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Mental workload (MWL) is a concept that is used as a reference for assessing the
mental cost of activities. In recent times, challenges related to user experience
are determining the expected MWL value for a given activity and real-time
adaptation of task complexity level to achieve or maintain desired MWL. As a
consequence, it is important to have at least one task that can reliably predict
the MWL level associated with a given complexity level. In this study, we used
several cognitive tasks tomeet this need, including theN-Back task, the commonly
used reference test in the MWL literature, and the Corsi test. Tasks were adapted
to generate di�erent MWL classes measured via NASA-TLX and Workload Profile
questionnaires. Our first objective was to identify which tasks had themost distinct
MWL classes based on combined statistical methods. Our results indicated that
the Corsi test satisfied our first objective, obtaining three distinct MWL classes
associated with three complexity levels o�ering therefore a reliable model (about
80% accuracy) to predicted MWL classes. Our second objective was to achieve
or maintain the desired MWL, which entailed the use of an algorithm to adapt the
MWL class based on an accurate predictionmodel. Thismodel needed to be based
on an objective and real-time indicator of MWL. For this purpose, we identified
di�erent performance criteria for each task. The classification models obtained
indicated that only the Corsi test would be a good candidate for this aim (more
than 50% accuracy compared to a chance level of 33%) but performanceswere not
su�cient to consider identifying and adapting the MWL class online with su�cient
accuracy during a task. Thus, performance indicators require to be complemented
by other types of measures like physiological ones. Our study also highlights the
limitations of the N-back task in favor of the Corsi test which turned out to be the
best candidate to model and predict the MWL among several cognitive tasks.
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Introduction

Conceptual framework of mental workload

Mental workload (MWL) was first introduced by Bornemann
(1942) aiming at optimizing human-machine systems. Though
several definitions of MWL have been proposed since then, they
all concur that MWL is a multidimensional concept (Hancock
et al., 2021). According to the stress/strain model (Karasek,
1979; Spérandio, 1988; Schlegel, 1993; Raufaste et al., 2004),
MWL includes two components: stress (task demands) and strain
(consequences of stress on the individual). The relevance of this
approach that emphasizes task demands remains evident in the
current international standard on MWL (ISO, 2017), which also
adopts the stress/strainmodel.

Furthermore, MWL is a relative concept considering it depends
on the task’s demands in relation to the amount of resources the
operator is willing or able to allocate and process (Meijman and
O’Hanlon, 1984; DeWaard, 1996). In this context, “able to allocate”
gains salience given that mental resources have a limited capacity.
The Multiple Resource Theory (MRT) proposed byWickens (1984,
1987, 2008) suggests that there exist multiple pools of attentional
resources that reach a threshold when demands exceed the resource
pool. Consequently, working memory, for instance, can only
process a limited amount of information at any given time as argued
by Information Theory (Shannon and Weaver, 1949).

This same principle also informs the Cognitive Load Theory
(CLT; Sweller, 1988) which focuses on how intrinsic (IL-associated
with the learning task itself), extraneous (EL- non-essential load
mostly related to task instructions), and germane (GL-imposed
by the learner’s deliberate use of cognitive strategies for learning)
loads impact the working memory of a learner (Sweller, 1988;
Van Merriënboer and Sweller, 2010; Leppink et al., 2014; Young
et al., 2015, 2021; Orru and Longo, 2019). Sweller (2010) re-
conceptualized CLT by introducing the concept of element
interactivity. Elements refer to the learning content that can be
processed either independently in workingmemory (like a word list
to memorize) or simultaneously (like elements in a mathematical
equation). This determines the interactivity level between the
elements. Germane learning is the extra effort required for learning
(schema construction). However, for GL to be effective, sufficient
working memory must be available. If not, EL can be reduced (such
as by grouping words bymeaning). In contrast, IL remains constant
for a specific level of expertise. Therefore, GL is related to IL, which
depends on the degree of interactivity of the task item, and to EL,
which should not be high to make space for GL.

Mental workload and cognitive load are related concepts since
they have common theoretical frameworks (such as the Memory
model of Atkinson and Shiffrin, 1968; Information Theory,
Shannon and Weaver, 1949) that are reflected through common
measurement types such as performances and questionnaires.
Moreover, some explanative dimensions investigated through
questionnaires appear common between MWL and cognitive
load models (Naismith et al., 2015). Thus, they show similar
challenges when measured. Consequently, our discussion could
also concern cognitive load. Yet, CLT has been developed to bring
the explanatory model to a specific study domain, the learning one.
In our study, we aim to decontextualize from any situation in order

to adapt to multiple contexts. Mental workload, which is derived
from several conceptual models that are not necessarily attached to
an application domain, becomes therefore more appropriate. For
this reason, this study is not on CLT, but on MWL assessment
and prediction.

The conceptual framework of MWL can be considered
as follows (Figure 1): an individual is influenced by internal
(endogenous) and external (exogenous) factors when she/he
performs an activity. The inputs of this activity are then
processed according to these factors, which can have an impact
on performance. Some authors (Hart and Staveland, 1988;
Spérandio, 1988; De Waard, 1996; Young et al., 2015) have already
established a link between task demands, MWL, and performance.
Performance influences an individual’s perception of what she/he
is expected to do, using strategies, effort, and expending resources
to accomplish the task objectives (Hart and Staveland, 1988), and
an individual’s perception has an impact on subjective experience
and physiological consequences (Wickens et al., 2015; Young et al.,
2015). Therefore, we can observe a loop back with internal factors
like subjective experience which can increase or decrease the
motivation of the individual.

If an individual is faced with a situation that increases demands,
she/he activates additional mental resources, which will result in
higher levels of MWL (Dimitrakopoulos et al., 2017). Thereby the
individual is able to shift from a given MWL level to a higher
level. Several authors (De Waard, 1996; Martin, 2013; Young
et al., 2015) have proposed three MWL levels. First, the mental
underload, which according to Young et al. (2015), is an excessive
stimulation leading to underload as resources are either allocated
elsewhere or reduced by underuse. Second, an intermediate MWL
is considered a “comfort zone” where performance is optimal
(Dehais et al., 2020). Third, mental overload when the individual
faces more stimuli than she/he can handle while preserving her/his
own performance standards (Young et al., 2015).

Based on the definition proposed by Longo et al. (2022), which
has emerged from hundreds of definitions, we considered mental
workload as “the degree of activation of a finite pool of resources,
limited in capacity, while cognitively processing a primary task over
time, mediated by external dynamic environmental and situational
factors, as well as affected by definite internal characteristics of a
human operator, for coping with static task demands, by devoted
effort and attention.” Therefore, for the purposes of this study, we
adopted this MWL definition.

Application areas of mental workload

Due to its features, MWL is an indicator of the mental cost
related to an activity. Consequently, it is often measured during the
activity and/or after the activity. In recent times, MWL is mostly
considered through operational situations such as automotive
contexts (Milleville-Pennel and Charron, 2015; Foy and Chapman,
2018; Figalová et al., 2022) or aeronautic contexts like air traffic
control (Averty et al., 2004; Mélan and Cascino, 2014; Li et al.,
2022). Thus, MWL is usually measured as a consequence of the
activity without any a priori certainty of the MWL value in which
the person is when performing the task. However, in some clinical
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FIGURE 1

Conceptual framework of the mental workload factors.

FIGURE 2

New possible use of the MWL concept in emerging applications such as medical remediation or Virtual Reality: (A) Online adjustment of task
complexity to maintain optimized MWL or (B) assessment of the impact of a certain MWL level on di�erent variables (such as stress or presence).

or research contexts, it would useful to be able to predict the
MWL level before the activity. For example, in rehabilitation,
technologies like Brain Computer Interface (BCI) allow following
the cerebral activity during the achievement of cognitive tasks
(Curran and Stokes, 2003; Carelli et al., 2017). In this case, the
complexity level of the activity needs to be adapted to ensure the
MWL is suitable for effective medical care. Thus, it is necessary
to start with a known task in order to induce a certain MWL
level, then, monitor the MWL level during the activity to adjust
the characteristics of the task and keep the desired MWL level
(Figure 2A).

In the research context, it also appears useful to maintain a
certain MWL during an activity to measure its impact on different
variables (such as stress or presence in Virtual Reality; Figure 2B).
To achieve this, we need to identify MWL evolution, applying
relatively close transitions between MWL levels. Thus, we aim

to identify “sliding” levels of MWL. Moreover, MWL should be
in the intermediate range as required for many contexts (like in
Figure 2). Rehabilitation in a clinical domain is a concrete example
since we do not try to underload or overload patients. On the
contrary, we aim at intermediate levels of MWL so that patients
can be engaged with positive feelings in the rehabilitation process.
Nevertheless, such applications are not yet available since no task
is identified to obtain distinct and closed MWL level intervals with
certainty. Then, making these level classes of MWL become directly
predictable from the complexity level could be a challenge while
taking into account the availability of the real-time indicator. Thus,
this study aims to propose several candidate cognitive tasks with
distinct MWL levels that are in the intermediate zone. To identify
the task(s) that best achieve distinct MWL levels, we propose to
take advantage of the richness and complementary of different
statistical methods.

Frontiers in Psychology 03 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1122793
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Louis et al. 10.3389/fpsyg.2023.1122793

Requirements for these mental workload
applications

Several conditions are necessary. At first, we must propose at
least one task with different complexity levels taking into account
that task difficulty is considered separately from task complexity.
Indeed, task difficulty is a perceptual phenomenon while task
complexity is considered an intrinsic property of the task (Longo
et al., 2022). Thus, we will consider task complexity in order to set
up cognitive tasks (CTs).

Secondly, the task should be context-free, that is, it should not
depend on a specific operational situation (like car driving), but it
should reflect the solicitation of the different cognitive functions
more generically for it to be transferable and adaptable to various
contexts. Several authors (Berka et al., 2007; Radüntz, 2017; Guan
et al., 2021) have recommended studying MWL through CTs
since real-life situations can be decomposed into several cognitive
functions. Currently, several studies are mainly based on the N-
back task (NBT) followed by the Sternberg task used to impact
MWL during CTs. But these are two CTs, whose material is a
set of letters of the Latin alphabet to be remembered, solicited
only one type of cognitive function, the verbal working memory.
However, our aim is to have several CTs soliciting several distinct
cognitive functions. Furthermore, NBT and Sternberg are socially
and culturally marked since people who cannot read and write
or people using other alphabets (such as Cyrillic or Chinese
characters) are excluded. Therefore, our goal is to have several CTs,
which are independent of any context and possibly used by the
greatest number of people.

Third, an important question for our study’s purpose deals
with the measure of MWL. There are different methods for
assessing MWL which can be divided into three main categories
(Miller, 2001; Galy et al., 2012; Muñoz-de-Escalona and Cañas,
2019): subjective, performance, and psychophysiological measures.
The most relevant are the subjective category measures as they
are the most valid and sensitive indicators (Hart and Staveland,
1988). Three multidimensional questionnaires are recognized
for measuring MWL. These are the NASA Task Load Index
(NASA-TLX; Hart and Staveland, 1988), the Subjective Workload
Assessment Technique (SWAT; Reid and Nygren, 1988), and the
Workload Profile (WP; Tsang and Velazquez, 1996). According
to Rubio et al. (2004) and Paxion (2014), WP and NASA-TLX
questionnaires are complementary as they compensate for the
limitations of each other, and these questionnaires are based
on different methodological or theoretical approaches. While the
WP is founded on the Multiple Resource Theory (MRT) of
Wickens (1984, 1987, 2008) cited above (Cf. Conceptual framework
of mental workload part), the NASA-TLX is not rooted in a
theoretical model, but in a methodological one. Following some
twenty scientific studies, Hart and Staveland (1988) identified
six factors used to determine the subjective MWL. Therefore,
while one questionnaire (WP) is concerned with the saturation
of the multiple pools of attentional resources, the other (NASA-
TLX) is concerned with external (the first three items) and
internal (the last three items) factors impacting MWL. All these
elements are found in the definition of Longo et al. (2022)
previously quoted.

Fourth, some authors point out that subjective measures can
lead to biases since individuals may no longer remember the
intrinsic details of the activity after performing it or respond in
a way that satisfies assumed expectations (Spérandio, 1988; Cain,
2007). Nevertheless, subjective measures of MWL have a high
diagnosticity criterion (ability to distinguish the source of the load)
that is critical for themultidimensional concept ofMWL (Wierwille
and Eggemeier, 1993). Furthermore, subjective measures fulfill
the validity criterion (the ability of the measure to assess what
must be evaluated). However, subjective data have an important
limitation for our purpose due to their lack of availability in real-
time. Consequently, we also need accessible measurements during
the activity taking into account the performance (such as reaction
time or errors).

Fifth, MWL assessment methods based on performance
analyses (primary performance or secondary performance during
dual-task paradigm) assume that the performance obtained in the
execution of one or more tasks will deteriorate if the demands
expand (Cuvelier, 2012; Mandrick, 2013). Moreover, several MWL
models and definitions establish a link between task demands,
MWL, and performance (Cf. MWL definitions part). Nevertheless,
performance measures might sometimes be limited to describe
MWL given that operators may vary their effort to maintain
a constant performance level (Reid and Nygren, 1988; Raufaste
et al., 2004; Cain, 2007). Also, performance can be affected by
other factors unrelated to workload such as stress or fatigue
(Wickens et al., 2015). Hence, a problem occurs linked to the
validity criterion. Performance measures, although less valid, might
nevertheless be relevant because of the multiplicity of possible
variations (such as completion time, errors, and correct answers),
thus making the occurrence of a high-reliability criterion possible
(capacity to detect modulations of MWL). In addition, among the
MWL measurement criteria, performance satisfies the equipment
criterion (the evaluation measure requires minimal equipment).

The last category of MWLmeasurement is psychophysiological
measures. This term refers to the physiological response to
psychological events. Thesemeasures are a natural type of workload
index since work demands physiological activity (Young et al.,
2015). The main advantages of this type of measure are their
objectivity and the possibility to be gathered in real-time (Cain,
2007). For physiological measures, EEG is one of the most
effective measures of MWL (Zhang et al., 2018). For instance,
the study of Raufi and Longo (2022) demonstrated that EEG
band ratios, specifically the alpha-to-theta and theta-to-alpha ratios
could be treated as MWL indexes for the discrimination of self-
reported MWL. However, for all psychophysiological measures,
Kramer (1991) mentions the required equipment and technical
expertise as disadvantages. Also, the possible occurrence of a noisy
signal from physiological measurements (a weak signal-to-noise
ratio) can lead to undesirable effects. Furthermore, physiological

measures may involve different mental concepts such as stress
(Katmah et al., 2021) or mental fatigue (Tran et al., 2020), and

consequently, physiological data may be difficult to interpret and
have a validity problem.

Therefore, obtaining a good indication of MWL in real-time
will require having tasks with enough performance indicators. This
will ensure a more reliable predictive model of MWL considering
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the richness and diversity of the performance dimensions. Thus, it
couldmaximize the chances of having greater sensitivity, that is, the
ability of the measure to discriminate changes in MWL. As a result,
determining whether we can proceed without psychophysiological
data whose benefit/constraint ratio is negative will become possible.

Finally, the MWL measure via questionnaires leads to huge
variations between people (inter-individual). We can also observe
this variation with a given person from one trial to another one,
despite the same effective feeling (intra-individual). Thus, a good
indicator of this variable must be able to predict, not only one
value of MWL (the most likely for example) but a class of values
that are susceptible to be observed in each condition. Our task
must consequently be able to propose complexity levels inducing
different classes of MWL in the intermediate zone of MWL while
being sufficiently distinct to allow wide but not superposed classes
of MWL values.

Thus, through this study, we aim to answer the following
two questions:

1- Can we identify subjective mental workload classes
corresponding to the complexity levels?

2- Can we predict these mental workload classes based on
complexity levels and/or performance?

Materials and methods

Participants

Fifty-three healthy French-speaking participants, residing in
France and meeting the inclusion criteria (fluent in French,
right-handed, having a normal or corrected-to-normal vision,
and normal or corrected-to-normal hearing), took part in this
online experiment [28 women, 24 men, and 1 non-binary person
corresponding to an “identification with gender identities outside of
male or female categories” (Poirier et al., 2019)]. With an average
age of 28.64 years (SD = 6.89 years), the voluntary participants
were told the real purpose of the experience. Approximately 96.23%
of them (51 people) had at least a bachelor’s level + 2 years of
education including 43.4% with a master’s degree. The rest of
the participants had a bachelor’s level of education. Moreover,
66.26% (33 people) worked for Onepoint company, 9.43% were
from the University of Nantes, and the others were acquaintances
of the experimenters.

Tasks and procedure

To address the challenges of having many participants in a
given time despite the pandemic lockdown, we opted for an online
study. Therefore, instructions for the test were designed for an
optimal remote experiment (such as the need to sit in a quiet room
or to put the phone on mute).

Cognitive tasks
All the tasks were created using Unity3D software

(Version 2019.4.30f1).

Participants undertook five cognitive digitized tasks on
their personal computers. We had selected beforehand popular
cognitive tasks whose structure made it possible to induce several
dimensions. The tasks were (Figure 3): N-back task (NBT), Corsi
block-tapping test, Wisconsin Card Sorting test (WCST), Go/No-
Go (GNG) test, and a Dual task (DT). All participants were
exposed to tasks in random order. The NBT is renowned to have
complexity levels inducing MWL levels in the intermediate zone
of MWL corresponding to low MWL, medium MWL, and high
MWL for respectively 0-back, 1-back, and 2-back levels (Arvaneh
et al., 2015; Dimitrakopoulos et al., 2017; Ries et al., 2018). Thus,
NBT served as a benchmark to calibrate the complexity levels of
the other tasks during pre-tests where we could evaluate several
levels with at least five participants. Performance measures served
as indicators for selecting the three complexity levels. However,
with these measures, we could not obtain comparable indicators
as they were different from task to task and not easily transferable
(Sirevaag et al., 1993; Raufaste et al., 2004). We, therefore, defined
a common performance indicator for all tasks, corresponding to
the percentage of Expected responses. For example, if the participant
responded properly to all her/his questions, the Expected responses
were 100%. Thus, during pre-tests with several complexity levels,
we selected three of them according to their Expected responses.

N-back task

N-back task (NBT) is a verbal memory span test that involves
the refreshment capacity of workingmemory proposed by Kirchner
(1958). The test requires participants to react when a stimulus
(like a letter) is the same as the stimulus presented before it (if
it occurs, it is a target). In our study, the letters were presented
centrally for 500ms each, followed by a 1,500ms interstimulus
interval. Participants were invited to respond by indicating whether
the letter was a target (pressing the left directional key) or a non-
target (pressing the right directional key). Three complexity levels
(0-back; 1-back; 2-back) were proposed with 20 trials (including 6
to 8 target letters) for each level. For the 0-back level, the target was
the letter “X”. For the 1-back and 2-back levels, the target was the
letter presented immediately or two letters before the current one.
Finally, performance measures had six dimensions: No answers,
False alarms (pressing on the target key when a non-target letter
was displayed), Omissions (not pressing on the target key when it
was a target letter), Reaction time for all items, Reaction time for
correct answers, and Expected responses.

Corsi block-tapping test

Block-tapping task or Corsi test (Corsi, 1972) is a visual-
spatial memory span task that consists in remembering a sequence
of cubes and reproducing the sequence in the same order. The
material was the same as in the study by Kessels et al. (2000). Three
complexity levels (3 cubes, 5 cubes, and 7 cubes) were proposed
with two sequences each. As such, the maximum number of items
varied from one level to another. In this case, each performance
data was expressed as a percentage (divided by the maximum
possible number) aiming to compare the different complexity
levels. Finally, performance measures had seven dimensions:
Pointed cubes, Correct cubes, False cubes, Omissions, (not pressing
a cube), Exact sequences (number of cubes pointed in the expected
order and position), Total time, and Expected responses.
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FIGURE 3

Experimental design of the study where participants were randomly assigned tasks.

Go/No-Go

The Go/No-Go task (GNG) is a mental inhibition of the motor
response task. For our study, we based it on the GNG version of
Vidal et al. (2012). The stimuli were presented in a randomized
manner and consisted of black disks and black squares on a white
background. A shape appeared either full or empty. In the first
level, when the shape was empty, individuals had to click on the
ENTER key of the keyboard with their right hand (Go target).
Conversely, when the letter X appeared randomly on the shapes,
individuals had to inhibit theirmotor response. The Xwas therefore
a No-Go target. Three complexity levels were proposed. A simple
level (with 90% of No-Go = X), an intermediate level (with 50%
of No-Go = “X” in disk), and a difficult level (with 20% of No-
Go = “X” in squares preceded by empty disks). Each level had 10
items presented for 200ms followed by a fixation point of 500ms.
Performance measures had five dimensions: False alarms (pressing

the key when a No-Go target was displayed), Omissions (not
pressing the key when it was a Go target), Reaction time for correct
answers, Total time, and Expected responses. Also, False alarms and
Omissionswere expressed as a percentage (divided by themaximum
possible number) to compare the different complexity levels. The
maximum number of items varied from one level to another. For
example, in 10 items, level 1 could express a maximum of 9 False
alarms (since this level had 9 No-Go), level 2 could express a
maximum of 5 False alarms (since this level had 5 No-Go) and
level 3 could express maximum 2 False alarms (since this level had
2 No-Go).

Wisconsin card sorting test

The WCST (Heaton, 1981) is a card-sorting task during which
the participant must follow a classification rule and adapt to
various rule changes. Therefore, this task enables the involvement
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of mental flexibility, which represents the ability to shift between
tasks (Miyake et al., 2000). For the present study, we were guided
by the French version validated by Godefroy and GREFEX (2008)
dealing with the Modified Card Sorting Test (Nelson, 1976). The
top of the computer screen displayed four target cards (one with
a red triangle, one with two green stars, one with three yellow
crosses, and one with four blue circles). At the bottom of the screen,
there was a stack of several cards named response cards which were
scrolled every 2,000ms. In this stack, the shapes could be a circle,
cross, star, or square, the numbers could be 1, 2, 3, or 4, and the
colors yellow, red, green, or blue. Three complexity levels were
proposed: Level 1—sorting by general dimensions (type of figure,
color of the figure, or the number of figures). Participants had to
focus on a single dimension to sort the cards. Level 2—sorting
by alternating dimensions. Participants had to alternate between
two distinct dimensions (for example color and number of figures)
on each trial. Level 3—sorting by complex alternating dimensions.
Participants had to alternate between the three dimensions in each
trial. The performance measures had six dimensions: Number of
errors, Perseverative errors (when the incorrect answer matched the
category used by the person for his/her previous answer), Reaction
time for all items, Reaction time for perseverative errors, Total time,
and Expected responses.

Dual task

This task was partly based on the previously mentioned
Corsi test. But the Corsi part of this Dual task still had three
cubes to be memorized. In parallel, a mental calculation task
was added to disturb the memorization process. Consequently,
this task was inserted between the pointing of the cubes by the
experimenter (thus the beginning of the memorization) and the
restitution of the pointing by the participants. The calculation
task was chosen since we needed a Dual task with visual-spatial
memory and verbal memory. For this last task, it was necessary to
have a fast and adjustable test at the complexity level. Therefore,
we used a calculation task based on So et al. (2017) study,
with four clickable choices of possible answers. Three complexity
levels were proposed with two sequences each. A simple level
with single-digit addition, an intermediate level with double-digit
subtraction, and a difficult level with mixed arithmetic operations
including multiplication and subtraction. Finally, performance
measures offered nine dimensions, including the same performance
dimensions as the Corsi test in addition to mental calculation
performance corresponding to Correct answers and Calculation
total time.

Questionnaires
As mentioned in the introduction, as NASA-TLX and WP

questionnaires are multidimensional and complementary, they
were used in the present study.

NASA-TLX questionnaire

The NASA-TLX (Hart and Staveland, 1988) rates perceive
workload on six different sub-scales: three dimensions associated
with the activity (mental demands, physical demands, time
pressure), two dimensions associated with the strategies
(performance, effort), and one dimension specific to the individual’s

emotional state (frustration). After each task level, the participant
must score each dimension from 0 (no demand) to 100 (maximum
demand). In our study, we considered each dimension of the
NASA-TLX questionnaire and its overall score. For the last one,
we used the unweighted version of the questionnaire by averaging
the six dimensions to calculate a Raw Task Load Index (RTLX).
This method was validated by Byers et al. (1989). Thirty years
later, Cegarra and Morgado (2009) demonstrated that the French
version showed a strong correlation between the weighted score
(TLX) and the unweighted score (RTLX).

Workload profile questionnaire

The WP questionnaire (Tsang and Velazquez, 1996) was based
on the Multiple Resource Theory (MRT) of Wickens (1984, 1987)
and asked the participants to provide the proportion of attentional
resources used after they had experienced the tasks. Thus, the
workload dimensions used in this technique were defined by the
resource dimensions hypothesized in the MRT: Perceptual central
processing, Response selection and execution, Spatial processing,
Verbal processing, Visual processing, Auditory processing, Manual
output, and Speech output (Rubio et al., 2004). For each task, the
participant had to provide a number between 0 (no demand) and
100 (maximum demand) representing the proportion of attentional
resources used in each of the eight workload dimensions.

Since there were no solving, selection, or auditory and speech
tasks in our study, only four of the eight dimensions were analyzed.
Indeed, referring to the main article of the questionnaire (Tsang
and Velazquez, 1996, p. 362), this one can only be rated in a one-
dimensional way. Thus, for our study, we considered the Spatial
processing scale (WP3), Verbal processing (WP4), Visual processing
(WP5), andManual output (WP7).

Experimental procedure
Each participant was clearly informed about the objectives

and the course of the study before signing the consent letter to
participate in the online study. This experiment adopted a 5 × 3
within-subject design with 5 task types and 3 complexity levels in
tasks. The experimental phase proceeded as follows:

- Presentation of a summary of the study by email or through
professional social networks.

- When the person showed interest, the experimenter sent her/him
a link with a personal password.

- Therefore, the participant was connected to the online
experimental session once the password was entered, and an
electronic signature on the consent letter was requested before
the pre-test questionnaire (questions about age, gender, and level
of education).

- Once these phases were completed, they performed the CTs
in two 1-h sessions. All tasks included instructions on how to
undertake the tasks (in the form of text, images, and videos)
followed by a training session to become familiar with the
presentation of the stimuli and the required interactions. The
total duration of one task was about 15–20min.

- After each task level, an electronic version of the NASA-TLX and
WP questionnaires was delivered.
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All participants were exposed to tasks and complexity levels in
random order. At the end of the study, all participants received 15
euros in vouchers.

Data analysis
To answer the two research questions, the following research

hypotheses were defined.
Concerning the question “Can we identify subjective MWL

classes corresponding to the complexity levels?”
H1: If the complexity levels lead to distinct MWL classes, then

the means for each complexity level will be different and the MWL
data will probably be spontaneously grouped according to their
proximity into MWL value classes, and these classes will potentially
be correlated to those obtained via the complexity levels.

→ First, for all subjective measures (NASA-TLX and WP
questionnaires), we normalized these data through the correction
proposed by Cousineau (Morey, 2008). This normalization
was based on within-subjects confidence intervals which were
recommended for subjective data like those from questionnaires.
Cousineau’s method could be described as follows. Let yij be the ith
participant’s score in the jth condition (i = 1, ..., N; j = 1, . . . , M).
Then, the normalized observations zijwere defined as follows:

zij = yij −
1

N

M∑

j=1

yij +
1

NM

N∑

i=1

M∑

j=1

yij

In our case, we subtracted the mean of all conditions (the
five tasks) and added the mean of every participant in all
experimental conditions.

→ Then, we carried out ANOVAs to compare the MWL class
averages in relation to the complexity levels. For each specific
analysis, the characteristics of the ANOVAs will be specified in the
result section.

→ Subsequently, we performed K-means classification to
identify the “spontaneous” MWL classes obtained with our
protocol. We believed comparing MWL averages through a
grouping based on the complexity levels could artificially suggest
the presence of different MWL averages by hiding the overlapping
of classes. We, therefore, used another method to observe the
groupings of MWL values, not based on the complexity level
but on the proximity between the observed values. The classes
obtained were then compared to those observed by considering the
complexity levels.

Therefore, the other step in analyzing our results was to
investigate if we could obtain three MWL classes without
considering the complexity level. For this purpose, we used the
K-means technique to perform clustering. Existing studies (Al-
Mohair et al., 2015; Shaheen et al., 2020) employing clustering
referred to K-means as a simple, reliable, and robust technique for
clustering. K-means clustering divided the data into K sets. The
number of possible sets depended on the nature of the data or the
plausible possibility of the number of sets that a data could offer.

→ For all CTs, we kept the whole set of dimensions of the
NASA-TLX, since this questionnaire must be considered in its
entirety (Hart and Staveland, 1988) unlike the WP questionnaire.

Indeed, referring to the main article of this questionnaire (Tsang
and Velazquez, 1996, p. 362), WP is specified to be rated in a one-
dimensional way. Therefore, for each CT and before the clustering
step, we identified the dimensions of the most relevant WP
depending on the logic of the task, that is, the cognitive demands
it generated. We also considered the results of the previous analysis
(ANOVAs) showing the most affected WP dimension by each task.
It is worth noting that in this study, we specifically selected the
dimensions of the WP questionnaire that we deemed relevant for
examination. However, with this protocol, we did not measure
all the resources spent (8 dimensions in total). Consequently,
WP results were limited to the presented tasks and could not be
generalized across other tasks.

→ Finally, we calculated the correlation between MWL classes
obtained from the K-means with the classes obtained via the
complexity levels.

Concerning the question “Can we predict these MWL classes
based on complexity levels and/or performance?”

H2: If the performancemeasures are rich and diversified, then it
will be likely to find a model which will correctly classify the MWL
according to the complexity levels and/or performance.

For this research question, we wanted to predict belongingness
to a class of MWL values. For this purpose, a supervised
classification (specific to each CT) was used to classify observations
in different categories of the dependent variables, aimed at
identifying whether an individual stayed in an MWL class or
changed MWL class over time.

→ It is interesting to note that the variable to be predicted
(subjective MWL) corresponded to the classes established by K-
means. For each analysis, we first considered complexity level as a
variable for the model, followed by the comparison of the model
precision with the one obtained when the complexity level was
removed from the model and only performance was considered by
the model.

→ Concerning the supervised classification technique, we
selected Linear Discriminant Analysis (LDA). Besides its low
computational cost (compared to the Support Vector Machine—
SVM for instance), the LDA has been used in the domain of
cognitive tasks (Abibullaev and An, 2012; Yoo et al., 2020).
Moreover, the hyperplane of LDA used to separate different classes
allowed us to identify the features that maximize the between-class
variances, while minimizing the within-class variance (Mohanavelu
et al., 2022). This was one of the aims of our study.

The LDA model in this study calculated the balanced accuracy
for our case of multiclass analysis (ratio of true positives to total
positives). We then considered the cross-validation score obtained
with complexity levels and performance combinations and the
one obtained with only performance combinations. The details of
performance measures for each task were described in the methods
section. Concerning the selection of MWL variables, we used the
best selection for each task based on previous results (ANOVAs,
K-means, and correlation coefficient between MWL classes with
K-means and MWL classes with complexity levels).

→We then calculated the importance of the different variables
for the model. For this, we used the Permutation Feature
Importance (PFI) method. PFI is defined as the decrease of the
model score when the value of a predictor variable is randomly
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FIGURE 4

Diagram with all the steps of data analysis for the two research hypotheses.

shuffled. PFI permutes the features at each round, then removes
a feature from the list and associates the increase in error as the
rank to the feature previously removed. Unfortunately, PFI showed
a significant inconvenience as it did not indicate howmany features
to use but only the most highly ranked (Bel, 2020).

Finally, to have an overall view of our analysis procedure, we
proposed a diagram (Figure 4) with all the steps of data analysis for
the two research hypotheses.

Results

We started the analysis of our results by making sure that the
complexity levels of our five CTs generated three distinct levels
of performance.

Complexity level and performance

To compare the performances between tasks, we established
a performance criterion common to all five CTs, the Expected
responses (Cf. Cognitive tasks part). Moreover, some distributions
of our data were not normal, and variances were not homogeneous.
For this reason, we used non-parametric statistics with the
JASP software (version JASP 0.16). A non-parametric Repeated-
Measures ANOVA (with the Friedman test) was performed (with
complexity level as the independent variable and performance as
a dependent variable) followed by Wilcoxon signed-rank tests and
Conover’s post hoc comparisons.

Concerning Expected responses (Figure 5), we could observe
a main effect of complexity level independently of the tasks

(Supplementary Table 1A; X2(2) = 145.255; p < 0.001). Levels 1
and 2 were significantly different (Supplementary Table 1B; T(740)

= 2.887; p = 0.004), as well as levels 2 and 3 [T(740) = 2.592; p =

0.010]. Complexity level 1 was the least complex level and level 3
proved to be the most complex.

Moreover, considered task by task, all complexity levels were
significantly different (Supplementary Table 1C) except levels 2 and
3 of GNG (W = 561.000; p = 0.086) and DT (W = 460.000; p =

0.102). Consequently, the three complexity levels generated three
distinct levels of Expected responses for NBT, Corsi, and WCST.
However, levels 2 and 3 did not show a significant difference when
using GNG and DT.

Correspondence between MWL classes and
complexity levels

For this part, non-parametric statistics with the JASP software
(version JASP 0.16) were used.

A non-parametric Repeated-Measures ANOVA (with the
Friedman test) was performed with complexity levels as the
independent variable and subjective measures (NASA-TLX and
WP) as the dependent variable. Then, Wilcoxon signed-rank tests
and Conover’s post hoc comparisons were used.

NASA-TLX questionnaire

Concerning the overall NASA-TLX score (corresponding
to the sum of the six NASA-TLX dimensions, Figure 6),
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FIGURE 5

Performance in terms of Expected responses according to the cognitive tasks and the levels.

a significant main effect of complexity level occurred
(Supplementary Table 2A; [X2(2) = 179,626; p < 0.001].
Independently of the task, all complexity levels were significantly
different (Supplementary Table 2B). Furthermore, considered
task by task, all complexity levels were also significantly different
(Supplementary Table 2C). Hence, the three complexity levels
generated three distinct levels of overall MWL.

Moreover, considered level by level, NBT andGNGdid not turn
out significantly different for the three complexity levels. Besides,
this could also be observed between NBT and DT, and GNG and
DT (Supplementary Table 2D).

Concerning the dimensions score of the NASA-TLX
questionnaire, in Mental demand (Figure 7) a significant main
effect of complexity level occurred [Supplementary Table 3;
X2(2) = 164,416; p < 0.001]. Independently of the task,
all complexity levels were significantly different. Moreover,
considered task by task, all complexity levels were significantly
different except for levels 2 and 3 of WCST (W =

546.000; p = 0.135). Thus, the three complexity levels
generated three distinct levels of Mental demand except
for WCST.

Concerning Physical demand (Figure 7), MWL based on
Physical demand turned out to be the lowest for all the
tasks considered when compared to the other dimensions,
with an average of below 30 in 100 on the Likert scale.
Furthermore, despite a significant main effect of complexity level
[Supplementary Table 3; X2(2)= 14.769; p< 0.001], independently
of the task, the complexity levels were not significantly different.
This could be explained by the effect size—Kendall’s coefficient of

FIGURE 6

Mental workload based on overall NASA-TLX score according to the
type of task and the complexity level.

concordance (Kendall’s W)—used for assessing agreement among
raters. Kendall’s W ranged from 0 (no agreement) to 1 (complete
agreement). Concerning the main effect of the complexity level for
Physical demand, it turned out to be relatively small (W = 0.061).
Moreover, when considered task by task, the three complexity levels
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FIGURE 7

Scores of the 6 dimensions of NASA-TLX depending on the task and complexity level.

were not significantly different. Hence, our three complexity levels
did not generate three distinct levels of Physical demand.

With regard to Temporal demand, a significant main effect of
complexity level occurred [Supplementary Table 3; X2(2)= 49.422;
p < 0.001]. Independently of the task, only levels 1 and 2 [T(740) =

2.008; p= 0.045] were significantly different, as well as levels 1 and
3 [T(740) = 3,286; p = 0.001]. However, considered task by task, all
complexity levels were significantly different except for levels 2 and
3 of GNG (W = 419.000; p = 0.689). Thus, our three complexity
levels generated three distinct levels of Temporal demand except
for GNG.

Concerning Effort, a significant main effect of complexity level
on all tasks occurred [Supplementary Table 3; X2(2) = 143.925; p
< 0.001]. Independently of the task, all levels were significantly
different. Moreover, considered task by task, all complexity levels
were significantly different except for levels 2 and 3 of WCST (W=

518.000; p = 0.081). Hence, the three complexity levels generated
three distinct levels of Effort except for WCST.

Concerning Performance, a significant main effect of
complexity level on all tasks occurred [Supplementary Table 3;
X2(2) = 137.616; p < 0.001]. Independently of the task, all
levels were significantly different. When considered task by

task, all complexity levels were significantly different, even
for levels 2 and 3 of WCST (W = 409.500; p = 0.028). Thus,
the three complexity levels generated three distinct levels
of Performance.

Finally, with regard to Frustration, a significant main effect
of complexity level on all tasks occurred [Supplementary Table 3;
X2(2) = 81.364; p < 0.001]. Independently of the task, all levels
were significantly different except for levels 2 and 3 [T(740) = 1.662;
p= 0.097] and when considered task by task, pairwise comparisons
showed that it only concerned Corsi and DT.

To summarize, three complexity levels generated three distinct
levels of overall MWL. This was the case for the Performance
of all CTs. It also applied to Mental demand and Effort of
all CTs except for WCST. Likewise, three complexity levels
generated three distinct levels of Temporal demand except
for GNG. Concerning Frustration, the results were different
according to the CT and only Corsi and DT induced different
Frustration levels as a function of complexity level. Finally, Physical
demand was the only dimension that was not influenced by
the complexity level whatever the CT and compared to other
dimensions, MWL from Physical demand was the lowest for all the
tasks considered.
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FIGURE 8

Mental workload score of four dimensions of the WP questionnaire (WP3, WP4, WP5, and WP7) depending on the task and complexity level.

WP questionnaire

For this part, we detailed the results of eachWP dimension that
we had previously selected, namely WP3-Spatial processing, WP4-
Verbal processing, WP5-Visual processing, andWP7-Manual output
(Cf.Workload Profile questionnaire part).

Concerning WP5 (Figure 8), we could observe that compared
to the other dimensions, MWL was the highest for nearly all
the tasks considered, with an average of above 30 in 100 on
the Likert scale. Furthermore, despite a significant main effect
of the task [X2(4) = 13.893; p = 0.008], Conover’s post hoc
comparisons between tasks indicated no significant differences
(Supplementary Table 4C). This could be explained by the relatively
small effect size (W = 0.026). Moreover, a significant main effect
of complexity level occurred on all tasks [X2(2) = 43.682; p <

0.001] but only levels 1 and 3 [T(740) = 3.056; p = 0.002] were
significantly different. Finally, when considered task by task, all
complexity levels turned out significantly different only in NBT
and Corsi.

ConcerningWP3 (Figure 8), a significant main effect of the task
occurred [Supplementary Table 4A; X2(4) = 86.422; p < 0.001].
The WP3 for DT and Corsi was significantly greater than for
GNG. Furthermore, WP3 for NBT was significantly lower than
others for all the tasks (except GNG). Moreover, a main effect
of complexity level occurred [Supplementary Table 4A; X2(2) =

27.797; p< 0.001] but only levels 1 and 3 were significantly different
[T(740) = 2.447; p= 0.015]. Considered task by task, all complexity
levels turned out significantly different for Corsi alone.

Concerning WP4, a significant main effect of the task occurred
[Supplementary Table 4; X2(4) = 55.564; p < 0.001]. WP4 of NBT
and WCST generated the highest MWL compared to the other
CTs. Moreover, despite a significant main effect of complexity level
[X2(2) = 13.809; p = 0.001], no level was significantly different
from another, even for levels 1 and 3 [T(740) = 1.699; p = 0.090].
Thus, when considered task by task, all complexity levels were
significantly different for WCST alone.

Concerning WP7, the main effect of the task did not turn
out statistically significant [X2(4) = 5.944; p = 0.203]. Moreover,
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despite a statistically significant main effect of complexity level
[X2(2)= 15.296; p < 0.001], when compared two by two, the levels
did not appear significantly different, even for levels 1 and 3 [T(740)

= 1.809; p= 0.071]. This could be explained by the small effect size
(W = 0.055).

To summarize, WP5 was an important dimension, since
whatever the CT, MWL fromWP5 appeared the highest compared
to the other WP dimensions. This result was coherent with the
logic of the tasks which were carried out on a screen with visual
processing of the information. Moreover, our protocol with three
complexity levels generated three distinct levels of WP5 for NBT
and Corsi. This was the case for both WP3 for Corsi and WP4 for
WCST.WP7 was the only dimension that was not influenced by the
complexity level whatever the CT.

Moreover, for each WP dimension, there were significant
differences between tasks. Concerning WP3, DT and Corsi were
significantly greater than GNG. This result was logical since
these two tasks solicited visuo-spatial memory. With regard to
WP4, NBT and WCST generated the highest MWL compared
to the other CTs. It was logical because these tasks implicitly
led the participant to say mentally or out loud the information
to keep in mind. Finally, WP7 was the only CT without a
main effect of the task, showing consistency since all participants
had similar manual output (interactions limited to keystrokes or
mouse/touchpad movements).

Clustering subjective MWL and verifying
the correlation between subjective classes
and complexity level

For these analyses, we used JASP software (version JASP 0.16).
We used an unsupervised classification method, the K-means

technique with the Hartigan-Wong algorithm, a default parameter
in JASP software. We observed the quality control of the clusters
with three criteria. The first two were the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC)
which were analytical methods for estimating the relevancy of
statistical models to each other for a given data set (the lower
the values the better the clustering results). Also, we added the
Silhouette score that compared the mean intra-cluster distance to
the mean nearest-cluster distance (ranging from −1 to 1, where 1
represented a perfect score). Obtaining several quality criteria was
critical since they could nuance the results.

Variables selection for K-means clustering
The selection of subjective dimensions for each task is

summarized in Table 1.
First, WP5 was selected for all tasks due to its dimension

importance. Whatever the CT, MWL from WP5 turned out the
highest compared to other WP dimensions (Cf. WP questionnaire
in the Results section).

Concerning NBT, the retained WP dimensions were WP4 and
WP5. Indeed, Conover’s post hoc comparisons indicated that MWL
based on WP3 for NBT turned out significantly lower than other

CTs for all the tasks (except GNG). Moreover, NBT presented a set
of letters in the center of the screen without spatial movement of the
stimuli, and the manual interactions were limited to the directional
pad (left and right arrow only) and were not part of the logic of the
task (only verbal working memory).

With regard to Corsi, the retained WP dimensions were WP3,
WP5, and WP7. The Corsi task showed a lower WP4 score than
all the other tasks. Furthermore, the verbal dimension was not
supposed to come into play, given that the task was based on
visual-spatial memory.

For GNG, the retained WP dimensions were WP5 and WP7.
We discarded WP3 as it presented a set of stimuli in the center
of the screen (black disks and black squares) without spatial
movement of these stimuli. We also discarded WP4, given that
GNG appeared significantly lower than NBT and WCST (tasks
involving verbal processing).

Concerning WCST, the retained WP dimensions were WP3,
WP4, andWP5. We discardedWP7 given that manual interactions
were not part of the logic of the task (which implied mostly
mental flexibility).

With regard to DT, the retained WP dimensions were WP3,
WP4, and WP5. The DT solicited visual-spatial memory (WP3)
during the Corsi test and verbal dimension during the calculation
task. We discarded WP7 given that all its levels did not turn out
significantly different (Cf. Supplementary Table 4).

Once the WP dimensions selection step was over, we realized
a K-means clustering of the data with all the selected subjective
variables (Cf. Table 1) to determine the number of proposed
clusters associated with the quality criteria scores. We, therefore,
performed K-means clustering in three ways. The first aimed to
perform the K-means model, optimizing it by the Silhouette score
followed by BIC and AIC values with a limit of 10 clusters (default
setting on JASP software). Then, we compared these scores with
another way of clustering data: fixing K= 3 clusters.

Accordingly, for each selected subjective variable, we obtained 4
× 3 scores with 4 ways of clustering and 3 clustering quality criteria
(Cf. Supplementary Table 5).

First, for the analysis of the results, for each quality—for
instance, the AIC value - we identified among the selected
subjective variables (Cf. Table 1) the one that gave the best AIC
value score (gray cells in Supplementary Figure 5). Then, in a
second step, we identified the selected subjective variables, fixed at
K = 3, which gave the two best AIC values. Green cells and light
blue cells were respectively the best selected subjective variables
(based on AIC) fixed at 3, and the second best. This method allowed
for the selection of the selected subjective variables showing the
best scores for K = 3 compared to the scores obtained in the same
conditions but with an optimized K.

Then, we wanted to determine whether the MWL values
classified in each of the three classes of clustering were obtained
in the conditions believed to induce these MWL classes. Thus, we
examined if a high correlation occurred (ranging from “0”- no
correlation to “100”- best correlation) between the assignment of
MWL data in an MWL class by K-means and the data assignment
according to complexity levels.

Concerning NBT, we compared the reliability of rankings based
on different combinations of selected subjective variables from
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TABLE 1 Selection of dimensions of the WP used by K-means clustering for each task.

WP3-spatial WP4-verbal WP5-visual WP7-manual

N-back task (NBT) X X

Corsi X X X

Go/No-Go (GNG) X X

WCST X X X

Dual task (DT) X X X

complete NASA-TLX, WP4, and WP5. For each variable selection,
the clustering quality criteria for each clustering technique had been
considered beforehand, once optimized by the Silhouette score
followed by the BIC and AIC values. Comparing the AIC values
(the lower the values the better the clustering results) when the
classification was fixed at three clusters or optimized by AIC, the
results ranged from 513.520 (shaded cell in Supplementary Table 5)
to 790.680. Moreover, among the fixed K = 3, the NASA/WP5
selection obtained the lowest AIC score (thus the best score)
with 644.160 (which was relatively close to 513.520, the best
score with AIC optimization). Concerning BIC value (the lower
the values the better the clustering results) with the K = 3
fixed, the NASA/WP5 selection obtained the lowest BIC score
with 708.600 (which was relatively close to 667.610, the best
score with BIC optimization). Concerning the Silhouette score
(ranging from −1 poor clustering to 1 very good clustering)
with the fixed K = 3, the selection NASA/WP4 obtained the
highest Silhouette score (thus the best score) with 0.230 (which
was relatively close to 0.290, the best score with Silhouette
optimization). Therefore, we were able to obtain three classes of
MWL classes with high-quality indicators for the NASA/WP4 and
NASA /WP5 selections.

Concerning the correlation coefficient (Table 2) between MWL
classes with K-means and MWL classes with complexity levels,
we obtained respectively 0.64 and 0.65 for NASA/WP4 and
NASA/WP5 selections.

Concerning Corsi, we compared different selected subjective
variables based on complete NASA-TLX, WP3, WP5, and
WP7. With regard to the AIC value with K = 3 fixed
(Supplementary Table 5), the selection NASA/WP3 obtained the
lowest AIC score with 573.400 (which was relatively close to
457.160, the best score with AIC optimization). For the BIC
value with K = 3 fixed, the selection NASA/WP3 obtained
the lowest BIC score with 637.840 (which was relatively
close to 609.490, the best score with BIC optimization). In
contrast, the Silhouette score with fixed K = 3, the selection
NASA/WP3/WP5 obtained the highest Silhouette score with
0.260 (which was relatively close to 0.340, the best score with
Silhouette optimization). We could also notice that NASA/WP5
selection consistently ranked second while being very close to the
results of NASA/WP3. Therefore, three classes of MWL classes
could be obtained with high-quality indicators for NASA/WP3,
NASA /WP5, and NASA/WP3/WP5 selections. Concerning the
correlation coefficient (Table 2) between MWL classes with K-
means and MWL classes with complexity levels, we obtained

respectively 0.79, 0.82, and 0.80 for NASA/WP3, NASA/WP5, and
NASA/WP3/WP5 selections.

As an example, Figure 9 shows visually the overlap between
the three clusters of subjective MWL (with NASA-TLX/WP5) for
the Corsi test. The results were presented in a PCA (Principal
Component Analysis) space, as the representation in the PCA space
allowed to reduce the number of dimensions of the data (there were
7 dimensions of MWL).

Thus, Figure 9A shows the three MWL classes based on K-
means. Figure 9B shows the same distribution of points (as Part
A) but through complexity level. We could notice that between the
two techniques, there was a good agreement in the positioning of
statistical individuals in the MWL classes. However, there was little
or even no overlapping of points in Part A. Concerning Part B, we
observed some overlaps, particularly at the boundaries adjacent to
level 2.

Concerning GNG, we compared different selected
subjective variables based on complete NASA-TLX, WP5,
and WP7. In the AIC value and BIC value with K = 3 fixed
(Supplementary Table 5), the selection NASA/WP5 obtained
the lowest AIC and BIC scores. In the Silhouette score with
the fixed K = 3, the selection NASA/WP7 obtained the highest
Silhouette score. Regarding the correlation coefficient (Table 2)
between MWL classes with K-means and MWL classes with
complexity levels, we obtained 0.65 for both NASA/WP5 and
NASA/WP7 selections.

With regard to WCST, we compared different selected
subjective variables based on complete NASA-TLX, WP3, WP4,
and WP5. For all clustering quality criteria, NASA/WP5 selection
showed the best scores with K = 3 fixed, closely followed by
NASA/WP3 selection (Supplementary Table 5). Moreover, when
clustering was obtained by the Silhouette score, K-means proposed
K = 3 for these two-variable selections. Therefore, three classes
of MWL classes with high-quality indicators could be obtained
for NASA/WP3 and NASA/WP5. For the correlation coefficient
(Table 2) between MWL classes with K-means and MWL classes
with complexity levels, we obtained respectively 0.50 and 0.51 for
NASA/WP3 and NASA/WP5 selections.

Finally, concerning DT, we compared different selected
subjective variables based on complete NASA-TLX, WP3, WP4,
and WP5. For all clustering quality criteria, NASA/WP5 selection
showed the best scores with K = 3 fixed, closely followed
by NASA/WP3 selection (Supplementary Table 5). Therefore,
without complexity levels, three MWL classes with high-quality
indicators could be obtained for NASA/WP3 and NASA/WP5
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TABLE 2 Correlation coe�cient (Spearman) between MWL classes through K-means and complexity levels.

NBT GNG

Subjective
combination

NASA + WP5 NASA + WP4 NASA + WP5 NASA + WP7

Complexity level 1 2 3 1 2 3 1 2 3 1 2 3

MWL0 37 16 1 25 8 0 20 4 0 20 3 0

MWL1 15 32 26 27 37 20 31 33 13 31 34 14

MWL2 1 5 26 1 8 33 2 16 40 2 16 39

Correlation coefficient 0.65 0.64 0.65 0.65

Corsi

Subjective combination NASA + WP3 NASA + WP5 NASA + WP3 + WP5

Complexity level 1 2 3 1 2 3 1 2 3

MWL0 41 6 0 46 6 0 43 5 0

MWL1 12 43 20 7 44 22 10 45 22

MWL2 0 4 33 0 3 31 0 3 31

Correlation coefficient 0.79 0.82 0.8

WCST DT

Subjective combination NASA + WP3 NASA + WP5 NASA + WP3 NASA + WP5

Complexity level 1 2 3 1 2 3 1 2 3 1 2 3

MWL0 34 6 4 34 6 4 39 2 0 39 1 0

MWL1 17 41 37 17 42 37 13 36 17 14 37 18

MWL2 2 6 12 2 5 12 1 15 36 0 15 35

Correlation coefficient 0.5 0.51 0.75 0.76

FIGURE 9

Three MWL classes (based on K-means) in Principal Component Analysis (PCA) space for the Corsi test. In (A), visualization is independent of
complexity level. In (B), the same distribution of points [as in (A)], but through complexity level.

selections. For the correlation coefficient (Table 2) between MWL
classes with K-means and MWL classes with complexity levels,
we obtained respectively 0.75 and 0.76 for NASA/WP3 and
NASA/WP5 selections.

In conclusion, we could obtain three classes of subjective
MWL for each of the five CTs with high-quality criteria, without
considering complexity levels.When each quality criterion between
tasks was compared, the scores varied relatively little. Regarding

the AIC value, Corsi showed the best score (573.400) and WCST
the worst (705.550). For the BIC value, Corsi showed the best
score (637.840) and WCST the worst (769.990). Concerning the
Silhouette score, GNG showed the best score (0.270), closely
followed by Corsi (0.260), and DT was the worst (0.180). Moreover,
WCST was the only task that proposed natural K = 3 clusters
with Silhouette score optimization for several selected subjective
variables. Hence, for all three clustering quality criteria, Corsi
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appeared systematically in the lead of the CTs and WCST often
appeared in the bottom.

Furthermore, WCST (for all selected subjective variables) was
the CT with the lowest correlation between MWL classes with K-
means and MWL classes with complexity levels (≤0.51), unlike
Corsi and DT which showed the highest correlation (>0.70).

MWL classification based on complexity
levels and performance or performance
only

Procedure
For these analyses, we used the programming language Python

(version Python 3.9.7). We only presented the best result between
the selected subjective variables from previous statistics to avoid
overloading the reading.

With regard to NBT, NASA-TLX/WP4, with balanced accuracy,
our model could determine subjective MWL based on Complexity
level, False alarms, Omissions, and Reaction time for all items with
the best cross-validation score equal to 57.6% (±3.64%). Then,
the importance of the different variables through the PFI (all
performance variables combined) was considered, and the accuracy
score for NASA-TLX/WP4 was calculated (Figure 10). The LDA
model wasmainly based onComplexity level and Expected responses
for the prediction. Without Complexity level, the accuracy of the
model was equal to 36.12% (±2.64%) with five NBT performances:
No answers, Expected responses, False alarms, Omissions, and
Reaction time for all items.

Concerning Corsi, NASA-TLX/WP5, with balanced accuracy,
our model could determine subjective MWL based just on
Complexity level with the best cross-validation score equal to
79.97% (±0.0%). In Figure 10, the LDAmodel for NASA-TLX/WP5
is mainly based on Complexity level for the prediction. Without
Complexity level, the accuracy of the model was equal to 53.28%
(±3.48%) with four Corsi performances: False cubes, Omissions,
Exact sequences, and Total Time.

Concerning GNG, NASA-TLX/WP5, with balanced accuracy,
our model could determine subjective MWL based on Complexity
level, Expected responses, and Omissions with the best cross-
validation score equal to 51.35% (±1.75%). The LDA model
for NASA-TLX/WP5 was based on Complexity level, Expected
responses, and Reaction time for all answers for the prediction
(Figure 10). Without Complexity level, the accuracy of the model
was equal to 47.74% (±1.9%) with three GNG performances:
Reaction time for correct answers, Reaction time for all answers, and
Expected responses.

With regard to WCST, NASA-TLX/WP5, with balanced
accuracy, our model could determine subjective MWL based on
Complexity level and the Number of errors with the best cross-
validation score equal to 53.86% (±1.64%). The LDA model for
NASA-TLX/WP5 was based on Complexity level and Expected
responses for the prediction (Figure 10). Without Complexity level,
the accuracy of the model was equal to 42.88% (±3.43%) with
four WCST performances: Number of errors, Perseverative errors,
Reaction time for all items, and Expected responses.

Finally, for DT, NASA-TLX/WP5, with balanced accuracy, our
model could determine subjective MWL based on Complexity level
with the best cross-validation score equal to 73.71% (±0.0%). The
LDA model for NASA-TLX/WP5 was mainly based on Complexity
level for the prediction (Figure 10). Without Complexity level, the
accuracy of the model was equal to 44.74% (±5.66%) with six DT
performances such as False cubes, Omissions, or Expected responses.

In conclusion, we were able to predict subjective MWL far
beyond the chance threshold (equal to 33%) when considering
Complexity level and performance as variables for all tasks. It
seems relevant to note that the best prediction results were based
on the selected subjective variables NASA-TLX/WP5 for all CTs
except NBT. Therefore, this dimension turned out to be the most
relevant one to consider for establishing the classification model.
Moreover, Corsi and DT were the tasks with a cross-validation
score higher than 73% (±0.0%). With Complexity level, the MWL
prediction model relied predominantly on Complexity level alone
(according to the PFIs). The other tasks performed less well, but
the importance of the predictive variables was not focused mostly
on the Complexity level.

Thus, when considering models only based on performance
measures to predict MWL, the validation score decreased for Corsi
and DT, but they remained above the chance threshold. Moreover,
the validation scores also decreased for the other tasks, and Corsi
remained the best candidate with a cross-validation score appearing
higher than 50%. NBT was the worst with an accuracy lesser
than 40%.

Discussion

This study aimed to test several candidate cognitive tasks
(CTs) with distinct complexity levels. We then relied on combined
statistical methods to answer the two following questions:

1- Can we identify subjective mental workload classes
corresponding to the complexity levels?

2- Can we predict these mental workload classes based on
complexity levels and/or performance?

Conception of cognitive tasks with three
complexity levels

We aimed to obtain three complexity levels in terms of
impact on performance (Expected responses). As expected, NBT
proved to be in line with previous studies (Arvaneh et al., 2015;
Dimitrakopoulos et al., 2017; Ries et al., 2018). In this context,
NBT served initially as a benchmark to calibrate the complexity
levels of the other tasks. As expected, for at least two tasks
(Corsi and WCST), several complexity levels generated several
Expected responses levels. Concerning GNG and DT, the last
complexity levels were not different in terms of performance.
These results could be explained by the levels of requested
solicitations which were too close between the last levels for the
two tasks. For example, in the DT, adding a multiplication (highest
complexity level) to a subtraction (intermediate level) did not
impact performance. This result was not in line with So et al.
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FIGURE 10

Bar graphs on the importance of the five first performance variables for each task.
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(2017) study that obtained significant differences in performance
measures between an intermediate level of subtraction and a higher
level of multiplication. However, the So et al. (2017) study showed
a limit as it mixed multiplication and division operations during
the last level, making the impact of the two operations difficult to
distinguish. Perhaps a division would have given more significant
differences. Nevertheless, based on our pre-test calibration phase,
we could observe that division would have led to a too high
difficulty concerning the other tasks.

In conclusion and to reach our first objective, the priority was
to obtain three complexity levels that generated three levels of
Expected responses, which NBT, Corsi, and WCST demonstrated.
Next, we aimed to know if these complexity levels also generated
three MWL classes.

Tasks complexity level to induce MWL
classes

Concerning the definition of MWL, which is a
multidimensional concept, we systematically considered two
questionnaires from two models of MWL: NASA-TLX and
WP questionnaires.

With regard to WP dimensions, for some tasks, all complexity
levels generated distinct classes of MWL, like WP3-Spatial
processing for the Corsi.

However, no WP dimension could discriminate all MWL
classes for GNG and DT. These results contradicted the Rubio
study (Rubio et al., 2004) which observed that WP was the only
questionnaire to reveal differences due to the task complexity.
Nevertheless, despite the least discrimination to complexity level,
the WP questionnaire appeared worthwhile when measuring
the proportion of the attentional resource used in a particular
sensory-motor dimension as specified in Tsang and Velazquez
(1996). For example, in our study, Corsi and DT were the
CTs generating the highest MWL based on spatial processing.
These results are in with the logic of the tasks based on
spatial memory.

Concerning NASA-TLX, all complexity levels generated
distinct levels of overall MWL for all CTs. However, across tasks,
non-equivalence occurred between the overall MWL classes. Thus,
the levels obtained were relative, not absolute, and therefore
depended on the task despite quite close “orders” of values.
Moreover, for the overall MWL classes of all tasks, the averages
varied between approximately 100 and 300 on a scale of 600. Thus,
the three levels of overall MWL were not in the intermediate MWL
zone but in the first half of theMWL, within a low and intermediate
zone of MWL. Even though we didn’t expect this result, it made
us consider that the tasks offered allowed us to reach levels of
MWL being fairly close but nevertheless distinguishable and often
difficult to obtain with subjective scales. Once this level of accuracy
in discriminating MWL classes is potentially reached, we could add
a complexity level to the tasks. For this purpose, the Corsi test was
the best candidate since, among all the tasks, it allowed the most
distinct overall NASA-TLX levels. This was the first argument for
not considering the NBT as a reference task forMWLmeasurement
and modeling.

Regarding the measures of each of NASA-TLX dimensions,
they demonstrated that the dimensions contributed differently to
the overall MWL score. This result was in line with previous
findings (Rubio et al., 2004; Fallahi et al., 2016; Longo, 2017)
where the overall score did not allow the detection of subtle
variations. Nevertheless, NASA-TLX dimensions could be used
to determine which dimensions were pulling up or down the
overall NASA-TLX. For example, for all complexity levels of our
NBT, Physical demand turned out the lowest score compared to
the other NASA-TLX dimensions. This result was in line with
the study by Malakoutikhah et al. (2021) which also compared
the six dimensions of NASA-TLX for NBT and observed that
Physical demand had the lowest scores compared to the other
NASA-TLX dimensions. It was coherent with the solicitations of
our task since manual interactions were limited to keystrokes or
mouse/touchpad movements.

This study also confirmed the complementarity of the
questionnaires based on different methodological or theoretical
approaches. While the WP questionnaire concerned the saturation
of the multiple pools of attentional resources, the NASA-TLX
questionnaire concerned, in part, the impact of external factors on
subjective MWL.

Concerning our hypothesis H1, we could conclude that our
protocol provided different overall MWL classes concerning the
complexity level. To this aim, Corsi and DT were the best tasks
and WCST was the worst. Indeed, the NASA-TLX questionnaire
is known to show a high correlation with performance (Rubio
et al., 2004). This may explain why MWL based on NASA-TLX
did not allow three distinct levels for all dimensions of GNG for
which performances were not impacted by the third complexity
level. However, through WCST which had three distinct levels of
performance but not three levels of overall MWL, we could observe
the limit of using only performance for MWL measurement.
Performance could sometimes degrade as the complexity level
increased, but MWL did not increase linearly. In our study, WCST
turned out to be a perfect example of the non-linear relationship
between subjective MWL and performance.

Correspondence between MWL classes
considering the complexity level

To ensure that the three complexity levels of each task
could allow distinct classes of MWL, we decided to consider
the correlation between MWL classes of values obtained with
a clustering method (considering only subjective measures of
MWL as variables) and MWL classes of values obtained with
complexity levels.

First, among the CTs, Corsi allowed the best clustering, that is,
the most distinct MWL classes, this task being the one for which the
most dimensions of MWL allowed this distinction between classes.
Hence the interest in considering all the dimensions ofMWL rather
than just the overall value as some authors did (Radüntz, 2017;
Guan et al., 2021).

Moreover, if we compared the MWL classes obtained via the
labels of complexity level or the clustering, we obtained a good
correspondence, more particularly for Corsi. Thus, our H1 was
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confirmed. And the Corsi test allowed the best grouping into
MWL classes. Moreover, these classes corresponded well to what
was expected via the complexity levels. These results were the
second argument for not considering the NBT as a reference
task. Furthermore, as far as we knew, no previous study had
ascertained the observation of three distinct classes of MWL by
combining two analytics methods as we did by considering the
correspondence between MWL classes with K-means and MWL
classes with complexity levels. Our approach of considering the
correlation between two different ways of grouping data was a first
in the scientific literature.

Proposal of a predictive model of MWL
classes

The Corsi test turned out to be the best task to predict
MWL with complexity levels and performance. Therefore, this
task was well-dimensioned in terms of complexity levels. Thus,
Corsi demonstrated a high level of reliability to induce a priori (at
least at the beginning of the activity) the class of MWL in which
the person should be. This result was the third argument for not
considering the NBT as a reference task. Using NBT as a reference
to establish an MWL model, as several authors (Dimitrakopoulos
et al., 2017; Beh and Wu, 2021; Malakoutikhah et al., 2021) did,
could explain the increasing number of studies using it to obtain
several levels of MWL. A selectivity bias due to the number of
NBT-based studies for MWL could have been introduced. With
our analysis, we pointed out the limits of NBT. Concerning the
Corsi test, we found different MWL classes, and these classes were
correlated to those obtained by considering the MWL data via the
complexity level. Moreover, for Corsi, we could propose a model
based on performance and complexity levels predicting MWL with
good accuracy. Furthermore, Corsi had simple instructions and was
not socially marked, as people who cannot read and write or people
with different alphabets could use it. Finally, it appeared to be a
CT that allowed constant overall MWL gaps and provided a high
number of possibilities to easily modify the complexity levels. As
a result, among our five CTs, the Corsi test proved to be the best
candidate to fulfill our first objective.

A model to predict mental workload only
with performance

For the second objective of this study, we aimed to obtain a
“real-time” indicator to identify the “shifts” of MWL during the
activity. This was another critical aspect of our work as we knew
that MWL evolved during the activity due to its multidimensional
nature. Thus, we decided to focus only on performance data
during the task, neglecting physiological ones considered difficult
to interpret and with validity problems. Therefore, we tried to
circumvent the limits of the correspondence between MWL and
performance data by favoring the number and thus the sensitivity of
the performance measurements performed. Nevertheless, when the
MWL predictive models were only based on performance measures

without including the complexity level, the results decreased for
all the tasks despite the result remaining quite good for Corsi and
DT. It seems relevant to note that Corsi was the only task with an
accuracy appearing higher than 50% (which was above the chance
threshold of about 33%). The number of performance dimensions
can explain this result. Corsi and DT had the best predictions and
had performance dimensions higher than the other tasks (7 and 9
for Corsi and DT respectively). Thus, multiplying the performance
data was a good way to make this real-time indicator more reliable
and sensitive. Thus,H2 was confirmed.

Nevertheless, even if the prediction level was still much
higher than the chance level for these two tasks, adjusting the
complexity level only on these models did not seem sufficient.
These results were in line with studies indicating that performance
measures could not, of themselves, describe MWL, since the
operators could potentially vary efforts to maintain a constant
performance level (Reid and Nygren, 1988; Raufaste et al., 2004;
Cain, 2007; Radüntz, 2017). Although performance measures could
account for MWL during the activity, we must be aware of their
main limit. Thus, to improve our model, we should carry it
out on other measures of MWL. Therefore, even though those
psychophysiological measures had several constraints, they could
be worthwhile to improve our models. It could indeed become
possible to triangulate the three categories of measures (subjective,
performance, and psychophysiological) to better understand a
person’s MWL (Charles and Nixon, 2019; Longo et al., 2022). As
a matter of fact, considering MWL through the prism of these three
categories of measures would overcome the limitations of each
measure. Future studies measuring MWL through physiological
measures should require a reference model of subjective MWL
being close to the essence of MWL (Hart and Staveland, 1988)
like our model which was based on two complementary models of
subjective MWL.

Contribution to the body of knowledge

Firstly, it is widely accepted that MWL is a multidimensional
concept (Hancock et al., 2021), and our results support this by
showing that the dimensions vary depending on the activity.
Indeed, the NASA-TLX andWP questionnaires are complementary
since they are sensitive to different sources of MWL. Thus, we were
able to demonstrate that the cognitive tasks in our study induced
different MWL classes (with differences according to the task)
depending on the complexity level of the activity (mental demands,
time pressure), the strategies used (performance, mental effort)
and the individual’s emotional state (frustration). However, some
dimensions measured by theWP did not appear to show significant
variation across tasks, suggesting that cognitive tasks more or
less saturate the attentional resources mobilized in each resource
pool of Wickens’ model (Wickens, 1984, 1987, 2008). Therefore,
we confirm that MWL can be defined as the degree of activation
of a finite pool of resources, limited in capacity, while cognitively
processing a primary task over time. Thus, the variations in the
dimensions of MWL solicited as a function of the tasks accrediting
that MWL enables individuals to cope with static task demands, by
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devoted effort and attention (Longo et al., 2022). Moreover, our
results confirmed that for the same task demand, the profile of
solicitation and dimensions of MWL are task-specific. Therefore,
it is essential to carefully choose the type of measure used based on
the task’s characteristics to avoid missing any effects by selecting an
unsuitable questionnaire.

Secondly, we have demonstrated that performances can serve
as a predictor of MWL, supporting models that establish a
link between task demands, MWL, and performance (Hart and
Staveland, 1988; DeWaard, 1996; Young et al., 2015). Nevertheless,
we nuanced these models so that performance predictors must
be sufficiently numerous and varied to be correctly linked to
changes in MWL. Our results also support models that emphasize
the contribution of exogenous factors like the stress/strain model
(Karasek, 1979; Raufaste et al., 2004). Thus, the prediction of MWL
increased for all the tasks when we included the complexity level
(corresponding to task demands) as a predictor.

Thirdly, we proposed a protocol that can induce a desiredMWL
class at the beginning of an activity, at least for the Corsi test.
Our results suggest that the NBT may not be a suitable reference
task to model the MWL, as is currently done in some studies
(Dimitrakopoulos et al., 2017; Ries et al., 2018; Beh and Wu, 2021;
Malakoutikhah et al., 2021). Among our five CTs, Corsi proved to
be a better candidate as it reliably induced different MWL classes,
allowing us to predict the expected MWL.

Conclusion

We tested five context-free tasks, all providing three distinct
levels of overall MWL. Given the advantages of combined statistical
methods, we could evaluate the distinction of three MWL classes
associated with three complexity levels. Among our five CTs,
the Corsi test obtained different MWL classes reliably enough
to make predictions about the expected MWL. Consequently,
this study provides a foundation for future research aimed at
predicting the MWL class before the activity and adjusting
the complexity level to keep the desired MWL class. For this
purpose, multiplying the performance data was a good way to
obtain a more reliable and sensitive real-time indicator. This
recommendation could also be applied to the learning context
with the aim to measure or predict cognitive load. Thus, our
future objective is to improve this model with psychophysiological
measurements (like EEG data) of MWL available in real-time
during a task.

Limitations

Our experiment was conducted in a remote online
environment. The results could be different when tasks are
performed in person. Moreover, the subjective MWL model could
be enriched with other factors that could influence MWL such as
internal factors (emotions or expertise) or external factors (the
design). Besides, the impact of the design on MWL is a research
question currently being studied within our team.
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