
fpsyg-14-1091126 March 22, 2023 Time: 14:51 # 1

TYPE Systematic Review
PUBLISHED 28 March 2023
DOI 10.3389/fpsyg.2023.1091126

OPEN ACCESS

EDITED BY

Xinya Liang,
University of Arkansas, United States

REVIEWED BY

Lang Chen,
Santa Clara University, United States
Peijie Jiang,
Hunan Normal University, China

*CORRESPONDENCE

Kan Guo
guokan@bnu.edu.cn

SPECIALTY SECTION

This article was submitted to
Educational Psychology,
a section of the journal
Frontiers in Psychology

RECEIVED 06 November 2022
ACCEPTED 06 March 2023
PUBLISHED 28 March 2023

CITATION

Ji Z and Guo K (2023) The association
between working memory and mathematical
problem solving: A three-level meta-analysis.
Front. Psychol. 14:1091126.
doi: 10.3389/fpsyg.2023.1091126

COPYRIGHT

© 2023 Ji and Guo. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

The association between working
memory and mathematical
problem solving: A three-level
meta-analysis
Zhongtian Ji and Kan Guo*

School of Mathematical Sciences, Beijing Normal University, Beijing, China

Although working memory (WM) is an important factor in mathematical problem

solving (MPS), it remains unclear how well WM relates to MPS. Thus, we aimed

to determine this relationship by using a meta-analysis. We searched electronic

databases for studies published between 2000 and 2020 and established

operational criteria. We conducted Egger’s regression tests and created funnel

plots to test for publication bias. Finally, a three-level meta-analytic model

analysis of data from 130 studies involving 43,938 participants and 1,355 effect

sizes revealed a moderate relationship between WM and MPS (r = 0.280, 95%

CI = [0.263, 0.314]). Moreover, moderator analyses showed that: (1) dressed-

up word problems were more strongly tied to WM than to intra-mathematical

problems; (2) the central executive function showed the strongest relation with

MPS, whereas the phonological loop had the weakest; (3) gender ratio had

significant moderating effects; and (4) some of the above-mentioned significant

moderating effects were unique after controlling for other factors. Implications

for research and practice were also discussed.
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1. Introduction

Problem solving has, for some time, occupied a prominent position in education research
(e.g., Lawson, 2003; Felmer et al., 2016; Priemer et al., 2020). In recent years, incorporating
problem solving in school mathematics instruction has become a major area of interest
within the field of mathematics education (e.g., Jitendra et al., 2005; Popham et al., 2020).
From the perspective of teaching, research on the cognitive level has not been properly
transferred to pedagogical issues, and remains separate from practice. Focusing on cognitive
training is likely to aid in far-transferring students’ performance. However, previous studies
have failed to show any stable evidence or provide impetus for teachers’ practice. Research
on cognitive abilities and mathematical performance thus far has provided ideas for further
exploration, and it is possible to identify the predictors for problem solving.

Working memory (WM) is frequently mentioned with regards to cognitive abilities
in mathematics. Extensive studies have established that WM is related to students’
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mathematical performance (e.g., Meyer et al., 2010; Ching,
2017; Wu et al., 2017; Korhonen et al., 2018; Fuchs et al.,
2020). In previous studies from Baddeley and Hitch (1974)
and Baddeley (1992, 2003, 2010), WM referred to a system to
provide temporary storage and manipulation of the information
necessary while performing complex tasks. As for mathematical
problem solving (MPS), memory systems also appear to be decisive
factors (Ambrus and Barczi-Veres, 2016). However, studies have
yielded mixed results. For instance, Peng et al. (2016) estimated
the average correlation between WM and mathematical word
problem solving skills to be 0.37 while Song et al. (2011) found
that students with lower WM capacity performed better on
medium difficult problems than students with higher WM capacity.
Solving mathematical problems appears to be complex as the
process involves considerable phases (Pongsakdi et al., 2020). For
mathematics, more attention should be given to “knowledge.”
However, the same “knowledge” might involve different problem
solving strategies and cognitive processes. For example, to calculate
8+5, a child who uses a retrieval strategy might solve it by
recalling from memory, but a child who uses a decomposition
strategy might break it down to 8 + (2 + 3). These are obviously
different and the individual differences in memory abilities are
related to individual differences in MPS. The relationship between
WM and mathematics has been examined by meta-analysis (e.g.,
Peng et al., 2016). Although the classification divides mathematical
skills (e.g., basic number knowledge, whole-number calculations,
fractions, Peng et al., 2016), focusing on cognitive processes and
MPS, the results are complex. For example, for geometry problem
solving tasks from a standardized geometrical achievement test
(Mammarella et al., 2012), children were required to calculate the
area of complex figures and solve complex geometrical problems.
Both calculation skills and geometry knowledge are necessary.
Overall, MPS emphasizes students’ cognitive processes, providing
better future direction.

In MPS, the process comprises several phases that are
not necessarily performed sequentially: (1) understanding the
problem information and situation; (2) translating problems into
a mathematical model; (3) solving the mathematical model with
mathematical skills; (4) interpreting and examining results with
respect to the problem situation; and (5) communicating the results
of the original problems (Pongsakdi et al., 2020). The integrity and
overlapping of these processes make them difficult to break down.
However, different kinds of problems might cause students varying
degrees of cognitive load making it difficult to interpret students’
cognitive processes (e.g., Ayres, 2001; Jäder et al., 2017; Voica et al.,
2020). In the studies of Blum et al. (2007), mathematical problems
were categorized into three main types with varying focuses
on cognitive processes: intra-mathematical problems, dressed-up
word problems, and modeling problems. Schukajlow et al. (2012)
described an intra-mathematical problem as a problem without any
connection to the real world. The beginning of the cognitive process
follows the mathematical model directly. Problems that appeared
the most in class were dressed-up word problems (e.g., Blum,
2015). The cognitive activities involved are more complex than
when solving intra-mathematical problems since the mathematical
models have been dressed- up according to real-life situations. In
solving modeling problems, there always exists a modeling loop
and students are required to go back and forth between reality
and mathematics (e.g., Herbst, 2019). Taken together, according to

students’ performance on different problems, it helps to speculate
and understand how cognitive factors, including WM, relate to the
performance of MPS.

Furthermore, several studies have highlighted that WM
relates to mathematics with the strength of these relations
differing across components of WM (e.g., Costa et al., 2011;
Rennie et al., 2014; Bullen et al., 2020). With their focus on
knowledge and skills, previous studies do not offer an adequate
explanation for the meaning between those components and
the cognitive process during MPS. This article provides valuable
insight for understanding the association. For instance, the central
executive function might be more vital for dressed-up problems
and modeling problems because students must identify what
information is useful for solving the problem, plan how to apply
what they know comprehensively in real life, and make decisions
on how to manage the information. In solving intra-mathematical
problems, the phonological loop may play a more important role
in phonological awareness and coding in counting (e.g., equations,
problems about a sequence of numbers). Therefore understanding
the relationship between the three components and MPS is of
practical significance, and will provide a fresh angle for educators to
re-examine the cognitive processes in MPS. Moreover, researchers
have operationalized WM and these components in a variety of
ways (e.g., operation span, block span, sentence span). Previous
studies have investigated the difference between MPS and WM
measures based on reading and counting (Perlow and Jattuso,
2018). Clarifying these problems will also be beneficial for our
understanding of the nature of MPS.

To address educators’ concerns, it is hoped that this
research will contribute to a deeper understanding of students’
characteristics (e.g., grade level, gender ratio). For example, because
of the changing focus of math instruction (i.e., a heavier focus on
counting/calculations in primary school and at young ages, and
on complex problems when the student reaches middle or high
school), the role of WM may also evolve. In terms of the difficulty
of the problems mentioned earlier, even when distinguished in
one study, they are not comparable on a wide scale across studies.
This research sought to remedy this issue by analyzing MPS by
focusing more on cognitive processes rather than on the difficulty of
knowledge. It is not certain whether intra-mathematical problems
are easier or more difficult than dressed-up problems in different
school periods. By exploring problems or cognitive processes, the
results will be more general without the limitations of age or
other sample types.

In summary, although studies have focused on mathematics,
research has yet to systematically investigate MPS. Most studies
are limited in that they may be generalizable only to mathematics
knowledge, but MPS differs from mathematics in a number
of important ways (e.g., understanding, comprehension, and
monitoring). The aim of this study was to develop a better
understanding of MPS. This paper is structured as follows: We
first focus on problems that stress cognitive processes in MPS.
We then discuss the components and measures of WM. This is
followed by a discussion on the relationship between WM and
MPS. We then explore the influence of sample type which is
independent of knowledge leading to purer results. Besides, a
challenge for this research is that one study may involve two types
of mathematical problems or several subsystems of WM and is
therefore necessary to extract more than one effect size for the
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same study. Common methods such as selecting only one effect
size per study used in the traditional meta-analysis are unlikely to
be appropriate for this study. However, by the three-level meta-
analysis, all the useful effect sizes could be extracted and the
heterogeneity of within-study variance was calculated to ensure
independency (Ran et al., 2022). The three-level meta-analysis
model has been proven to be as effective to estimate the parameters
in meta-analysis as other traditional random effects approaches,
with the additional advantage that multilevel models are more
flexible (Van den Noortgate and Onghena, 2003; Ran et al., 2022).
For example, multiple predictors can be incorporated into this
model (Fernández-Castilla et al., 2020). No previous study has used
the three-level meta-analysis model for analyzing the association
between WM and MPS. To conclude, we answer the following two
questions:

(1) What is the size of the relationship between WM and MPS?
(2) Does the relationship between WM and MPS vary as a

function of (a) task type or (b) participant characteristics?

2. Methods

2.1. Data collection

Figure 1 outlines the inclusion, search, and coding procedures.
To identify studies for the three-level meta-analysis, we first
searched electronic databases (i.e., ERIC, PubMed, Medline,
PsycINFO, ProQuest Educational, Scopus, and the China National
Knowledge Infrastructure) for studies published between 2000 and
2020. We used problem solving, math,∗ and working memory
in our search, as well as the AND command. We removed the
duplicates at first and contacted authors who published studies that
we could not find and asked for their papers or unpublished data.

2.2. Operational criteria for inclusion and
the elimination of studies

For the target topics included in this study, we first established
operational criteria to determine the indicators. We included
studies that had considered WM as a whole model or measured one
of the WM components (e.g., the central executive function).

Regarding MPS, we considered two kinds of outcomes (intra-
mathematical problems and dressed-up word problems). As
the included research focused more on young students, there
was no research using modeling problems to investigate the
relationship. To be considered an intra-mathematical problem,
the task had to include arithmetic problems or natural operations
with no relationship to reality (e.g., addition and subtraction).
To be considered a dressed-up word problem, the task had to
include mathematical reasoning, applied math problems, and some
necessary problem situations.

Furthermore, if a dissertation was published as an article, we
only considered the article itself. After applying these criteria, we
identified 130 studies with sample sizes ranging from 20 to 5,234.

2.3. Coding procedures

We created an online coding form. Two researchers coded the
following content of the selected studies separately: (a) participant
characteristics (e.g., sample size, grade level, country/region,
typically developing students vs. students with difficulties);
(b) type of MPS outcome (intra-mathematical problem/dressed
up word problem); (c) type of WM (unspecified WM/central
executive/visuospatial sketchpad/phonological loop); (d) tool
for measuring WM (inventory/operation/block/sentence/digit/
spot/others).

All effect sizes were then coded. Several studies have reported
more than one measure to examine the relationship between
WM and MPS. According to the basic rules of the three-
level meta-analysis, all relevant effect sizes from each selected
study were coded without reducing the number of effect sizes
in any way. To ensure the robust reliability of this study, two
independent recorders double-coded all the primary studies and
checked the data to ensure coding accuracy. The consensus rate
(Cohen’s kappa) varied between 95 and 100%. Most differences in
coding were because of the lack of effective and comprehensive
information provided in several studies that described the samples
and measures. After revisiting the studies, and discussing the
differences, two independent recorders reached an agreement (see
Supplementary Appendix A).

2.4. Moderator variables

In each study, both groups of important moderators were coded
that might explain the significance of the residual within- and
between-study variance.

2.4.1. Task type
We classified the WM tasks into the central executive, the

visuospatial sketchpad, the phonological loop, and unspecified
WM, which were unspecified in primary studies. We coded the
measurement of WM to determine whether the overall effect size
varied across tools. As highlighted earlier, the classification of WM
tests was determined on the basis of the surface-level elements
of test content. (e.g., inventory, operation, block, sentence, digit,
and spot). We categorized MPS tasks into intra-mathematical and
dressed-up word problems.

2.4.2. Participant characteristics
We included four participant characteristics in this study.

First, we coded gender based on the ratio of males included in
the samples. Second, we categorized the grade levels as follows:
elementary, middle, and high school. Third, we coded the cultural
environment as a category variable (1 = Eastern, 0 = Western)
according to the students’ country or region reported in the study
(Ran et al., 2022). Finally, we coded whether the sample included
students with difficulties (e.g., math difficulties and dyslexia).

2.5. Statistical analysis

We used the metafor package for the R statistical program
(Viechtbauer, 2010) and the three-level meta-analytic model
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FIGURE 1

Flow diagram for search and inclusion on studies.

tutorial (Assink and Wibbelink, 2016) for the analysis. Since three-
level models assume a normal distribution of effect sizes (Van
den Noortgate et al., 2013), it is necessary to transform all data
into Fisher’s Z-values. We applied the Fisher Z-transformation
first to conduct the meta-analysis, and then Fisher’s z-values
were converted back, respectively into correlation coefficients for
interpretability (Hedges and Olkin, 2014; Card, 2015). Pearson’s r
value was not provided in almost 20 of the 130 studies. However,
using alternative formulas from, among other sources, Lenhard and
Lenhard (2016), we were able to compute the r correlation and

then transformed it into Fisher’s Z-score. For instance, we used
a procedure for converting standardized β to r and then r could
be used directly as an effect size. We were also able to compute
Cohen’s d value using the statistic about means, standard deviations
and sample sizes from the treatment and control group, and the
t-statistic from the group test and then transformed d into the
r-value (Borenstein et al., 2009). As noted in the introduction, we
used a three-level random effects model and included all effect sizes
in the same study. The three-level meta-analytic model considers
three variance components distributed across the model’s three
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levels: sampling variance of the extracted effect sizes at Level 1,
variance between effect sizes from the same study at Level 2, and
variance between studies at Level 3 (Assink and Wibbelink, 2016).

To establish whether the variation in the r-value between
the studies was significant, we used the Q test of homogeneity
(Hedges and Olkin, 2014). We also computed the 95% CI for
each overall effect size to provide more information regarding the
correlation. We calculated the variance at Level 1 according to
Cheung’s (2014) formula and applied the log-likelihood-ratio test to
examine heterogeneity at levels 2 and 3. Furthermore, we tested for
significance and calculated the distribution of the overall variance.

We also explored moderator variables as potential sources of
additional variance in the effect size. We used linear models to
predict the study’s outcome from the moderator variables, both
for the continuous (i.e., gender ratio) and categorical (i.e., school
level, task type, and sample characteristics) moderators. Universal
classifications were chosen as the reference category to clarify the
findings between different task types (e.g., unspecified working
memory in WM tasks, both in MPS tasks and others in WM tests).
Furthermore, we used a multiple moderator model to scrutinize the
unique effect of significant moderators in the univariate analyses
and added all significant moderators to the model. We tested
the degree of difference between the subsets of studies using a
Q test and by comparing the correlation magnitude with CIs
between the study subsets. Similarly, we investigated the variances
at levels 2 and 3.

2.6. Publication bias

To test for publication bias, we first conducted Egger’s
regression tests (Egger et al., 1997) to test the relationship between
the size of the effects from each study and the associated standard
error (Georgiou et al., 2020; Ran et al., 2022). If the results of the
linear regression showed no significant difference, there was no
publication bias. Furthermore, we created funnel plots to test for
publication bias. In the funnel plot, the standard error was plotted
on the y-axis and the effect size on the x-axis, and if publication
bias exists, the funnel would not be symmetric (Ludwig et al., 2019;
Borenstein et al., 2021).

3. Results

3.1. Study features

Of the 130 publications included in our final analysis, 24
reported results on all three components of WM, and 55 reported
results on both MPS outcomes. There were 43,938 students
represented, with sample sizes ranging from 20 to 5,234. Moreover,
one study exclusively focused on female students. The number of
effect sizes in each study ranged from 1 to 36.

3.2. Meta-analytic results

The three-level meta-analytic model demonstrated that the
overall mean correlations between WM and MPS were significant

(r = 0.280, p < 0.001, 95% CI = [0.263, 0.314]). Additionally,
the log-likelihood-ratio test showed significant heterogeneity
(p < 0.001) at the within-study variance (Level 2) and the between-
study variance. Exactly 16.34% of the total variance could be
attributed to variance at Level 1, 26.05% of the total variance could
be attributed to the differences between the effect sizes within
studies at Level 2, and 57.61% could be attributed to the between-
study variance (Level 3).

3.3. Results of the moderator analyses

First, we delved into the role of the three components of WM,
two types of MPS tasks, and the measured elements (WM) in
the relationship of interest. As outlined in Table 1, they were
all significant moderators. Studies testing the central executive
produced significantly larger correlations than those that tested
the other two components (0.303 > 0.265 > 0.248, p < 0.001).
Compared with other tasks, studies using intra-mathematical
problems only generated a significantly smaller correlation than
those using dressed-up word problems (0.309 > 0.259, p < 0.001).
Besides, measuring WM by operation showed a larger relation than
any other WM tests (p < 0.001).

Second, we further analyzed the moderating effects of
participant characteristics, including gender, school level, culture,
and sample characteristics. As seen in Table 2, the gender ratio
was a significant moderator. The regression coefficient was positive
(β = 0.016), implying that this association was stronger in boys.
Besides, the correlation between WM and MPS was stable across
school level, cultural background, and unfolding situation.

Previous studies have demonstrated that moderators might
be interrelated (Hox et al., 2017). Therefore, we added all the
significant moderators to the multiple moderator model to examine
what effects were really relevant. As mentioned earlier, we chose
universal classifications as the reference category. The omnibus test
showed significant results, F(12,973) = 7.676, p < 0.001, suggesting
that at least one of the regression coefficients of the moderators
significantly deviated from zero. Based on the findings in Table 3,
we were able to assert that the components of WM, MPS tasks and
measured elements for WM were not confounded by the gender
ratio. These results indicated these three moderators had a uniquely
moderating effect on the association.

3.4. Publication bias

The results of Egger’s test suggested that publication bias should
be ignored in the meta-analysis because the p-value of this test
exceeded 0.05. The symmetric distribution of the funnel plot was
depicted in Figure 2, which indicated that the results of our meta-
analysis were stable and reliable.

4. Discussion

The purpose of this meta-analysis was to estimate the size
of the relationship between WM and MPS and to determine if
different factors (task type/participant characteristics) moderate
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TABLE 1 Relation between working memory (WM) and task types.

Moderator
variable

k Intercept/mean z
(95% CI)

β (95% CI) Mean r F(df1, df2) p-value Level 2
variance

Level 3
variance

a. Variable

Unspecified working
memory (RC)

465 0.301*** (0.271, 0.332) 0.292 F(3,1353) = 7.384 <0.001*** 0.008*** 0.018***

Central executive 341 0.313*** (0.278, 0.347) 0.011 (−0.024, 0.047) 0.303

Phonological loop 303 0.253*** (0.222, 0.285) −0.048** (−0.079, −0.016) 0.248

Visuo-spatial sketchpad 248 0.271*** (0.238, 0.303) −0.031 (−0.063, 0.002) 0.265

b. Mathematical problem solving tasks

Both (RC) 70 0.343*** (0.290, 0.396) 0.330 F(2,277) = 17.360 <0.001*** 0.008*** 0.020***

Intra-mathematical
problem

912 0.265*** (0.237, 0.293) −0.078** (−0.127, −0.029) 0.259

Dressed-up word
problem

297 0.319*** (0.289, 0.350) −0.024 (−0.075, 0.027) 0.309

c. Measured element (WM)

Others (RC) 608 0.285*** (0.256, 0.313) 0.278 F(6,274) = 4.335 <0.001*** 0.009*** 0.019***

Operation 22 0.410*** (0.329, 0.491) 0.125** (0.045, 0.205) 0.388

Block 175 0.280*** (0.245, 0.315) −0.005 (−0.034, 0.024) 0.273

Sentence 97 0.298*** (0.259, 0.337) 0.014 (−0.020, 0.047) 0.289

Digit 277 0.274*** (0.243, 0.305) −0.010 (−0.035, 0.014) 0.267

Spot 129 0.342*** (0.304, 0.380) 0.058*** (0.025, 0.090) 0.329

Inventory 3 0.250 (−0.057, 0.557) −0.035 (−0.343, 0.274) 0.245

k = numbers of correlations; mean z = mean effect size (Fisher’s z); β = estimated regression coefficient; r = correlation size (Pearson’s r) for studies belonging to different categories of
the moderator variable; Level 2 variance = variance between effect sizes extracted from the same study; Level 3 variance = variance between studies; RC = reference category. **p < 0.01;
***p < 0.001.

TABLE 2 Relation between working memory (WM) and participant characteristics.

Moderator
variable

k Intercept/mean z
(95% CI)

β (95% CI) Mean r F(df1, df2) p-value Level 2
variance

Level 3
variance

a. Gender 1063 0.260*** (0.232, 0.288) 0.016*** (0.009, 0.024) 0.254 F(1,1061) = 16.639 <0.001*** 0.007*** 0.015***

b. School level

Primary school (RC) 1188 0.280*** (0.255, 306) 0.273 F(2,1236) = 0.533 0.587 0.009*** 0.015***

Middle school 36 0.281*** (0.144, 0.418) 0.001 (−0.138, 0.140) 0.274

High school 25 0.364*** (0.207, 0.521) 0.084 (−0.075, 0.243) 0.349

c. Culture

Western (RC) 1066 0.288*** (0.258, 0.317) 0.280 F(1,1234) = 0.023 0.881 0.009*** 0.017***

Eastern 170 0.283*** (0.225, 0.341) −0.005 (−0.070, 0.060) 0.276

d. Sample characteristics

Typically-developing
students (RC)

1050 0.286*** (0.258, 0.313) 0.278 F(1,1355) = 0.348 0.556 0.008*** 0.018***

Partly children with
difficulties

87 0.300*** (0.253, 0.348) 0.015 (−0.034, 0.063) 0.291

k = numbers of correlations; mean z = mean effect size (Fisher’s z); β = estimated regression coefficient; r = correlation size (Pearson’s r) for studies belonging to different categories
of the moderator variable; Level 2 variance = variance between effect sizes extracted from the same study; Level 3 variance = variance between studies; RC = reference category.
***p < 0.001.

their relationship. When we considered any correlation between
any components of WM, we found significant links between WM
and MPS (the average correlation was 0.280), which are similar
to those reported in previous meta-analyses (Peng et al., 2016).
Additionally, this relationship was significantly influenced by

publication characteristics and task type, but not by participant
characteristics. Concretely speaking, in terms of WM, all
components of WM demonstrated significant ties with MPS, and
the central executive showed the strongest relationship (r = 0.303).
Regarding the WM tests, operation span had a strong relationship
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TABLE 3 Multiple moderator model on the relation between working memory (WM) and mathematical problem solving (MPS).

Moderator variable k β (95% CI)

Intercept 0.428(0.332, 0.524)***

a. Gender ratio −0.057(−0.125, 0.010)

b. Components of working memory Central executive 243 −0.003(−0.045, 0.038)

Phonological loop 203 −0.020(−0.062, 0.022)

Visuo-spatial sketchpad 214 −0.061(−0.119, −0.003)*

c. Mathematical problem solving tasks Intra-mathematical problem 691 −0.050(0.015, 0.084)**

Dressed up word problem 242 −0.026(−0.125, 0.073)

c. Measured element (WM) Operation 13 0.102(0.012, 0.191)*

Block 147 −0.033(−0.072, 0.005)

Sentence 91 0.006(−0.027, 0.039)

Digit 200 −0.029(−0.057, −0.002)*

Spot 97 0.025(−0.011, 0.061)

Inventory 3 −0.064(−0.331, 0.203)

Multiple moderator model k = 986 F(12,973) = 7.676 p < 0.001 Level 2 0.007*** Level 3 0.013***

k = numbers of correlations; β = estimated regression coefficient; Level 2 = variance between effect sizes extracted from the same study; Level 3 = variance between studies. *p < 0.05; **p < 0.01;
***p < 0.001.

with MPS. In the field of outcomes for MPS, the connection
between WM and dressed-up word problems was stronger.
Furthermore, although gender ratio had significance, the results of
the multiple moderator model indicated that it was not as steady as
expected.

In MPS, diverse strategies and cognitive processes were
identified as different types of math problems (Star and Rittle-
Johnson, 2008; Hu et al., 2017; Rott et al., 2021). Since
different types of problems require different cognitive abilities, we
investigated this by examining the relationship between WM and
intra-mathematical or dressed-up word problems (Rellensmann
and Schukajlow, 2017; Krawitz and Schukajlow, 2018). In this
meta-analysis, intra-mathematical problems appeared to be purely
mathematical tasks and could not lead to any reality-related
mental activities. In contrast, dressed-up word problems are
more common in daily life and may require more cognitive
resources. Students may have to identify missing or useful
information, “undress” the problems, and experience the process
of mathematization.

In this meta-analysis, we found that two kinds of mathematical
problems were both positively related to WM and the types of MPS
indeed moderated the relationship. Furthermore, dressed-up word
problems showed stronger links than intra-mathematical problems
(r = 0.309 for dressed-up word problems). Additionally, the
results of the multiple moderator model indicated similar results.
Taken together, these findings imply that cognitive processes
drive the relationship between WM and MPS, and highlight
their important roles. Understanding the problem situations and
translating them into a mathematical model might draw upon
significant WM resources. Currently, problem solving is no longer
thought of as solving pure mathematical problems (Holmes et al.,
2017; Priemer et al., 2020). Recent developments in science,
technology, engineering, and mathematics (STEM) and project-
based learning place a strong emphasis on 21st-century skills,
such as solving problems in reality (Markham et al., 2003;

Chen and Yang, 2019; Priemer et al., 2020). As mathematical
educators, we also expect students to apply math to real-life
scenarios. Students are required to practice solving more reality-
related problems, such as ill-structured problems (e.g., Jäder
et al., 2017), rather than intra-mathematical problems, thus they
also need more regulation of cognition and experience more
complex processes. Based on such a trend, WM may play a
larger role in identifying valuable information, organizing, and
monitoring total performance, and rethinking outcomes in real
life.

Regarding WM, we found that the relationship between MPS
and WM is indeed affected by components of WM, and the
central executive function indicated the strongest relationship with
MPS, whereas the phonological loop had the weakest relationship
(r = 0.303 for the central executive, r = 0.248 for the phonological
loop, and r = 0.265 for the visuospatial sketchpad). Given the variety
of WM tests, we also found that each WM test-MPS relationship
was well documented and the tests measuring operations showed
stronger links than other types. Previous studies have demonstrated
that WM tests measure both cognitive abilities and other skills
(e.g., counting numbers) according to how the construct was
conducted and assessors always use the tool relating best to
their criterion of interest (Perlow and Jattuso, 2018). However,
the results show that practitioners should pay more attention
to cognitive characteristics or relationship between WM tests
and other constructs. Besides, several cognitive processes of the
executive system might influence WM in MPS, such as controlling,
encoding, and retrieval strategies, and suppressing unnecessary
information (Miyake et al., 2000; Oberauer et al., 2003). Multiple
moderator model analyses also proved that the central executive
function showed a stronger relationship than the other two
components. Taken together, students need to better master
how to organize the entire MPS process. To promote students’
performance in MPS, training the central executive function would
be a powerful strategy. As mentioned earlier, because problem
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FIGURE 2

Funnel plot of the overall mean r analysis.

solving integrates information from different branches of math,
students may need to have a solid command of switching strategies
flexibly, and the relationship between WM and MPS should be
invariant.

Although gender ratio showed significance, its moderating
effects were not robust after controlling for other factors. School
level and other participant characteristics did not moderate the
relationship between WM and MPS either. Rooted in the idea
that cognitive universals exist in this relationship, we claimed that
the contributions made here have wide applicability. Additionally,
although the school level had a non-significant moderation effect,
students at higher school levels showed a larger relationship
(0.349 > 0.274 > 0.273). Young students always rely on some
basic problem solving strategies such as finger counting to solve
mathematical problems at the beginning of formal schooling
(Ramirez et al., 2016; Palmer and van Bommel, 2020). By practicing
these strategies, they develop strong problem–answer associations.
Thus, when they grow up and use more advanced problem
solving strategies, they rely heavily on memory-based processes

(Siegler and Shrager, 1984; Laski et al., 2013). Another possible
reason is due to the different developing patterns among the
three components of WM. Studies focusing on working memory
have found that the central executive matures later (Palmer, 2000;
Muñoz-Pradas et al., 2021), which provides a plausible explanation
for our finding. However, the current research still pays insufficient
attention to the relationship between WM and MPS in high
school students. We recommend additional research to focus on
the relationship in senior grades, and apply lab-based findings
to actual situations (Cui and Guo, 2022). Clearly, our meta-
analysis synthesized research from multiple sources and obtained
relatively more reliable conclusions than a single study, thus to
some extent making up for the current deficiencies. A greater focus
on that could produce interesting findings that develop a deeper
understanding of the relationships between WM and MPS.

Our study has some limitations. Although we searched for
unpublished papers, this might be a problem for the current
study, with a bias toward significant effects. Thus, although funnel
plot analyses and Egger’s test confirmed that publication bias
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was probably not a major problem in this study, we may have
missed studies that reported non-significant results. Besides, we
acknowledge that some of the categories in the moderator analyses
did not include many studies. For instance, when investigating the
role of school level/grade in the relationship, we had only three
students in high school and four in middle school. This may have
influenced the chances of finding significant differences. Third, we
did not examine the relationship between problem solving and
WM. The reason for this circumstance is that primary studies rarely
report on the relationship between WM and each process, such
as identifying information. Hence, we strongly recommend that
future empirical research about this relationship pay more attention
to the specific process of MPS. This would allow researchers to
further explain how WM is related to MPS. Finally, we did not
control for the role of instruction in the relationship between WM
and MPS. Previous studies indicate that students’ MPS competency
can be improved through training and practice (Witt, 2011).
Different forms of instruction can alter the cognitive processes
involved in specific problems.

In summary, the present meta-analysis applied a three-
level, meta-analytic model to quantitatively synthesize the overall
association between WM and MPS. The manuscript, therefore,
adds to a growing body of research on the role of WM (e.g., Reber
and Kotovsky, 1997; Justicia-Galiano et al., 2017). Therefore, all
evidence supports the significantly positive correlation between
WM and MPS, suggesting that there are benefits if we develop
students’ WM abilities, which are linked to mathematical
performance. Subsequent moderator analyses demonstrated some
significant moderators that could explain differences in the strength
of the relationship, namely publication characteristics and the task
type of WM, as well as MPS. These results have direct implications
for instruction and interventions in programming. However, this
meta-analysis also underscores areas for future research, including
processes of MPS and specific populations [e.g., students with
math-related disabilities, which may have significant benefits in
terms of mathematical cognition (Geary et al., 2005)].
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