
Frontiers in Psychology 01 frontiersin.org
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Item response tree (IRTree) models are theorized to extract response styles from 
self-report data by utilizing multidimensional item response theory (IRT) models 
based on theoretical decision processes. Despite the growing popularity of the 
IRTree framework, there has been little research that has systematically examined 
the ability of its most popular models to recover item parameters across sample 
size and test length. This Monte Carlo simulation study explored the ability of IRTree 
models to recover item parameters based on data created from the midpoint 
primary process model. Results indicate the IRTree model can adequately recover 
item parameters early in the decision process model, specifically the midpoint 
node. However, as the model progresses through the decision hierarchy, item 
parameters have increased associated error variance. The authors ultimately 
recommend caution when employing the IRTree framework.
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Introduction

Item response theory (IRT) is a methodological framework for modeling response data 
that has gained support and interest over the past several decades. It encompasses a 
collection of mathematical models that can be applied to assess the relationship between 
test performance and the underlying trait (s) that drive that performance (Hambleton et al., 
1991). The interest in IRT has led to development of an offshoot framework commonly 
known as item response trees (IRTrees). This methodology offers an alternative to the 
underlying assumptions of IRT by modeling theoretical decision hierarchies that underly 
response selection in surveys and tests (Böckenholt, 2012). Most commonly, these models 
have regularly been applied to examine response styles, as they are hypothesized to 
discretize specific response tendencies within both the data and model (e.g., Böckenholt, 
2012; De Boeck and Partchev, 2012; Plieninger and Heck, 2018). Despite the growing 
popularity of IRTrees, there has been scant research that systemically examines the ability 
of IRTree models to recover item parameters of even the most regularly employed models 
in the IRTree framework across standard data parameters, such as sample size and test 
length. Researchers often compare IRTree models to traditional IRT models to determine 
fit, but only relative fit statistics are available for comparison, as IRTree models do not 
conform to absolute fit indices. As such, questions remain as to the ability of the models 
to recover the latent variables and item parameters from datasets. In this paper, we carried 
out a series of simulations to examine the influence of sample size and test length on one 
of the most widely employed IRTree models for assessing response style.
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Item response theory

IRT has many applications for studying test behavior (Baker, 2001; 
Embretson and Reise, 2013). In particular, the standard 2PL model 
has proven useful for analyzing dichotomous personality data (Waller 
and Reise, 1989; Reise and Waller, 1990). It is also a useful starting 
point for considering responses to Likert scales with more than two 
options. The equation for the 2PL model is:
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where the probability of endorsing (Y = 1) item i for person j is a 
function of a person’s trait level (θ j), an item’s discrimination (α), and 
an item’s difficulty (β). In Equation 1, trait levels (θ) are assumed to 
have a mean of 0 and a standard deviation of 1, and item difficulty (βi) 
is placed onto the same metric as θ. In the personality context, the 
term item difficulty is used somewhat loosely. It reflects the location 
on the θ scale where individuals have a 50% probability of endorsing 
the item. More difficult items require higher θ for endorsement. In 
general, items are modeled to represent different degrees of the latent 
trait being measured. The change in probability levels out as 
individuals’ trait levels get farther away from the item’s difficulty. 
Based on this, the most difficult items can be  useful for isolating 
individuals at top trait levels, whereas other items may be useful for 
partitioning individuals at a low-to-moderate standing on the trait.

Most self-report scales in the literature are not dichotomous, but 
rather comprised of polytomous items. Researchers have adapted the 
2PL model to polytomous items, most notably with the graded 
response model (GRM; Samejima, 1969) and the graded partial credit 
model (GPCM; Masters, 1982). However, one of the key assumptions 
of IRT is that of local independence (Embretson and Reise, 2013). 
Local independence states that once the latent trait has been accounted 
for, the items are conditionally independent of each other. However, 
response styles may violate this assumption (Blalock, 1970). 
Participants who maintain a response style may respond in a fixed 
pattern, regardless of item content and their own corresponding latent 
trait (s) of interest, resulting in conditional dependency across items. 
As such, researchers have developed new multidimensional models to 
account for response styles that are derived from IRT methodology.

IRTrees

The IRTree framework was developed to better ascertain response 
styles in participant responding using non-compensatory 
multidimensional IRT models (Böckenholt, 2012; De Boeck and 
Partchev, 2012). The most common IRTree models can 
be differentiated into agreement primary process (APP) and midpoint 
primary process (MPP), where the former is primarily used for even-
point scales and the latter is used for odd-point scales. For the rest of 
the paper, we focus on the 5-point MPP model, as 5-point Likert scales 
are the most common in the literature. The MPP model is based on a 
theoretical decision-making hierarchy where participants respond to 
items on a questionnaire using three decisions, called nodes, illustrated 
in Figure 1 and Table 1. The MPP model decomposes the original 
Likert data into three distinct nodes, comprised of binary decision 

processes. This decomposition shown in Figure  1 results in three 
distinct factors as represented in the following equation:
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where each node has its own α (discrimination) and β (difficulty) 
parameters which are multiplied to indicate endorsement of an 
individual item (γvi). The first decision node indicates interindividual 
differences on the midpoint node, as represented by θ. Subsequent 
nodes indicate the interindividual differences on the agreement and 
extreme responding node, represented by η1 and η2, respectively. The 
discrimination and difficulty parameters represent said parameters for 
each node, respectively. As illustrated in Equation 2 and Figure 1, the 
decision hierarchy progresses through each node. Table 2 illustrates 
the transformation into pseudo-item matrices to represent this 
decision hierarchy.

Initially, participants must decide whether they have an opinion 
about the item, which is illustrated in the first node, known as the 
midpoint response (MRS) node. In this decision process, either the 
middle response option or a directed response is chosen. If a middle 
response is chosen the decision hierarchy is terminated, as the 
individual responds with the midpoint of the scale (e.g., a 3 on a 
5-point Likert scale) and no further elaboration is required (see 
Figure 1). As illustrated in Table 1, only the MRS node influences a 
MRS of 3 on the scale. If a directed response is chosen, the participant 
continues down the decision hierarchy to the agreement node, 
choosing a directed response of agreement or disagreement (see 
agreement node in Figure 1). The last decision process in the hierarchy 
is the extreme node. In this process, the participant, having already 
chosen a directed response, must choose whether to respond in the 
extreme or not. This process is illustrated by the two extreme response 
(or ERS) nodes in Figure 1. Importantly, although the ERS node is 
represented by two nodes in the figure, there is only one latent trait for 
ERS as it is a function of the previous responses. As illustrated in 
Table 1, the ERS node has an influence on both the agreement and 
disagreement side of the scale, but it is one latent trait. In other words, 
the ERS node is a function of extreme or not extreme response, 
regardless of whether they previously decided to agree or disagree.

Researchers utilizing the IRTree methodology have advocated that 
it is more effective at managing the variance from response styles than 
traditional IRT models and other methods of response style 
identification (De Boeck and Partchev, 2012; Böckenholt, 2017). It is 
argued that the agreement node extracted from the multidimensional 
IRT model described above is a purer form of the latent construct 
because MRS and ERS have been controlled for in the model (De 
Boeck and Partchev, 2012; Böckenholt, 2017). Indeed, Lahuis et al. 
(2019) found the agreement node predicted job performance and 
other variables better than latent traits from the GRM model. 
However, other researchers have demonstrated the constructs of MRS 
and ERS have provided additional predictive validity in multiple 
contexts (e.g., He and Van de Vijver, 2015; Sun et al., 2019). In these 
cases, the nature of the data itself has not been known (as it is observed 
data rather than simulated data), which makes the effects of response 
style and the effects of other latent traits difficult to fully parse.
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As IRTrees are relatively nascent, many questions about the 
models remain. Most studies conducted on IRTrees have been on 
observed data. Böckenholt’s seminal articles on IRTrees (De Boeck 
and Partchev, 2012; Debeer et  al., 2017) utilized data from the 
Personal Need for Structure Scale (PNS; Neuberg and Newsom, 
1993). Across articles he found the PNS fit the data better than 
traditional models, such as the GRM (Böckenholt, 2017; 
Böckenholt and Meiser, 2017). IRTrees have also been used to 
explore global scales such as the Five Factor Model (FFM) of 
personality (Khorramdel et  al., 2019) and other more specific 
scales (e.g., subordinate traits of the FFM; LaHuis et al., 2019; Park 
and Wu, 2019). Previous research on IRTrees has traditionally 
focused on comparing IRTree models and unidimensional models 
of IRT (e.g., GRM and GPCM) with the Akaike information 
criterion (AIC; Akaike, 1974) and Bayesian information criterion 
(BIC, Schwarz, 1978). Meiser et  al. (2019) have noted this as a 
limitation in the literature. Due to not being modeled on the same 
data, direct comparison between ordinal response data and IRT 

models with AIC and BIC violate a fundamental assumption of 
these statistics.

In addition, there have been some simulation studies in the 
literature on IRTrees. Some such studies have kept sample size and 
test length constant (Jin and Wang, 2014; Jeon and De Boeck, 2016; 
Plieninger and Heck, 2018), while others have either focused solely 
on one response style (e.g., ERS; Jin and Wang, 2014), scales with 
only three response options (Jeon and De Boeck, 2016), alternative 
response styles (e.g., acquiescence; Plieninger and Heck, 2018), or 
extending the general framework (Tijmstra et al., 2018; Ames and 
Myers, 2020). None have explored the ability of the model to 
recover parameters across sample sizes and test length using Monte 
Carlo simulation. Given the wide range of potential applications for 
IRTrees across numerous domains, understanding the ability of the 
IRTree models to recover item parameters and the necessary sample 
size and test length to do so are important questions for 
the framework.

Current study

The current study sought to explore the ability of the IRTree 
model to recover parameters from data created from the IRTree 
methodology using the MPP model across sample sizes and test 
lengths. Specifically, we explored if the MPP model was able to recover 
item (discrimination and difficulty parameters) parameters from 
5-point Likert data under varying test lengths and sample sizes. The 
current study used a 4 (sample size) x 3 (test length) design to examine 
these research questions.

FIGURE 1

The Midpoint Primary Process (MPP) Decision Hierarchy Model. This figure assumes a “1” to “5” Likert scale for response options.

TABLE 1 Category probabilities based on the MPP.

Response 
category

Probability formula

1 (1-θ(αMθM + βM))*(1-θ(αAθA + βA))*θ(αEθE + βE)

2 (1-θ(αMθM + βM))*(1-θ(αAθA + βA))*(1-θ(αEθE + βE))

3 θ(αMθM + βM))

4 (1-θ(αMθM + βM))*θ(αAθA + βA)*(1-θ(αEθE + βE))

5 (1-θ(αMθM + βM))*θ(αAθA + βA)*θ(αEθE + βE)
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Method

Simulation

Sample sizes
We chose to model data across fours sample sizes: 500, 1,000, 

1,500, and 5,000. Wang and Nydick (2015) have suggested a minimum 
sample size of 1,000 are required for adequate parameter recovery of 
non-compensatory MIRT models. Notably, their study was conducted 
on data sets that did not have missing data. However, when items are 
recoded into the binary items for IRTree analysis, there is missing data 
based on the inherent structure of the hierarchical model (see Table 1). 
As some IRTree studies conducted in the literature are analyzed on 
data sets as small as 500 or less (e.g., Leventhal, 2019; Luby et al., 2020; 
Spratto et al., 2021), we chose the samples size of 500 to represent the 
common practice in the literature, 1,000 as a minimum threshold per 
Wang and Nydick (2015), and 1,500 as a moderately sized data set, and 
5,000 as a large data set.

Test length
We chose test lengths of 10, 15, and 20 items. As noted by Lang 

et al. (2019), IRT models with less than 10 items are often unstable. 
Best practices set forth in the literature typically advocate for a scale 
of at least 10 items for adequate parameters. Additionally, given the 
number of latent traits that we intend to model, smaller scales may 
have difficulty converging with fewer items. After conversion of the 
data to the IRTree model, some of these items will be missing, due to 
the binary transformation. We  chose an upper limit of 20 items 
because we deemed it unlikely to find Likert-type scales that are longer 
than 20 items per construct and do not violate local independence. 
Furthermore, previous simulation studies on IRTree models have used 
20 item-scales in their stimulations (Jin and Wang, 2014; Jeon and De 
Boeck, 2016; Plieninger and Heck, 2018).

Data creation and parameter recovery

To create the IRTree parameters, we created data based on the 
formula from Böckenholt (2017) illustrated in Equation 2 and Table 1.

Alpha parameters
We created three alpha matrices, one each for the midpoint, 

agreement, and extreme nodes for the discrimination parameters, 
sampling from three log-normal distributions. The first log-normal 
distribution was for the midpoint node, which had a mean of-0.5 and 
a standard deviation of 0.5, as established by previous research 
(Tijmstra et  al., 2018). The agreement node was sampled from a 

log-normal distribution with a mean of 0.3 and a standard deviation 
0.2, which is standard for a binary 2PL model (Mislevy and Stocking, 
1989; Harwell and Baker, 1991; Mooney, 1997; Feinberg and Rubright, 
2016; Bulut and Sünbül, 2017). Lastly, the discrimination parameters 
for the extreme node were sampled from a log-normal distribution 
with a mean of 0.5 and a standard deviation of 0.5. We chose this latter 
distribution because previous research has demonstrated the 
discrimination parameters for the extreme node are negatively 
associated with the midpoint node (Böckenholt and Meiser, 2017). As 
such, we  took the inverse of the midpoint node. The mean α 
parameters for the 20-item scale were 0.49, 1.31, and 1.52 for the 
midpoint, agreement and extreme nodes, respectively.

Delta parameters
All difficulty parameters were drawn from three normal 

distributions. Previous models utilizing the IRTree methodology have 
modeled the difficulty parameters differently.1 Tijmstra et al. (2018) 
reasoned the midpoint node had a normal distribution with a mean 
of-2; whereas Ames and Myers (2020) argued the midpoint and 
extreme both had a mean of 0. Because there is little agreement on the 
mean of the midpoint node, we sampled parameters from a normal 
distribution with a mean of-1 and a standard deviation of 0.5 for the 
midpoint node, splitting the difference between the studies. Similarly, 
the extreme node tends to fall on the extreme side of the latent trait 
when difficulty parameters are modeled with IRTrees. As such, 
we randomly sampled difficulty parameters from a normal distribution 
with a mean of 1 and a standard deviation of 0.5. The difficulty 
parameters for the agreement node were drawn from a normal 
distribution with a mean of 0 and a standard deviation of 1, per 
previous research (Mislevy and Stocking, 1989; Harwell and Baker, 
1991; Mooney, 1997; Feinberg and Rubright, 2016; Bulut and Sünbül, 
2017). The mean d parameters for the 20-item scale were-0.44, −0.13, 
and 1.58 for the midpoint, agreement and extreme nodes, respectively.

Theta parameters
Ability parameters were drawn from a standard normal 

distribution. We specified the correlations between the latent traits 
based on previous research (Böckenholt, 2017). Specifically, the 
agreement node had a small average negative relationship with the 
midpoint node (r = −0.10) and a small average positive relationship 
with the extreme node (r = 0.10). The midpoint and extreme nodes 
were set to correlate with each other on average at −0.50, as previous 
research has demonstrated they have a modest negative correlation 
(Böckenholt, 2017).

Analysis
Data was modeled using functions from the following packages 

in R (version 4.1.3): mirt (Chalmers, 2012), SimDesign (Chalmers and 
Adkins, 2020), and MASS (Venables and Ripley, 2002). The IRTree 
data was created with the model specified in the above section, which 
resulted in binary items. A total of 12 conditions were evaluated with 
2000 replicates each. We estimated all models using the Markov Chain 

1 We note that we utilized delta parameters instead of beta parameters for 

the current study. Beta parameters are modified by alpha. As such, we wanted 

to test the unmodified difficulty parameters.

TABLE 2 Pseudo-items matrices for five-category model.

Category Midpoint Agreement Extreme

1 0 0 1

2 0 0 0

3 1 – –

4 0 1 0

5 0 1 1
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Monte Carlo (MCMC) algorithm with the R2Jags (Su and Yajima, 
2021) package in R. We chose this estimation as previous research has 
demonstrated the MCMC algorithm is the best for estimating 
non-compensatory models (Wang and Nydick, 2015). The α prior 
distributions were, respectively, set to-0.5, 0.3, and 0.5 for the 
midpoint, agreement, and extreme nodes, in accordance with our data 
creation. The delta prior distributions were set to-1, 0 and 1 for the 
midpoint, agreement, and extreme nodes respectively, in accordance 
with our data creation outlined above.

The accuracy of recovery for item parameters and theta were 
evaluated based on the root mean square error (RMSE) and the 
confidence intervals around the estimates. We  chose the former 
statistic as they can illustrate the difference between the predicted 
scores and the actual scores the data was created on. We report the 
average standard errors and confidence intervals for the alpha and 
delta parameters for each node in each condition. To analyze the 
effects of the simulation conditions on parameter recovery 
we  conducted a series of between-subjects factorial analysis of 
variance (ANOVA) to determine the effect each of the manipulations 
had on estimation bias. We examined the effect sizes of sample size 
and test length by regressing the manipulations as factors onto the 
RMSE of the discrimination and difficulty parameters. Partial 
eta-squared values were calculated using the effectsize package 
(Ben-Shachar et al., 2020).

Results

Results of the recovery, mean parameters for each node, standard 
errors for each node and 95% confidence intervals for the 
discrimination and difficult parameters from the simulated IRTree 
data were obtained for the 12 conditions in the study. Table 3 illustrates 
the mean RMSE and bias statistics for the discrimination and difficulty 
parameters across sample size and test length. Table 4 illustrates the 
mean parameter estimate, standard error and 95% confidence interval 
for the alpha and delta parameters across sample size and test length.

Item parameter recovery

Discrimination parameters
First, we discuss the alpha parameters of each node. The RMSE of 

the midpoint node ranged from 0.00 to 0.56 with a mean of 0.13. The 
RMSE of the agreement node ranged from 0.00 to 1.39 with a mean 
of 0.42. The RMSE of the extreme node ranged from 0.03 to 3.61 with 
a mean of 0.94. Results of the alpha parameter RMSE across conditions 
are illustrated in Figure 2. Results indicate that as the model progressed 
through the decision hierarchy it had less ability to recover the alpha 
parameters of the model, as there was more variance in the estimate, 
with the most dramatic change occurring between the agreement and 
extreme nodes. As illustrated in Figure 2, the midpoint node had the 
lowest RMSE followed by the agreement node, followed then by the 
extreme node which was more than triple the RMSE of the agreement 
node. Figure 2 also illustrates the upper and lower quartiles for the 
Midpoint node are relatively small, but as the model increases through 
the hierarchy the quartiles and extremes (upper and lower) become 
larger and the outliers become more pronounced. Table 4 illustrates 
the mean alpha parameters, as well as the associated standard error 

and confidence intervals. There are several issues to note. First, the 
standard errors and confidence intervals of all the alpha parameters 
are relatively small, with the standard error ranging from 0.01 to 0.03. 
As noted before, the mean alpha parameters were 0.49, 1.31, and 1.52, 
for the midpoint, agreement, and extreme nodes, respectively. The 
midpoint and agreement nodes were close to their respective true 
means. The 10-, 15-, and 20-item test lengths were all close to their 
mean distributions.

TABLE 3 Parameter recovery statistics for the IRTree MPP model fitted to 
IRTree MPP model data.

Model 
node

N Test 
length

a 
RMSE

a 
Bias

d 
RMSE

d 
Bias

Midpoint 10 500 0.13 0.00 0.06 −0.02

1,000 0.11 −0.02 0.09 0.03

1,500 0.11 −0.01 0.08 −0.02

5,000 0.16 −0.06 0.09 −0.01

15 500 0.15 0.03 0.11 0.01

1,000 0.14 0.01 0.10 0.00

1,500 0.09 0.02 0.11 0.05

5,000 0.15 −0.06 0.10 0.04

20 500 0.17 0.01 0.07 −0.04

1,000 0.16 −0.08 0.10 −0.03

1,500 0.14 −0.05 0.11 −0.02

5,000 0.10 −0.01 0.07 −0.03

Agreement 10 500 0.45 −0.29 0.91 −0.91

1,000 0.31 −0.31 0.96 −0.96

1,500 0.40 −0.40 0.86 −0.86

5,000 0.49 −0.49 0.81 −0.81

15 500 0.54 −0.46 0.94 −0.94

1,000 0.46 −0.43 0.88 −0.88

1,500 0.44 −0.43 0.96 −0.96

5,000 0.37 −0.35 1.04 −1.04

20 500 0.53 −0.46 0.92 −0.92

1,000 0.41 −0.41 0.95 −0.95

1,500 0.38 −0.37 0.93 −0.93

5,000 0.35 −0.34 0.97 −0.97

Extreme 10 500 1.03 −1.03 2.91 −2.91

1,000 1.15 −1.15 2.93 −2.93

1,500 0.99 −0.99 2.87 −2.87

5,000 0.90 −0.90 2.94 −2.94

15 500 0.59 −0.58 3.12 −3.12

1,000 0.81 −0.80 3.01 −3.01

1,500 0.88 −0.88 3.00 −3.00

5,000 0.73 −0.71 2.94 −2.94

20 500 0.98 −0.98 3.33 −3.33

1,000 1.10 −1.10 3.34 −3.34

1,500 1.13 −1.12 3.30 −3.30

5,000 0.99 −0.99 3.32 −3.32
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To better understand the effects of the sample size, test length and 
nodes on the RMSE we conducted a series of analysis of variance 
(ANOVAs) to determine the amount of variance each factor accounted 
for in the criterion. The effects of sample size, test length, and node on 
the alpha parameters are illustrated in Table 5. Across all criteria the 
node accounted for the most variance in the RMSE statistics. The node 
accounted for 27% of the variance in the alpha RMSE and 2% of the 
variance was due to an interaction between the node and test length. 
Simple effects illustrated the midpoint node had the lowest RMSE and 

was significantly different from the agreement t(504) = −4.96, p < 0.001 
and the extreme node t(504) = −13.61, p < 0.001. Additionally, the 
agreement and extreme nodes were significantly different from each 
other t(504) = −8.64, p < 0.001, with the agreement node having a 
smaller average RMSE.

Next, we  explored the interaction effect to understand the 
interaction of node and test length. For clarity’s sake, we only refer to 
differences between nodes within tests. First, in the 10-item scale 
we found a significant difference in RMSE between the midpoint 

TABLE 4 Parameter recovery statistics for the IRTree MPP model fitted to IRTree MPP model data.

Model node N Test length a X̅ a SE a 95% CI d X̅ d SE d 95% CI

Midpoint 10 500 0.52 0.01 0.50, 0.54 −0.44 0.01 −0.46, −0.42

1,000 0.50 0.01 0.48, 0.52 −0.39 0.01 −0.41, −0.37

1,500 0.51 0.01 0.49, 0.52 −0.44 0.01 −0.46, −0.37

5,000 0.46 0.01 0.44, 0.48 −0.43 0.01 −0.45, −0.41

15 500 0.56 0.01 0.54, 0.58 −0.43 0.01 −0.45, −0.41

1,000 0.54 0.01 0.52, 0.56 −0.44 0.00 −0.44, −0.44

1,500 0.55 0.01 0.53, 0.57 −0.39 0.01 −0.41, −0.37

5,000 0.47 0.01 0.45, 0.49 −0.40 0.00 −0.40, −0.40

20 500 −0.48 0.01 −0.50, −0.46 −0.48 0.01 −0.50, −0.46

1,000 −0.47 0.01 −0.49, −0.45 −0.47 0.01 −0.49, −0.45

1,500 −0.45 0.01 −0.47, −0.43 −0.45 0.01 −0.47, −0.43

5,000 −0.47 0.01 −0.49, −0.45 −0.47 0.01 −0.49, −0.45

Agreement 10 500 0.98 0.01 0.96, 1.00 −1.11 0.01 −1.13, −1.09

1,000 0.96 0.01 0.94, 0.98 −1.17 0.01 −1.19, −1.15

1,500 0.87 0.01 0.85, 0.89 −1.06 0.01 −1.08, −1.04

5,000 0.78 0.01 0.76, 0.80 −1.01 0.01 −1.03, −0.99

15 500 0.82 0.01 0.80, 0.84 −1.15 0.01 −1.17, −1.13

1,000 0.85 0.01 0.83, 0.87 −1.08 0.01 −1.10, −1.06

1,500 0.85 0.01 0.83, 0.87 −1.16 0.01 −1.18, −1.14

5,000 0.93 0.01 0.91, 0.95 −1.24 0.01 −1.26, −1.22

20 500 −1.05 0.01 −1.07, −1.03 −1.05 0.01 −1.07, −1.03

1,000 −1.08 0.01 −1.10, −1.06 −1.08 0.01 −1.10, −1.06

1,500 −1.06 0.01 −1.08, −1.04 −1.06 0.01 −1.08, −1.04

5,000 −1.10 0.01 −1.12, −1.08 −1.10 0.01 −1.12, −1.08

Extreme 10 500 0.30 0.02 0.26, 0.34 −1.71 0.01 −1.73, −1.69

1,000 0.17 0.03 0.11, 0.23 −1.73 0.01 −1.75, −1.71

1,500 0.34 0.02 0.30, 0.38 −1.67 0.01 −1.69, −1.65

5,000 0.43 0.02 0.39, 0.47 −1.74 0.01 −1.76, −1.72

15 500 0.67 0.02 0.63, 0.71 −1.90 0.01 −1.92, −1.88

1,000 0.45 0.02 0.41, 0.49 −1.78 0.01 −1.80, −1.76

1,500 0.36 0.02 0.32, 0.40 −1.77 0.01 −1.79, −1.75

5,000 0.54 0.02 0.50, 0.58 −1.71 0.01 −1.73, −1.69

20 500 −1.75 0.01 −1.77, −1.73 −1.75 0.01 −1.77, −1.73

1,000 −1.76 0.01 −1.78, −1.74 −1.76 0.01 −1.78, −1.74

1,500 −1.72 0.01 −1.74, −1.70 −1.72 0.01 −1.74, −1.70

5,000 −1.74 0.01 −1.76, −1.72 −1.74 0.01 −1.76, −1.72
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node and extreme t(504 = −7.36, p < 0.001 nodes and the agreement 
and extreme nodes t(504) = −4.99, p < 0.001. No differences were 
found between the midpoint and agreement nodes t(504) = 2.37, 
p = 0.30. In the 15 item scale there were no significant differences in 
RMSE between the agreement and extreme nodes t(504) = −3.06, 
p = 0.06. However, there was a significant difference between the 
midpoint and agreement nodes t(504) = −3.24, p = 0.03 and the 
midpoint and extreme nodes t(504) = −6.65, p < 0.001. Lastly, in the 
20-item scale, all three nodes were significantly different from each 
other [midpoint-agreement t(504) = −3.24, p = 0.03; midpoint-
extreme t(504) = −10.63, p < 0.001; and agreement-extreme 
t(504) = −7.39, p < 0.001]. In summation, as the test length became 
longer the difference in the discrimination RMSE between the nodes 
became larger.

Delta parameters
Next, we tested the delta parameters. The RMSE of the midpoint 

node ranged from 0.00 to 0.31 with a mean of 0.09. The RMSE of the 
agreement node ranged from 0.03 to 1.78 with a mean of 0.93. The 
RMSE of the extreme node ranged from 1.69 to 6.75 with a mean of 
3.13. Figure 3 illustrates the same pattern as the alpha RMSE occurs 
with the delta RMSE, such that the midpoint node had the lowest delta 
RMSE, followed by the agreement node and then the extreme node 
which again had over triple the RMSE value of the other two nodes. 
Table  4 illustrates the mean delta parameter, the standard error 
associated with the estimate and the confidence intervals of the 
estimate. As noted, before, the true mean of the midpoint, agreement 
and extreme nodes were-0.43, −0.12, and 1.58, respectively. The 
average midpoint node was close to the true estimates. However, the 
agreement node was off by almost 10 times the true amount with an 
average of-1.10 whereas the true estimate was-0.12. Similarly, the 
extreme node was in the opposite direction with a mean delta of-1.74 
and the true average delta being 1.58. Again, as with the alpha node, 
the standard errors were relatively small ranging from 0.00 to 0.01.

To better understand the effects of the sample size, test length and 
nodes on the difficulty RMSE we conducted a series of analysis of 
variance (ANOVAs) to determine the amount of variance each factor 
accounted for in the criterion. The effects of sample size, test length, 
and node on the alpha parameters are illustrated in Table 5. Across all 
criteria the node accounted for the most variance in the RMSE 
statistics. The node accounted for 81% of the variance in the delta 
RMSE, test length accounted for 1% of the variance and 2% of the 
variance was due to an interaction between the node and test length. 

FIGURE 2

Alpha parameter RMSE across nodes, sample size, and test length. N = Sample size; D = Model node; J = Number of items.

TABLE 5 Accounted variance for parameter recovery metrics for the 
IRTree MPP model fitted to IRTree MPP model data.

Model 
node

Variable a RMSE d RMSE

Sample size 0.00 0.00

Test length 0.00 0.01

Node 0.27 0.81

Sample size * Test length 0.00 0.00

Sample size* Node 0.02 0.02

Sample size * Test length * Node 0.00 0.00

N = 450. Values are partial eta-squared. Significant values (p < 0.05) are in bold.
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Simple effects illustrated the midpoint node had the lowest RMSE and 
was significantly different from the agreement t(504) = −13.99, 
p < 0.001 and the extreme node t(504) = −50.05, p < 0.001. Additionally, 
the agreement and extreme nodes were significantly different from 
each other t(504) = −30.06, p < 0.001.

Next, we  explored the interaction effect to understand the 
interaction of node and test length on the delta RMSE. For clarity’s sake, 
we only refer to differences between nodes within tests. First, in the 
10-item scale we found a significant difference in RMSE between all the 
nodes [midpoint-agreement t(504 = −6.61, p < 0.001; midpoint-extreme 
nodes t(504) = −23.25, p < 0.001; and agreement-extreme nodes 
t(504) = −16.63, p < 0.001]. For the 15-items scale we found a significant 
difference between all the node [midpoint-agreement t(504 = −8.53, 
p < 0.001; midpoint-extreme nodes t(504) = −29.26, p < 0.001; and 
agreement-extreme nodes t(504) = −20.73, p < 0.001]. Lastly, the 20-item 
scale had significant differences between all nodes [midpoint-agreement 
t(504 = −9.93, p < 0.001; midpoint-extreme nodes t(504) = −37.53, 
p < 0.001; and agreement-extreme nodes t(504) = −27.59, p < 0.001]. As 
with the alpha parameter, the delta RMSE differences between the nodes 
increased as the test length increased.

Discussion

The proper measurement and identification of latent variables is 
important for any psychometric methodology. With the growing 
popularity of IRTrees, understanding the influences of test length and 
sample size on the recovery of item parameters with the model is 

important. As we  rarely know the actual item parameters of a 
population, it is important to also understand the ability of MPP 
models to recover their parameters and the impact of model 
misspecification on the IRTree framework, especially given its 
frequent comparison to traditional IRT models. The present study 
provided an evaluation of the IRTree framework using simulated data, 
exploring the ability of one of its most popularized models to recover 
item parameters, across sample sizes and test lengths.

IRTree parameter recovery

First, we note the current paper is the first of its kind to manipulate 
both test length and sample size to determine their effect on the item 
and person parameter recovery in IRTree models. Previous research 
has constrained their test lengths to 20 or more items (Jin and Wang, 
2014; Wang and Nydick, 2015; Jeon and De Boeck, 2016; Plieninger 
and Heck, 2018). In this study, test length accounted for an average of 
1% of the error variance in recovering delta parameters. Interestingly, 
this difference occurred in the longer scales. This may be due to how 
MCMC estimates data patterns. The MCMC method uses a chain to 
estimate the parameters in a model (Kruschke, 2014). However, the 
missing data inherent in an IRTree model may lead the chain astray as 
it attempts to estimate the model parameters. This may lead to the 
wildly different parameters down the decision hierarchy seen in the 
current study. Interestingly, in the current study it was not sample size 
or test length that had the strongest impact on RMSE values but 
instead the node in the decision model.

FIGURE 3

Delta parameter RMSE across nodes, sample size, and test length. N = Sample size; D = Model node; J = Number of items.
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Across the recovery of item parameters, we noticed an interesting 
trend. As the MPP model progressed through the decision hierarchy, 
the model was increasingly less accurate. The model was able to 
recover the discrimination and difficulty parameters for the midpoint 
with little error variance between the parameter estimates and the true 
parameters. However, as the model progressed, error variance 
increased exponentially. Ames and Myers (2020) note the missing 
values in the agreement and extreme nodes contribute to the increased 
error as the decision hierarchy progresses, but they found this increase 
to be negligible. However, there are a few key distinctions between our 
study and theirs. First, the primary focus of their paper was extending 
the IRTree framework to include person covariates, rather than testing 
the overall framework. As such, they did not explore the item 
parameters. The current study demonstrates there is substantial error 
in item discrimination and difficulty as the decision hierarchy 
progresses, which can become problematic. Second, they chose a 
mean of zero for their extreme and midpoint nodes and sampled their 
difficulty parameters from a normal distribution of 0. The difference 
in distributions means of the item parameters may have influenced the 
models in the current study. However, as they noted, little research has 
explored the parameters of the midpoint and extreme nodes. 
Accordingly, there remains conflicting information about their 
underlying parameters. Given this dearth of consensus, we chose a 
mean of the distribution between that provided by Tijmstra et al. 
(2018) and by Ames and Myers (2020), settling on-1 and 1 for the 
midpoint and extreme nodes, respectively. Further research is needed 
on the effect of the distribution of the parameters the ability of the 
model to recover the item parameters. Additionally, it would 
be fruitful for researchers to publish their discrimination and difficulty 
parameters in the literature, to assist researchers in understanding the 
effects of distributions across scale types.

The inclusion of a decision hierarchy appears to add additional 
error variance to the model when the response style variables are 
actually present. This is problematic, as previous researchers have used 
the extreme node to predict criterion or otherwise explain additional 
model variance (e.g., He and Van de Vijver, 2015; LaHuis et al., 2019). 
Additionally, not all people may respond with a response style. As 
such, mixture models where some participants can be classified as 
using response styles and other participants responding without 
response styles may be necessary (see Tijmstra et al., 2018) It may 
be the additional variance accounted for by the extreme node accounts 
is due to error in the model, rather than actual variance in observed 
scores. We advise that researchers should be cautious when utilizing 
variables from later in the decision hierarchy, such as the extreme node.

Despite the inability of the IRTree model to recover parameters of 
the model throughout the hierarchy, it may be beneficial to continue 
to research IRTrees. As we noted above, there is still debate on the 
distributions of the alpha and delta parameters. It may be that the 
parameters reported in the literature and explored in the current study 
are not the actual parameters of midpoint and extreme responding 
nodes. If so, this could have led to the model hierarchy issues described 
above. We have noted that as the decision hierarchy progresses, the 
model becomes increasingly less able to recover parameters. However, 
the current study only used a five-point Likert scale for the current 
analyzes, as we were more interested in sample size and test length’s 
effects on the model. It remains to be  seen if different lengths of 
Likert-type scale responding determine influence the decision 
hierarchy. Additionally, the current study did not model the APP, 

which the IRTree framework was originally built on. The IRTree 
framework may be more amendable to the APP model rather than 
the MPP.

Recommendations

We have several recommendations for IRTrees based on the 
current study. First, the IRTree framework, as modeled with the MPP 
model, can readily recover the item and person parameters from the 
earlier part of the decision model (i.e., the midpoint node). However, 
researchers should be cautious about interpreting parameters that are 
further down the decision hierarchy. In the current study, once the 
third decision node was reached, there was a large difference between 
the estimated parameter and actual parameter. This is not as 
problematic when the construct of interest is the second node (i.e., the 
latent trait), as in most models. However, as the model progresses, it 
becomes increasingly unstable, possibly due to the missing data.

Second, the general utility of the IRTree framework must 
be viewed cautiously. The IRTree framework increases error as the 
model progresses through the decision hierarchy, possibly due to the 
missing data when the decision hierarchy progresses past the midpoint 
node. For example, a common criticism of decision trees, which 
IRTrees are based on, is that small changes in the data can lead to large 
changes in the structure of the optimal decision tree (Kamiński et al., 
2018). We only tested a five-point MPP model in the current study, so 
it remains to be seen how much error occurs in scales with more or 
fewer Likert responses. For example, Böckenholt (2017) explored a 
six-point Likert scale with IRTress with midpoint, weak agreement, 
strong agreement, and extreme nodes. The validity of the nodes 
further down the decision hierarchy may be suspect, given the amount 
of additional error added at each step. In this model, the separation of 
agreement into weak and strong nodes may lead to more error in the 
strong agreement node, as it is further down the decision hierarchy.

Limitations and future research

The current study is not without limitations. First, we note the 
issue of the distributions of the response style parameters. We chose 
a distribution with means of-1 and 1 for the midpoint and extreme 
nodes, as there is little research on the distribution of these nodes. 
This may have impacted the results of the analyzes conducted on the 
data created on the MPP model. We  have referenced previous 
research on the subject, but future research should continue to 
investigate and refine the most psychometrically appropriate mean 
distribution on these nodes, as well as alternative IRTree models. 
We assumed the extreme distribution was similar to the midpoint 
given previous research, but this may not be the case. Second, the 
current study focused on five-point Likert scales but did not explore 
the impact of IRTrees on other survey formats. For example, 
Böckenholt (2017) and Plieninger et al. (2018) have explored IRTrees 
and response styles across Likert, funnel, and drag-and-drop 
response scales. IRTrees may not have issues of compounding error 
in the other formats, as they do with the Likert scale format. 
Similarly, this study limited its scope to the commonly employed 
MPP model on a five-point scale, but there are other existing 
applications of the IRTree framework that vary in both overall model 
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arrangement and the types of scales to which they are applied. 
Models for binary-coded data (i.e., testing data coded for accuracy; 
Debeer et al., 2017), as well as a range of polytomous scales (Jeon 
and De Boeck, 2016; Dibek, 2019; Ames, 2021; Spratto et al., 2021) 
have been developed, some of which are structurally distinct from 
the MPP decision hierarchy (e.g., Forthmann et al., 2019). Even the 
MPP model has been adapted to scales with varying response option 
lengths, altering the number steps in the decision hierarchy to 
accommodate for the number of response choices available 
(Plieninger and Meiser, 2014). Given the issues with IRTree model 
fit raised here naturally arise from the interaction of the model’s 
structure with the format of the scale, additional investigation 
should be conducted on how these elements could impact any given 
model’s ability to recover item parameters and recreate data.

Conclusion

Though the growing interest and investigation surrounding 
IRTrees continues to show promise, it is important to consider the 
potential limitations and costs of the methodology. While this study 
found that IRTree models can sufficiently recover item parameters and 
recreate data to an extent, the IRTree model structure has the inherent 
drawback of inflating error variance due to missing data following 
pseudo-item transformation, which is compounded further as missing 
data accumulates over the course of the decision hierarchy. We urge 
researchers to take these limitations into consideration when 
employing IRTrees. While the framework has already demonstrated 
an exciting versatility in its capacity for modeling response styles, 
judicious application is essential for it to find its place within the 
repertoire of psychometricians across all fields.
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