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Investigating problem-posing
during math walks in informal
learning spaces

Min Wang* and Candace Walkington

Department of Teaching and Learning, Southern Methodist University, Dallas, TX, United States

Informal mathematics learning has been far less studied than informal science

learning – but youth can experience and learn about mathematics in their homes

and communities. “Math walks” where students learn about how mathematics

appears in the world around them, and have the opportunity to create their own

math walk stops in their communities, can be a particularly powerful approach to

informal mathematics learning. This study implemented an explanatory sequential

mixed-method research design to investigate the impact of problem-posing

activities in the math walks program on high school students’ mathematical

outcomes. The programwas implemented during the pandemic andwasmodified

to an online programwhere studentsmet with instructors via onlinemeetings. The

researchers analyzed students’ problem-posing work, surveyed students’ interest

in mathematics before and after the program, and compared the complexity

of self-generated problems in pre- and post-assessments and di�erent learning

activities in the program. The results of the study suggest that students posed

more complex problems in free problem-posing activities than in semi-structured

problem-posing. Students also posed more complex problems in the post-survey

than in the pre-survey. Students’ mathematical dispositions did not significantly

change from the pre-survey to post-survey, but the qualitative analysis showed

that they began thinking more deeply, asking questions, and connecting school

content to real-world scenarios. This study provides evidence that the math walks

program is an e�ective approach to informal mathematics learning. The program

was successful in helping students develop problem-posing skills and connect

mathematical concepts to the world around them. Overall, “math walks” provide

a powerful opportunity for informal mathematics learning.
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1. Introduction

Much of the research in informal math learning has examined how people use math in
their everyday lives and careers (e.g., Nunes et al., 1993; Civil, 2007; Walkington et al., 2014).
There is a lack of research on mathematics in designed informal learning environments
(Pattison et al., 2017), although this is a growing area of interest (Mokros, 2007). Such
environments include museum exhibitions, libraries, and online games. Research suggests
that although visitors are often unaware that they are engaging with math when in informal
settings, promising mathematical thinking and social interactions can emerge (Pattison
et al., 2017). Learning in informal environments often involves developing positive attitudes,
enculturation, and socialization.
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This is contrasted with formal settings, where learners may
see mathematics as disconnected from their lives and daily
activities (Mitchell, 1993; McCoy, 2005) and wonder, “When
am I ever going to use this?” (Chazan, 1999). As mathematics
becomes more complex and abstract, teachers in formal settings
struggle to facilitate learning experiences that address this question
(Gainsburg, 2008; Walkington and Bernacki, 2014). Accordingly,
research has documented the incredible difficulty that learners
have to make connections between math and the real world (e.g.,
Saxe, 1988; Lave and Wenger, 1991; Masingila et al., 1996; Inoue,
2005). Because of this, mathematics educators face a challenging
question: How can we engage learners and allow them to see that
mathematics is a rich and dynamic subject they can use to describe
and understand their world? Leveraging mathematical reasoning as
it happens in informal spaces can be a way to help students make
these connections, and thus is an area in need of more research.

In this study, our approach to math walks draws on the
successful characteristics of informal math learning, as well as
on place-based education, where local communities are sites and
resources for learning, and active engagement in the community
is facilitated (Sobel, 2004). Math walks are activities where
learners visit a series of different locations, physically or virtually,
and observe and ask questions about how math appears in
their surroundings. Our approach to math walks leverages the
pedagogical strategy of problem-posing, where learners ask and
solve their own mathematical questions. In the math walks
program, youth experience mathematics in their surroundings
(e.g., homes, communities, and school settings) and create math
walk stops based on their observations of their surroundings.
The math walk stops youth created consist of the math problems
students posed and the corresponding solutions.

One challenge of designing informal learning environments
was that some individuals could feel uncomfortable knowing
that mathematics was involved in the environment, and they
were expected to connect the environment with mathematical
topics (Gyllenhaal, 2006). By leveraging the problem-posing
strategy, individuals can choose the topics to pose questions
about and embed their prior knowledge, interest, and social and

cultural background into the problems. As a result, the problem-
posing strategy can alleviate individuals’ anxiety about learning

mathematics during math walks and help individuals develop

more positive dispositions toward mathematics (Fetterly, 2010).
Mathematical dispositions refer to the attitude to see mathematics
as something logical, useful, and worthwhile (National Research

Council., 2001). However, the combination of problem-posing and
informal mathematics learning has received very little attention in
the research literature.

Problem-posing has been described as referring “to both the

generation of new problems and the re-formulation, of given
problems. Thus, posing can occur before, during, or after the
solution of a problem” (Silver, 1994; p. 19). This broad definition

makes it difficult for educators to learn about what a problem-
posing activity should look like, how to implement problem-posing

activities, and how to scaffold their students during problem-
posing. Even though a positive relationship between problem-
posing and students’ mathematics learning has been documented,
a gap between research findings in problem-posing and actual

implementation remains (Cai et al., 2015). In addition, very
few studies have looked at problem-posing in informal learning
environments, even though problem-posing is an ideal approach
in contexts where students do not need to follow a prescribed
curriculum or standards and are free to generate a wide range of
mathematical ideas and connections.

To contribute to the extant literature on problem-posing
and bridge this gap between problem-posing’s implementation in
creating informal learning environments, this study investigated
youth’s problem-posing performance and procedure in a math
walk program called “walkSTEM.” It analyzed how this experience
shaped students’ dispositions toward mathematics. This study
also aimed to look into youth’s interactions with their peers
and instructors by observing and analyzing their discussions and
conversations when posing and solving math walks problems
collaboratively. walkSTEM is an initiative in a large metropolitan
area where youth, classes, and families take walks and find
mathematical concepts and principles in the architecture, designed
objects, art, and nature around them. When youth are tasked with
creating their own math walks, they design “stops” on a math
walk around their homes, communities, or schools, often leading
their audience on the walk and explaining how mathematics is
integrated into the surroundings. Since this study occurred during
the COVID-19 pandemic, the math walks program that was
implemented during a weekend extracurricular program for high
school students was modified to be fully online. Youth met virtually
with the instructors and other program members to watch existing
math walk videos from their local communities and design their
own walks collaboratively. In terms of their self-generated walks,
youth can create walks around not only math topics but also other
STEM topics. Even though most of the walks and the self-generated
questions were related to mathematical topics, some youth in
this program created questions related to biology, environmental
science, statistics, and so on. As the objective of this program was
to encourage students to connect their school-learned topics to
real-world scenarios, the authors did not limit the topics to youth’s
self-generated walks. Given that remote learning has become more
prevalent, this study explored the possibility of online math walks.
It investigated both the advantages and challenges of implementing
problem-posing and math walks through virtual formats.

The purpose of this study was to (a) investigate the problem-
posing program’s effects on youth’s mathematical dispositions; (b)
compare youth’s problem complexity in different problem-posing
tasks; and (c) explore the kinds of interactions youth have when
creating math walks.

2. Theoretical framework

2.1. Problem-posing

Problem-posing “is a feature of broad-based, inquiry-oriented
approaches to education” (Silver, 1994, p.21). Problem-posing
has been an increasingly important research area in mathematics
education in recent decades both in the United States (English,
1997; Walkington, 2017; Walkington and Hayata, 2017) and in
other countries including China (Li and Lü, 2004; Chen et al.,
2007), Singapore (Cai, 2003), Indonesia (Suarsana et al., 2019), and
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Turkey (Salman, 2012; Ozdemir and Sahal, 2018). Researchers also
conducted cross-national studies on problem-posing to explore
the mathematical achievement differences between students of
different countries (Cai, 1998; Cai and Hwang, 2002; Cai and Jiang,
2017).

Extant studies suggested that integrating problem-posing in
students’ mathematical learning can positively impact students’
problem-solving skills, problem-posing skills, conceptual
understanding, and dispositions toward mathematics (Brown
and Walter, 1990; Silver, 1994; Silver and Cai, 1996; English, 1997;
Cai, 1998; Cai and Hwang, 2002; Singer et al., 2013; Kapur, 2015;
Walkington, 2017). Wang et al. (2022) conducted a meta-analysis
on mathematical problem-posing interventions from 21 studies
and concluded that the estimated average effect size of problem-
posing on students’ mathematical learning outcomes was 0.64 SD.
The mathematical learning outcomes analyzed included problem-
solving skills, problem-posing skills, mathematical dispositions,
and mathematical achievement.

2.2. Metacognitive skills and mathematical
dispositions

Problem-posing activities can promote both students’
metacognitive skills (Karnain et al., 2014) and their mathematical
dispositions (Silver, 1994; Wang et al., 2021). Specifically, suppose
students are given a mathematical problem, they are required to
generate some similar problems. Students need first to analyze the
problem holistically (Silver, 1994) and understand the dynamics
of the given problem (Priest, 2009) before they start to generate
their problems. After posing the problems, students also need to
develop a more thorough understanding of the logical relations
among the problem texts, the question sentences, and the solutions
to the problems they posed (English, 1997; Cai, 1998; Priest,
2009). During these processes, students may constantly self-
monitor and self-regulate, thereby improving their metacognitive
skills. Baumanns and Rott (2022) investigated the individuals’
problem-posing process and identified these problem-posing-
specific metacognitive behaviors: planning, monitoring and
control, and evaluating. Research has also discussed how students’
engagement with problem-posing could stimulate students’ interest
in mathematics learning and reduce students’ mathematics anxiety,
which includes fear and avoidance of learning mathematics
(Brown and Walter, 1990; Silver, 1994). Given the various formats
of problem-posing tasks, Stoyanova (1999) categorized problem-
posing into three types: free, semi-structured, and structured
problem-posing. In structured problem-posing tasks, students
re-formulated given problems or generated problems based on
a specific solution. In semi-structured problem-posing tasks,
students generated problems based on a given problem structure
or solution structure. In free problem-posing tasks, there is no
specification of which type of problem to pose or which area the
problem should be based on.

In extant literature on problem-posing, researchers also analyze
the complexity of student-generated problems to investigate
the relationships among students’ problem-posing performance,
problem-solving performance, mathematical achievement, and the

type of learning tasks students are engaged in. Silver and Cai
(1996) analyzed the mathematical solvability, linguistic complexity,
and mathematical complexity of students’ posed problems. The
linguistic complexity was coded with the number of assignment,
relational, and conditional propositions presented in the student-
generated problems. The mathematical complexity focused on
the number of mathematical semantic structural relations (i.e.,
change, group, compare, restate, and vary) in the problems. One
example the authors provided was Did Arturo drive a longer time
than Jerome and Elliot drove altogether in a regular way? This
problem included five semantic relations: compare, restate, group,
restate, and vary. In this study, the authors assessed 509 middle
school students’ problem-solving and problem-posing skills. The
problem-posing task was a word problem statement without a given
question. Students were asked to pose three different questions that
could be answered with the information in the provided statement.
The results suggested that stronger problem-solvers also tended
to pose more complex mathematical problems than their peers
who were not as strong in problem-solving. English (1997, 1998)
coded the complexity of children-generated problems by coding
problem type and the whether the problems required multiple steps
to solve. English (1998) also compared the complexity of children-
generated problems in formal (i.e., standard symbolic addition
and subtraction sentences) and informal contexts (i.e., a large
photograph of children playing with brightly colored items) and
suggested that children posed more diverse and complex problems
in informal contexts than formal contexts.

2.3. Sca�olding strategies for
problem-posing

Unlike other learning activities, most students do not have
prior experience with problem-posing. Therefore, it is important
to provide students with peer support and a learning environment
within which they are motivated to raise various questions. Most
student-centered active-learning strategies, such as inquiry-based
learning, problem-based learning, and discovery learning, can help
to create such learning environments (Albanese andMitchell, 1993;
Bicknell-Holmes and Hoffman, 2000; Hattie and Yates, 2009). In
these student-centered learning environments, students can learn
at their own pace, take on active roles to create and synthesize
their own questions and knowledge, and make connections to real-
world issues (Barron et al., 1998; Bicknell-Holmes and Hoffman,
2000). In addition, utilizing appropriate scaffolding strategies can
enhance students’ problem-posing experience. Peer interaction is
one of the most prevalent scaffolding strategies for problem-posing
(Gade and Blomqvist, 2015). Kontorovich et al. (2012) proposed
a framework to analyze students’ problem-posing process that
includes five aspects: task organization, knowledge base, problem-
posing heuristics and schemes, group dynamics and interactions,
and individual considerations of aptness. Group dynamics and
interactions refer to the processes of social nature that occur when
a group work on a problem-posing task together is included in
the framework. The authors demonstrated the usefulness of this
framework by using it to explain the different reactions students
had when engaged in problem-posing activities, despite the similar
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background these students shared. The authors suggested that
this framework could be used to do a fine-grained analysis of
student’s problem-posing work and could account for hidden
mechanisms involved in students’ decision-making when creating
their own problems.

We previously conducted a pilot study that investigated young
children’s participation in a walkSTEM afterschool program where
they were asked to pose problems (Wang et al., 2021). The
findings suggested that children were able to create meaningful
and interesting problems based on their observations of the
school buildings and playground. Children were engaged in group
activities during the math walks program: they experienced math
walks created by previous students and posedmore problems about
the contexts; they walked around their campus and asked questions
in groups; they voted for the places they were most interested in to
create math walk stops at; they solved their self-generated problems
with group members, and they created a final video to showcase
their math walk to their friends and parents. During this process,
children participated in free problem-posing first to get to know the
concept of creating their own problems, followed by doing semi-
structured problem-posing that modeled good problem-posing
products, and then back to doing free problem-posing and creating
problems about their school and communities. This sequence
seemed especially effective in scaffolding children’s problem-posing
work. A recent meta-analysis on problem-posing (Wang et al.,
2022) also compared how the different types of problem-posing
activities could affect students’ mathematical learning outcomes
and concluded that implementing a combination of free, semi-
structured, and structured problem-posing was more effective than
only implementing semi-structured or structured problem-posing
activities. In addition, the pilot study findings also indicated that
children became more positive about learning mathematics and
became more independent learners after attending the program.
However, whether a similar dynamic could be facilitated in an
online context with older students was not clear. That study also
involved just 10 students who were in a school setting working with
their math teachers. Thus we set out to follow this investigation
with a new study investigating problem-posing with math walks in
an online extracurricular program for high school students.

3. Materials and methods

This study employed a mixed-method research design
(Creswell and Clark, 2017) to investigate problem-posing activities’
effects on mathematical dispositions and the problem-posing
performance of youth. This section presents the research questions,
the research methodology, and the activities included in the online
math walks program.

3.1. Research questions

This study aimed to utilize the mixed-research design to
comprehensively analyze youth’s learning process and dispositions
in this online math walks problem-posing program with qualitative
and quantitative analyses. With the quantitative analysis, this
study examined the trajectories of problem-posing performance

throughout the program and compared dispositions toward
mathematics before and after the program. With the qualitative
analysis, the authors analyzed problem-posing work throughout
the program and youth’s interviews to further analyze how
problem-posing shapes youth’s mathematical interests and
dispositions and what interactions occur among youth when they
pose problems and create their own math walks. The research
questions are as follows:

(1) How does designing and leading a math walk shape youth

dispositions toward math and toward creating their own

math problems?

(2) How does the complexity of the mathematical problems students

generate as part of their math walk activities vary over the course

of the program?

(3) What interactions do youth have with their peers when they pose

problems and design their math walk questions and stops?

3.2. Methods

3.2.1. Participants
Participants were recruited from an existing extracurricular

college preparation program in a university located in a large
southwest metropolitan area. The program’s objective is to help
first-generation students from designated schools who desire to
pursue college transition from high school to college. Activities
were enacted during Saturday morning sessions. The program
accepted students from 10 schools, where 76.45% of the students
are economically disadvantaged, and 24.38% are English learners.

In total, 35 students were recruited (26 Hispanic, seven African
American, one Asian, and one student who identified as two or
more races). Among the 35 students, there were 24 female and 11
male students. All participants were high school students, and there
was one freshman, 13 sophomores, four juniors, and 17 seniors.
The 13 instructors (11 females and two males) in this program
were tutors in the college preparation program, who were all
undergraduate students from this university. Of the 13 instructors,
seven were Hispanic, three were White, two were Asian, and one
was African American.

3.2.2. Problem-posing activities in the online
program

In the virtual math walks program, there were three main
problem-posing activities for students: watching walkSTEM videos
and posing their own problems based on those videos, taking
#STEMlens photos and posing problems based on those photos,
and creating virtual math walks and presenting the walk in
small groups.

The walkSTEM videos were short videos in which prior youth
or informal STEM educators discussed STEM-related problems
in their surroundings. The STEM problems could be based on a
place (e.g., a museum, a shopping mall, and a park), an activity
(e.g., playing basketball and playing music), or a STEM topic or
concept (e.g., geometry and biology). After watching the videos,
students were asked to complete a video-watching questionnaire
(see Appendix A). Students documented the questions being asked
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in the video, explained how the video was related to mathematics,
and created problems about the scene or the object in the video.
The #STEMlens photo was a problem-posing activity in which
students took photos of their surroundings, marked up the photos
using photo-editing tools, and posed problems based on the photo
and markups. Students’ #STEMlens photos were assessed by their
instructors using the rubric presented in Appendix B2. Creating
a STEM walk was the final project of the program. Each student
designed three walk stops, and each stop was comprised of a
#STEMlens photo or a short video, a STEM question about the
photo/video that students posed, and a corresponding answer or
a strategy to answer the question. Students worked in groups to
provide feedback and suggestions to each other. Each selected
one stop from their STEM walk and presented in groups to
their peers, parents, staff, and instructors. The project and the
presentation were scored by their instructors using the rubrics in
Appendix B1. Among these three activities, the problem-posing
work in the video-watching activity would be considered semi-
structured problem-posing, according to Stoyanova (1999), as
students were asked to create problems based on a given picture
or scene. On the other hand, the problem-posing in #STEMlens
and the Final Walk project would be categorized as free problem-
posing. Students were allowed to pose problems based on objects in
their own surroundings.

Students met with their instructors nine times for the program
during the semester, including three longer sessions (one 90-min
session and two 120-min sessions), five 30-min check-in sessions,
and one final presentation session. The researchers, the program
coordinators, and the college preparation program staff met with
the instructors for training purposes before implementing the
program. More descriptions of the instructional activities in each
session are listed in Table 1, and the researcher provided detailed
lesson plans for all sessions to instructors before each session.

3.2.3. Measures
Research data were collected through six sources: the student

pre- and post-survey, the instructor pre- and post-survey, the
instructor mid- and post-interview, the student post-interview, the
students’ problem-posing work, and the video recordings of all of
the meetings.

The students’ pre- and post-surveys are presented in
Appendix C. Students took the pre-survey during their
first meeting, which included questions about demographic
information, problem-posing, problem-solving, conceptual
understanding, procedural fluency, and mathematical dispositions
items. The student post-survey was implemented after the final
presentation day, and the post-survey only included items on
students’ problem-posing skills and mathematical dispositions.
The dispositions survey items were adapted from the mathematical
individual interest scale from Linnenbrink-Garcia et al. (2010).
Cronbach’s alpha for the mathematical interest scale was 0.90,
which indicates good reliability. The procedural fluency, conceptual
understanding, and problem-solving items were selected from
TIMSS 2011 grade 8 mathematics assessment (Mullis et al., 2012).
The overall Cronbach’s alpha for the TIMSS 2011 achievement
scores was 0.97 (Bofah and Hannula, 2015).

TABLE 1 Student activities in each math walk session.

Session Math walks program activities

Session #1 Students completed the pre-survey. Instructors
introduced the walkSTEM program, the gameboard,
and the #STEMlens photos. Students watched one
walkSTEM video and completed the video-watching
form

Session #2 Students watched three walkSTEM videos and
completed three video-watching forms. Instructors
checked in with students regarding their #STEMlens
photos

Session #3 Instructors checked in with students regarding their
#STEMlens photos. Students submitted at least one
#STEMlens photo. Students who finished earlier would
watch two more walkSTEM videos and complete the
forms

Session #4 Instructors introduced the Final Walk project to
students by watching previous student-created Final
Walk videos. Each student completed a Final Walk
project planning sheet and started to work on the first
two math walk stop design worksheets

Session #5 Students completed the first two math walk stop design
worksheets and finalized at least one math walk stop,
including the question, the photo/video, and the
response to the question for the stop. Students who
finished early would watch one more walkSTEM video
and complete the form

Session #6 Students started to work on the third math walk stop
design worksheet, watched one walkSTEM video, and
completed the form

Session #7 Students worked in groups to each select one math walk
stop from their projects to form a group Final Walk.
Students gave feedback to each other, wrote the script
for their Final Walk, and created the slides for the
presentation on STEM day

Session #8 Students finalized their group’s Final Walk presentation
and rehearsed

Session #9 Students presented their group’s Final Walk to their
parent’s peers. Students completed the post-survey after
the presentation

Students who participated in all three problem-posing activities
were selected to be interviewed using the interview protocol in
Appendix D after their final presentations. The interview protocol
focused on students’ problem-posing experiences in the program,
the difficulties or challenges in generating problems, and whether
students’ mathematics dispositions had changed after participating
in this program.

3.2.4. Coding and analysis
Student-generated problems’ content complexity and students’

ratings in the mathematical dispositions survey were the main
quantitative outcome variables in this study. The content
complexity was coded with the criteria adapted from Liu et al.
(2020). The coding categories with examples and problem-posing
prompts for the example problems are presented in Table 2. We
coded student-created problems on a scale of 0–5, where 0 is
the least complex and 5 is the most complex. We measured the
complexity of the problem from three perspectives: whether the
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TABLE 2 Content complexity scoring examples.

Category Score Examples Problem-posing prompts

Not-relevant or incomprehensible 0 All circles together. (Prompt A) Prompt A

Prompt B

Pose a mathematical problem based on this
apartment floor plan or this apartment

Relevant statement 1 This could be a probability question. (Prompt A)

Relevant problem, but with ambiguity 2 Why were they built like that? (Prompt B)

Relevant problem without any
ambiguity

3 From just looking at the picture, how many circles
can be calculated by each color? (Prompt A)

Non-routine relevant problem without
any ambiguity

4 If the real estate agency wanted to renovate and
deduct 10 meters in the living room to give more
space to both Terrace and kitchen, what would be
the area of the Living room? (Prompt B)

Non-routine relevant problem without
any ambiguity; problem allows for
multiple solutions

5 How do the color and space between each color
make this picture pleasing to the eye? (Prompt A)

problem is relevant to the prompt, whether the problem statement
is ambiguous or not, and whether the problem allows for multiple
solutions. An example problem with a complexity rating of 5 is in
Table 2: How does the color and space between each color make
this picture pleasing to the eye? This is a non-routine problem that
usually does not exist in a math textbook, and there are multiple
perspectives and strategies to answer this question. For instance,
we could measure the distance between each circle, calculate the
portion each circle is covered, explore the different shapes created
by the set of circles, and check the RGB information of the colors
to understand if any of these factors make the picture pleasing to
the eye. Cohen’s kappa (Cohen, 1960) was utilized to calculate the
reliability of the content complexity coding manual. Notably, 54
problems were selected randomly from a total of 140 problems
in three separate sets to be double-coded by the researcher and a
second rater. The weighted kappa was 0.81, which is considered a
good agreement (Landis and Koch, 1977).

We compared students’ mathematical dispositions with their
responses in the pre- and post-mathematical disposition surveys
with a paired t-test. In total, there were 17 students who finished
both the pre- and post-surveys (35 pre-survey, 18 post-survey).
Next, a linear mixed-effects regression model was used to compare

the content complexity of student-generated problems in different
problem-posing activities. The model was fit with student ID
as a random effect. Student characteristics (i.e., the pre-survey
math interest, pre-test procedural fluency score, pre-test conceptual
understanding score, pre-test problem-solving score, gender, and
grade level) were tested for significance as covariates. The three
problem-posing activities during the math walks program were
also included in the model, along with the pre- and post-survey
problem-posing tasks as covariates. In this model, each data point
was one student creating one problem. In total, there were 261
student-created problems, including 134 video-watching activity
problems, 44 #STEMlens photo problems, 30 Final Walk problems,
35 pre-survey problem-posing task problems, and 18 post-survey
problem-posing task problems.

The linear mixed-effects model was fit using the linear mixed-
effects regression (lmer) command from the lme4 library in R
(Bates et al., 2015; R Core Team, 2016). The mixed-effects model
was selected as it allowed us to use all the data despite students
completing different numbers and types of problem-posing tasks.
It could also account for the partially clustered data.

The qualitative analysis portion of this study employed a single-
case-study design (Creswell, 2013). The identified case in this study
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TABLE 3 Descriptive statistics of all measures.

Variable name n M SD

Pre-survey interest in
mathematics

35 3.63 0.75

Post-survey interest in
mathematics

18 3.88 0.64

Pre-survey posed problem
content complexity

31 2.77 1.15

Post-survey posed problem
content complexity

16 3.41 1.08

Video-based problems
content complexity

18 3.13 0.20

#STEMlens content
complexity

15 3.15 0.39

Final walk content complexity 12 3.83 0.33

Pre-test procedural fluency
score

35 2.73 1.12

Pre-test conceptual
understanding score

35 2.84 0.89

Pre-test problem-solving
score

35 1.39 1.24

was the math walks program at the college preparation program.
Thematic analysis was employed to identify and examine themes
that emerged from the data following the six-phase procedure
presented in Braun and Clarke (2006): familiarizing yourself with
your data, generating initial codes, searching for themes, reviewing
themes, defining and naming themes, and producing the report.
In light of the findings in the pilot study described earlier, some
potential coding foci that the researcher paid particular attention to
are listed in Appendix E.

4. Results

Table 3 presents descriptive statistics for the measures. Due
to the online format of this program and its implementation
toward the beginning of the COVID-19 pandemic, the attrition
rate was fairly high. There were 35 pre-survey responses and 17
post-responses. To understand if students who left the program
were different from students who finished, the authors conducted
an independent t-test on these two groups’ pre-survey interest
and pre-survey problem-posing complexity. The independent t-
test result revealed that the difference in students’ pre-survey
dispositions was not statistically significant, t (32) = −0.23, 95%
CI = [−0.54, 0.43], p = 0.82. However, the difference in students’
pre-survey problem complexity was statistically significant, t (34)=
3.67, 95%CI= [0.69, 2.39], p< 0.001. In other words, there was not
enough evidence that students who dropped off from the program
had more positive or negative dispositions toward mathematics.
However, students who stayed in the program were able to pose
more complex problems from the beginning of the program than
their counterparts.

The average complexity of student-generated problems in the
pre- and post-survey and the different problem-posing learning
tasks are included in rows 3–7 of Table 3. The data suggested

FIGURE 1

#STEMlens activity student work—The window. 1-How many tables

do we need to fill the whole window? 2-How many rows are we

going to create? 3-How many columns are we going to create?

that the average complexity of student-generated problems for the
Final Walk was higher than the other two learning activities in the
program (#STEMLens photos and walkSTEM videos). The average
complexity of student-generated problems in the post-survey is also
higher than in the pre-survey.

4.1. RQ1: Students’ dispositions toward
mathematics and problem-posing

The Shapiro-Wilk’s test for the difference between pre-survey
and post-survey interest mean indicated that the difference was
normally distributed (p = 0.91; Shapiro and Wilk, 1965). The test
of homogeneity of variances indicated that the variances were not
significantly different from each other, F (1.32) = 0.15, p = 0.70.
The paired t-test result revealed that the improvement in students’
interest from pre-survey to post-survey, 0.15, 95% CI [−0.10, 0.41],
was not statistically significant, t (16)= 1.28, p= 0.22.

Following the quantitative analyses, we used thematic
analysis to analyze the transcripts of the post-intervention
student interviews, and the following themes emerged from
the analysis.

Eight out of the 10 students being interviewed mentioned
that they started to think more deeply and positively about
mathematical concepts. One student (female, grade 10) explained
as follows:

[the program] actually gives you a reflection of yourself
that you did not know. Because something as a student you just
ask like, why would the teacher ask me this kind of question.
And when you do this kind of project you actually understand
what situation the teacher was in and why did she ask this
question. . . . In this kind of program, I think you’ll actually
understand and have more, more understanding, and more
clarification on questions.
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TABLE 4 Mixed-e�ects linear regression model comparing problems’ complexity—Pre-survey problem-posing task as reference group (No. of

observations: 261).

Random e�ect Variance SD

Student ID 0.44 0.66

Fixed effects B da SE 95%CI p-value Sig.

(Intercept) 0.97 1.41 [−1.80, 3.74] 0.50

Pre-survey problem-posing task (ref.)

#STEMlens photo 0.70 0.99 0.19 [0.33, 1.08] 0.002 ∗∗

Final walk project 1.22 1.72 0.19 [0.85, 1.60] <0.0001 ∗ ∗ ∗

Video-watching activity 0.37 0.52 0.16 [0.05, 0.69] 0.02 ∗

Post-survey problem-posing task 0.45 0.63 0.22 [0.006, 0.89] 0.048 ∗

Pre-survey math interest 0.06 0.26 [−0.46, 0.57] 0.83

Pre-test procedural fluency score 0.11 0.16 [−0.20, 0.43] 0.50

Pre-test conceptual understanding score 0.33 0.23 [−0.12, 0.79] 0.17

Pre-test problem-solving score 0.04 0.18 [−0.30, 0.39] 0.79

Gender female (ref.)

Gender male −0.68 −0.96 0.33 [−1.33,−0.04] 0.05 ∗

9th Grade (ref.)

10th Grade 0.33 0.46 0.77 [−1.17, 1.83] 0.68

11th Grade −0.13 −0.19 0.84 [−1.77, 1.51] 0.88

12th Grade −0.03 −0.04 0.73 [−1.47, 1.41] 0.97

Adjusted R2 = 0.58, RMSE= 0.67.
aCohen’ d effect sizes are calculated with the emmeans package through estimated marginal means (Russell, 2023).
∗indicates the correlation is significant at the.05 level (two-tailed), p <0.05.
∗∗indicates the correlation is significant at the.01 level (two-tailed), p < 0.01.
∗∗∗indicates the correlation is significant at the.001 level (two-tailed), p < 0.001.

The same student also described her experience with the
#STEMlens photo activity to further demonstrate a similar idea.
The picture and questions she mentioned are presented in Figure 1.

So one of the picture I took was the picture of my window.
So I think, I like the creativity because when you create the
question sometimes can’t get that type of question. . . But I have
multiple questions, I have other things we can actually put on
the thing that were kind of complicated. So I was proud of
myself because that makes me think I still remember I still have
that kind of . . . the capacity, memory, how you can interpret
real-life problems . . . I found myself asking questions that the
teacher doesn’t even ask.

Five students expressed that they became more interested in
mathematics to some extent. One female student in grade 12 stated:

Just slightly more it’s not like I really got into math or
I really got into science but I really like it increased my like
interest on it. Just to think about like why doesn’t it happen
or how is this related with stuff that I’ve learned before but I’ve
never paying attention to it.

Three students mentioned that they were more patient
and perseverant when solving mathematical problems after the

intervention. In this program, students were only required to
solve their self-generated problems in the Final Walk project,
and students’ Final Walk problems were the most complex
according to the coding manual. That is to say, students
spontaneously chose to pose and solve problems that were more
complex and required more effort to answer. Students described
the problem-solving process here as research and highlighted
that it was different from the textbook problems they were
used to

It was a good experience and then I get I got to
learn more about it how it really is to do a research
most importantly because I think it’s good . . . it help
me like think more about how they kind of research
really goes and I mean, it’s not a full research. It’s not
a full research but I got like a glimpse of it (female,
grade 12).

Yes, Because I think I learned more I gain more
experience on how to solve stuff, having patience,
because it can be hard at some point, but having
patience, take it easy . . . we can find a solution (female,
grade 12).

Thus, the quantitative and qualitative results were
not consistent.
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4.2. RQ2: The complexity of students’
posed problems

The mixed-effects model was employed, and the regression
results and Cohen’s d-effect sizes are presented in Table 4. The
effect sizes were calculated from the estimatedmarginal means with
the estimated marginal means, aka least-squares means (emmeans)
package in R (Russell, 2023). The regression results suggested
that students’ post-survey problems were more complex than pre-
survey problems (b = 0.45, p = 0.047, d = 0.63). The results
revealed that the Final Walk problems’ complexity was significantly
higher than all other problems. Final Walk problems were more
complex than #STEMlens (b = −0.52, p = 0.0006, d = −0.73)
video watching (b = −0.85, p < 0.0001, d = −1.20), post-
survey (b = −0.78, p = 0.0004, d = −1.10), and pre-survey
problems (b = −1.22, p < 0.0001, d = −1.72). On the other hand,
the pre-survey problem complexity was significantly lower than
all other problem complexities. In addition, the video-watching
problems were less complex than the #STEMLens problems (b
= −0.33, p = 0.017, d = −0.47). As introduced earlier, the
Final Walk and #STEMlens activities were categorized as free
problem-posing, and the video watching was considered semi-
structured problem-posing, according to Stoyanova (1999). The
results showed that students posed more complex problems in
free problem-posing activities (i.e., Final Walk, #STEMlens) than
in semi-structured problem-posing activities (i.e., video watching).
All pairwise comparison results and corresponding effect sizes are
presented in Figure 2.

One student’s problem-posing work is presented in Table 5 to
show the problems at different stages throughout the program. Eric
was a 10th grader in the program with a pre-survey mathematical
interest rating of 2.75 on a 5-point scale. Eric watched 14
walkSTEM videos and submitted 19 #STEMlens photos. We listed

five video-watching problems, five #STEMlens problems, the Final
Walk problems, and the pre- and post-survey problems that Eric
posed in the table. The problems Eric created for the #STEMlens
activity showed that he was able to pose more and more complex
and creative problems about his surroundings. For example,
#STEMlens #1, #2, #10, and #13 were all about geometry concepts
andmeasurements. The first two problems were similar to textbook
problems students were accustomed to solving and were less
creative. However, the #10 and #13 problems did not directly ask for
a measurement but focused on how the shape of the chip container
could affect the volume and how the positions of the fan blades
could affect the efficiency. In addition, another theme that emerged
from his #STEMlens submissions was the number of photos and
problems he was able to create in the same environment. Eric
took 5 #STEMlens photos and created accompanying problems in
his backyard, which demonstrated how he was able to see various
STEM topics and problems in the surroundings.

4.3. RQ3: Students’ interactions during the
math walks program

We analyzed students’ participation during the online meetings
and identified one key type of interaction: students giving each
other feedback and collaborating to create theme-based problems.

In the #STEMlens and the Final Walk problem-posing
activities, students were asked to pose problems based on the
provided rubrics (Appendix D). The rubrics only talked about
the quality of the photos and the markups, and the connection
between the problems and the photos. In these two activities,
students mainly worked independently except for when they
were asked to evaluate each other’s problems and provide

FIGURE 2

Pairwise comparison results of student—Generated problems.
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TABLE 5 Eric’s problem-posing work.

Activity Problem-posing

Pre-survey From just looking at the picture, how many circles can be
calculated by each color?
What is the length of the bathroom and kitchen different
from the length of the bedroom to the terrace by millimeters?

What type of measurement is used to determine that each
part is equal?
If I were to be on the other side of the globe and someone
else was on the opposite side, would the time be the same?

Pose a mathematical problem based on this apartment floor
plan or this apartment

Video-watching talkSTEM Videos:
https://youtu.be/5GCxIvRpKSA
https://youtu.be/vg5AZEP-ZcE
https://youtu.be/SJ4QwU_xSlg

How many toppings can I add to my drink?
If 200 cells can fit on a top of a pen, how many cells does it
take to run a whole mile?
That is one of many bridges in Dallas. Can the same math be
added to another bridge?

#STEMlens Student submitted 19 #STEMlens photos.

#1: What is the radius and/or the diameter of this lamp’s
circular form?

#2: What could be the area of the degree of the square-size
tablet?

#6: In my backyard, there is a huge tree, bigger than my
house, and I have noticed that the smaller branches are
usually pulled down because of the spider webs. Question:
Does the size of the spider’s web really affect how the smaller
branches are pulled? And is the spider’s webbing good
enough to catch prey?

(Continued)
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TABLE 5 (Continued)

Activity Problem-posing

#8: From the picture, I have speculated that the wooden
walls in the backyard are falling. Question: What would be
the cause of the wood falling? Metal bars have been added to
support it, but even so, they still fall. Is there a logical
explanation for the wood getting weaker?

#10: Can the size of the bag or box affect the amount of chips
inside it? Or, to be more specific, can you say a cylindrical
shape holds more chips than a box or a bag?

#13: Do the fans work more effectively if they are far apart
from each other to a certain degree?

Final walk

I wonder why there are so many things to power one small water park, and what intrigues
me is how it is used; it is useful for sanitization and other reasons.
How much water was possibly used daily? Also, from the sign shown, what kind of
chemicals were added to the water and for what reason?

Post-survey I see all of the circles on top of each other, and I would ask
the question, What could the radius of all the circles be, and
could they all be the same? I describe this picture as a way to
figure out what the size of each circle could be. What could
be the radius of each circle and are they all the same? From
this picture, it makes me think about what could be the
radius of each circle and which formula could help with that?
And if each circle is the same size as each other

(Continued)
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TABLE 5 (Continued)

Activity Problem-posing

What could be the cm of each room of this house, and how
you turn it into an m?
What is the volume of the whole house by comparing each
room’s size?
What could be the length of the whole house considering
each room of the house?

Pose a mathematical problem based on this apartment floor
plan or this apartment

feedback. Their feedback mostly only talked about the two
aspects of the rubric. Below is an example of one student
(male, grade 12) who talked about another student’s #STEMlens
(Figure 3) submission.

I will rate the question as a four I think. Because it is not
that specific, it’s just in the details. The markups, I think a four
because you cannot see the complete image of the cone.

Once students became familiarized with problem-posing, they
started to work on the Final Walk project. An added layer to
this project compared to #STEMlens photos was the presence of
a theme. Each group had to choose one theme, which could be
a STEM topic, a place, or an interesting area. As a result, when
students worked together in groups to create the Final Walk, they
had to collaborate with each other to make sure their problems
shared the same theme. In this excerpt, Abby (grade 12) started with
a problemmore related to geometry than biology, and she managed
to modify her problem based on some feedback she received from
Gina (grade 12) and the instructor. Abby’s photo is presented in
Figure 4. After this discussion, Abby modified here problem from

“what is the space between the two branches” to “what caused
the tree to grow in that shape or form? does it have to do with
the soil?”

Abby: My photo was a tree like a tree branch in the form of

a triangle. And I was going to ask, what is the space between

both of the branches if I’m given a squared plus b squared
equals c squared?

Instructor: So I guess my question to you is, would that be
more related to biology or geometry with that question?

Abby: Geometry.
Instructor: Geometry, because you’re talking about

Pythagorean Theorem, a squared plus b squared plus c squared.
So you kind of want to think about it in amore biological lens, if
that makes sense. So other than Aurora, thank you for sharing,
Jennifer and Nathalie. Anybody? What kind of questions can
we ask about a tree that is in a that forms a triangle? What kind
of questions we ask about it from a biological or environmental
science lens, rather than a lens of geometry?

Gina: Maybe why the tree took that form? Like is there
something else? Like if it got trapped between something or just
why does it has that shape?

In this online program, students were not able to collaborate
with each other in the same ways as they usually do in in-
person meetings. Naturally, the peer collaboration rate decreased
significantly as some students did not even turn on their cameras.
However, once students started to work on the Final Walk project,
they were more likely to critique each other’s problems and
discuss how they could pose different problems so that their
problems could be integrated into a theme-based walk. In this
online program, the Final Walk project was implemented last
and fewer students participated in this Final Walk project than
the #STEMlens activity due to the high attrition rate. However,
instances in which students collaboratively pose problems only
occurred during the Final Walk project. The two examples above
showed how students interacted differently when evaluating their
peers’ problem-posing work in #STEMlens and the Final Walk
project. In the first example, the student’s comment only focused
on the criteria in the #STEMlens rubric (e.g., the markup and
the clearness of the photo). However, in the second excerpt,
Gina proposed some new ideas and questions about the tree in
Abby’s photo, and Abby was able to connect her question to
the group’s theme (i.e., biology and environmental science) with
Gina’s suggestion.

5. Discussion

According to our quantitative analyses that investigated
students’ mathematical dispositions, there was not enough evidence
to conclude that math walk activities enhanced dispositions. One
explanation for this insignificant result is the small sample size. A
recent meta-analysis calculated the average weighted effect size of
students’ dispositions after attending problem-posing interventions
and reported an effect size of 0.54 (Wang et al., 2022). According
to the power analysis with G∗Power (Faul et al., 2009), in order to
compare students’ dispositions between two dependent means, the
total sample size should be equal to or greater than 47. However,
in this study, the sample size between pre-survey and post-
survey mathematical disposition was 17, which made this analysis
underpowered. On the other hand, the qualitative analyses revealed
three themes related to how students were able to think differently
and deeper about mathematical concepts, be more interested
in mathematics, and be more perseverant in solving problems.
However, these effects may not have shown up in the interests
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FIGURE 3

#STEMlens activity student work—The birthday hat.

survey if students still saw math walks as being disconnected from
“school math.”

As introduced earlier, students participated in both semi-
structured and free problem-posing. The results suggested that
students were able to pose more complex problems by the
end of the program in the post-survey than in the pre-survey,
which validated the positive effect of this online program. In
addition, students posed more complex problems in the Final
Walk project than in the video-watching activities and the
pre- and post-survey, which resonated with the finding from
the meta-analysis introduced earlier (Wang et al., 2022) that
including free problem-posing tasks could increase students’
performance. However, the results also indicated that even
though both #STEMlens and Final Walk were free problem-
posing tasks, the problems students generated in the #STEMlens
activity were significantly less complicated than the Final Walk
problems. The main difference between the #STEMlens and Final
Walk project was the peer collaboration and the presentation.
Students were able to collaborate as a group, review each
other’s problems, provide feedback, and solve the problems
together in the Final Walk, which may have promoted more
problem complexity.

In short, students tended to pose more complex problems
in a free problem-posing task than in a semi-structured
problem-posing task. Moreover, collaborating with peers to
pose and solve problems and the requirement to present the

FIGURE 4

Abby’s final work problem photo. Problem: what caused the tree to

grow in that shape or form? Does it have to do with doil?

problems to the audience also was associated with more complex
problems. This result provides evidence for the authentic audience
effect discussed in Crespo (2003): Introducing an authentic
audience (e.g., sharing student-generated problems with others to
solve) could motivate students’ active participation in problem-
posing.

5.1. Limitations and future directions

The limitations of this study were discussed from three
perspectives. First, when generalizing the research findings to other
students or other problem-posing interventions, caution should
be taken. All of the meetings in this program were delivered
through virtual online meetings. In addition, this program was
implemented during a pandemic, and the majority of the students
were already attending online classes all day from home. As
a result, it could be difficult for students to be fully engaged
in all of the activities and meetings, and the instructors were
not able to monitor students’ learning progress. Second, the
small sample size was relatively small for quantitative analyses.
As suggested above, these were the challenges and limitations
caused by the online format and the special time of the program.
The researchers employed this mixed-method research design
and used various data sources to triangulate the findings and
results to address this limitation. Finally, we acknowledge that our
positionalities (as an international doctoral student and a faculty
member interested in mathematics education and problem-posing)
impact analyzing data and interpreting results and findings in
this study.

This study tested and established the possibility of
implementing a purely online math walks program. In prior
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studies, math walks were mostly implemented through in-
person programs where children and youth meet with their
facilitators at the learning sites (Lancaster, 2021; Wang et al.,
2021; Martínez-Jiménez et al., 2022). This study provided
future researchers with some insights about implementing
a completely virtual math walks program. When designing
and implementing online programs, future researchers should
especially pay attention to developing collaborative activities
to increase participant engagement and peer interaction levels.
These collaborative activities are not only effective scaffolding
strategies to support students’ learning activities but can also
potentially address the high attrition issue with online programs.
These research findings also provide educators who are interested
in implementing problem-posing with their students an easy-
to-administer plan for afterschool programs or other informal
learning environments. This study gives an idea of the kinds
of interactions and problem characteristics to look for, as well
as the ways in which such a program might effect or not effect
outcomes that educators are interested in. Although this online
program was implemented with high school students, the
pilot study published by Wang et al. (2021) explored how a
math walk could be administered to early elementary students.
Hence, multiple different age ranges are possible. In addition,
future research should investigate the students’ performance in
different types of math walks tasks on a large scale and explore
how to use the different math walk tasks to develop a more
student-friendly, personalized, and interactive program for youth.
Moreover, in this study, the quantitative results on students’
problem-posing indicated no significant difference in students’
mathematical disposition. However, the qualitative analysis results
revealed that students were able to think differently and deeper
about mathematical concepts and became more interested in
problem-posing. Hence, future researchers can employ more
targeted measures, such as the attitudes toward problem-posing
(ATPP) questionnaire from Nedaei et al. (2019), to better
capture the change in students’ dispositions toward problem-
posing. In addition, some extant literature has investigated
students’ problem-posing performance by responding to different
problem-posing prompts. Zhang et al. (2022) analyzed 669
elementary school students’ problem-posing work and concluded
that students performed better in problem-posing tasks with
specific numerical information than in tasks without numerical
information. Future research should investigate how different types
of problem-posing prompts and programs can affect students’
problem-posing work and behaviors. Finally, increasing levels
of problem complexity seem to signal deeper thinking about
mathematics but can be highly task specific. Future research
should examine methods for having students pose authentic and
community-imbedded problems.

6. Conclusion

This study employed a mixed-method research design to
investigate an online math walks program’s effects on students’
mathematical dispositions and problem-posing performance. The
online math walks program created an informal STEM learning

environment for youth and engaged them in a series of problem-
posing activities. The results partially validated how the math
walk informal learning environment and the problem-posing
activities youth participated in influenced youth to develop
more positive mathematical learning dispositions. Through posing
problems in their homes and communities, youth were able
to think deeper and differently about mathematical concepts
and make connections between school math and real-world
applications. This study also compared youth’s problem-posing
work in different learning activities. It concluded that youth
posed more complex problems in free problem-posing tasks
when they were instructed to collaborate with each other to
create problems and present their self-generated problems to
the audience.
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