
(Banerjee and Lavie, 2005), Rouge (Lin, 2004), CIDEr (Vedantam et al., 
2015), and BLEU (n = 1–4; Papineni et  al., 2002) for two sub-tasks 
according to the experimental settings in previous studies (Venugopalan 
et al., 2015; Gao et al., 2017; Zhou et al., 2018; Fang et al., 2020; Yu 
et al., 2021).

4.2. Implementation details

We use a single server with an NVIDIA TITAN RTX 2080Ti card 
for all experiments. We implement our model through the PyTorch deep 
learning framework and Python 3.6. We use Nvidia CUDA 11.0 and 
cudnn8.0 for acceleration. Our decoder is a lightweight transformer 
decoder consisting of 6 transformer blocks, each with eight attention 
heads, to ensure consistency with the experimental setup of previous 
work. During training, we set the batch size of one GPU to 16 and used 
the Adam (Kingma and Ba, 2014) optimizer with a warm-up of 5,000 
steps. When initializing the memory matrix, ResNet152 (He et al., 2016) 
extracts 2048-dimensional appearance features, SoundNet (Aytar et al., 
2016) and I3D (Carreira and Zisserman, 2017) extract 1,024-dimensional 

audio features and motion features, respectively, and finally, Bert (Devlin 
et al., 2018) extracts 768-dimensional sentimental features and extracts 
768-dimensional text features. During the test, we  tried different 
parameters and chose the best one. The number of K-Means clusters 
NP  is set to 20, too many K-means clusters will make the memory 

vectors too similar, resulting in a performance degradation; On the 
contrary, if the number is set too little, it cannot guarantee enough 
memory vectors. The video type has 20 categories, and the number of 
memory vectors for each category to 20, so for the memory matrix in 
CCMN, the number of its memory vectors is set to 20 20 400× = , and 
the dimension is set to 512. We only select 15 most similar vectors for 
memory response. Selecting too many memory vectors for memory 
response may introduce noise, while too few may be unable to learn 
relevant information.

4.3. Results and comparisons

Table 1 shows our experimental results on the V2C dataset, which 
we  compared to other state-of-the-art methods to demonstrate the 
superiority of our model. Previous research has only used memory 
modules on the decoder and cannot remember features across modules. 
However, our CCMN-SEN can align features using a shared memory 
matrix as a medium.

For comparison, we use HybridNet benchmark model results. Our 
CCMN-SEN achieves decent improvements in all evaluation metrics 
compared to other state-of-the-art methods, demonstrating its 
effectiveness and superiority. Regarding attribute performance, our 
CCMN-SEN outperforms HybridNet by 1.1% on BLEU-1. Our model 
improves in all areas, especially the CIDER metric, in the Effect and 
Intention sections. Our CCMN-SEN enhanced by 7.3%, 2.4%, 3%, 
2.9%, 2%, and 2.3% in seven indicators (i.e., CIDER, BLEU 1-4, Meteor, 

TABLE 1 Evaluation of V2C completion task using CIDER, BLEU, Rouge, and Meteor metrics.

Relation Model CIDER BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Attribute S2VT (Venugopalan et al., 2015) – 35.9 – – – – –

Attention-Enc-Dec (Gao et al., 2017) – 38.3 – – – – –

Dense Captioner (Zhou et al., 2018) – 46.0 – – – – –

Video CMS Transformer (Fang et al., 2020) – 47.3 – – – – –

HybridNet (Yu et al., 2021) – 58.7 – – – – –

(ours)CCMN-SEN – 59.8 – – – – –

Effect S2VT (Venugopalan et al., 2015) 28.3 24.9 18.6 16.2 14.3 15.4 22.1

Attention-Enc-Dec (Gao et al., 2017) 29.5 26.5 19.4 18.8 15.1 17.5 23.9

Dense Captioner (Zhou et al., 2018) 36.9 33.7 24.8 21.0 20.2 20.0 29.9

Video CMS Transformer (Fang et al., 2020) 37.3 34.8 25.9 22.5 20.4 20.8 30.6

HybridNet (Yu et al., 2021) 66.2 49.0 42.9 40.3 38.3 30.0 41.5

(ours)CCMN-SEN 73.5 51.4 45.9 43.3 41.7 32.0 43.8

Intention S2VT (Venugopalan et al., 2015) 51.8 48.4 39.9 34.3 26.4 23.3 44.3

Attention-Enc-Dec (Gao et al., 2017) 52.1 51.1 42.6 35.5 28.2 24.3 48.0

Dense Captioner (Zhou et al., 2018) 60.3 59.3 47.0 37.3 31.5 28.0 53.1

Video CMS Transformer (Fang et al., 2020) 62.0 60.8 48.4 39.1 34.1 28.5 54.6

HybridNet (Yu et al., 2021) 92.6 69.4 60.5 55.4 53.1 35.8 60.1

(ours)CCMN-SEN 99.1 71.3 62.7 57.7 55.6 37.3 62.1

We use only BLEU-1 to evaluate the attribute generation since the average length of the ground truth is just <2. The best values are highlighted in bold.
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FIGURE 5

Examples of outputs for the Completion tasks along with the ground truth (GT) caption. The (0)–(2) denote the prediction results of our CCMN-SEN, 
HybridNet and Video2Commonsense, respectively.

TABLE 2 Ablation study of CCMN-SEN model performance on the completion task.

Relation Model CIDER BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Attribute BASE – 58.7 – – – – –

BASE + SEN – 59.0 – – – – –

BASE + CCMN – 59.2 – – – – –

CCMN-SEN – 59.8 – – – – –

Effect BASE 66.2 49.0 42.9 40.3 38.8 30.0 41.5

BASE + SEN 69.2 49.9 44.1 41.5 39.6 31.4 42.5

BASE + CCMN 71.5 51.1 45.3 42.7 41.0 31.8 43.3

CCMN-SEN 73.5 51.4 45.9 43.3 41.7 32.0 43.8

Intention BASE 92.6 69.4 60.5 55.4 53.1 35.8 60.1

BASE + SEN 93.2 69.8 61.2 56.1 54.0 36.1 60.7

BASE + CCMN 95.5 70.8 62.2 57.2 55.1 36.8 61.2

CCMN-SEN 99.1 71.3 62.7 57.7 55.6 37.3 62.1

The best values are highlighted in bold.

and Rouge), respectively; in the Intention section, our CCMN-SEN 
increased by 6.5%, 1.9%, 2.2%, 2.3%, 1.5%, and 2%. Because 
CCMN-SEN and HybridNet both use similar structures and multi-
commonsense learning, we can attribute our improved performance to 
multi-modal interaction and the addition of sentimental factors. 
We introduce sentimental features in a novel way to aid in generating 
commonsense captions, and we can unify cross-modality features by 
aligning features using a shared memory matrix. This improvement 
demonstrates that our CCMN-SEN is a robust baseline model for the 
V2C task.

An example visualization is shown in Figure 5, showing comparative 
results on completed tasks to illustrate the strength of our model. Our 
model can predict more precise intention results in the completion task, 
like “a pet,” compared to other methods. Other approaches deviate from 
the correct expression of intention (e.g., the dog is comforting). As 

we can see, our model can also predict more precise and effective results, 
such as “person X feels good emotions towards the dog.” It is not the 
fuzzy expression without specific sentiment predicted by other methods 
(e.g., gets cat hair all over themselves). The advantage can be attributed 
to our model’s class-dependent cross-modal module and sentimental 
features’ introduction, which better capture interactions between cross-
modalities, capture sentimental information, and generate better 
reports. In contrast, other models tend to ignore sentimental details 
in videos.

4.4. Ablation studies

We conduct a detailed ablation study by examining the effectiveness 
of each proposed component in Table 2. We study the following models:
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 • BASE: We use the HybridNet model as the baseline for comparison, 
i.e., including the memory module but only considering inter-
text interactions.

 • BASE + CCMN: Based on the BASE model, we replace the standard 
memory module with a Class-dependent Cross-modal Memory 
Network module (CCMN), which considers the interaction 
between different modalities.

 • BASE + SEN: Based on the BASE model, we only input sentimental 
features without changing the memory module and explore the 
impact of sentimental features on commonsense learning.

 • CCMN-SEN: Integrates a Class-dependent and Cross-modal 
Memory Network considering SENtimental features (CCMN-SEN) 
model for sentimental control.

4.4.1. Effect of SENtimental features
The introduction of sentimental features increases BLEU-1 by 0.4% 

in terms of intention, 0.9% in effect, and 0.3% in the attribute. At the 
same time, we find that introducing sentimental features achieves better 
results on effect completion. As shown in Figure 5, our model can better 
recognize sentiment, demonstrating the importance of introducing 
sentimental features in the video-based commonsense captioning task.

4.4.2. Effect of Class-dependent Cross-modal 
Memory Network module

We observe that CCMN can significantly improve all completion 
task metrics. For example, compared with the baseline model, the 
advantage of our CCMN can significantly increase the attention by 1.4% 
(69.4% vs. 70.8%), increase the effect by 2.1% (49.0% vs. 51.1%), and 
increase the attribute by 0.5% (58.7% vs. 59.2%) on the BLEU-1 
indicator. This enhancement can be  attributed to the well-learned 
CCMN better capturing the cross-modal information flow and 
embedding the information into the feature learning process. These 
significant improvements demonstrate the feasibility and effectiveness 
of our CCMN on video-based commonsense completion tasks. It is 
worth mentioning that the interaction between the same category of 
video and text will reduce noise. However, when a category always 
appears with other categories, other categories may scatter the matrix of 
related categories.

5. Conclusion

In this paper, we  propose a Class-dependent and Cross-modal 
Memory Network considering SENtimental features (CCMN-SEN) 
framework to improve video-based commonsense caption generation 
by incorporating sentimental features and a class-dependent cross-
modal memory network. Its sentimental features can help the model 
generate texts that match the video’s sentiments in less time. Then, the 
class-dependent cross-modal memory network applies the memory 
network to both the encoder and the decoder simultaneously and stores 

the features of different modalities through a matrix to form a video and 
map between texts, better-aligned features. On the V2C dataset, our 
CCMN-SEN achieves state-of-the-art performance, demonstrating the 
effectiveness and superiority of our model.
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