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Di�erent graph types may di�er in their suitability to support group

comparisons, due to the underlying graph schemas. This study examined

whether graph schemas are based on perceptual features (i.e., each graph

type, e.g., bar or line graph, has its own graph schema) or common invariant

structures (i.e., graph types share common schemas). Furthermore, it was of

interest which graph type (bar, line, or pie) is optimal for comparing discrete

groups. A switching paradigm was used in three experiments. Two graph types

were examined at a time (Experiment 1: bar vs. line, Experiment 2: bar vs. pie,

Experiment 3: line vs. pie). On each trial, participants received a data graph

presenting the data from three groups and were to determine the numerical

di�erence of group A and group B displayed in the graph. We scrutinized

whether switching the type of graph from one trial to the next prolonged RTs.

The slowing of RTs in switch trials in comparison to trials with only one graph

type can indicate to what extent the graph schemas di�er. As switch costs were

observed in all pairings of graph types, none of the di�erent pairs of graph

types tested seems to fully share a common schema. Interestingly, there was

tentative evidence for di�erences in switch costs among di�erent pairings of

graph types. Smaller switch costs in Experiment 1 suggested that the graph

schemas of bar and line graphs overlap more strongly than those of bar graphs

and pie graphs or line graphs and pie graphs. This implies that results were not

in line with completely distinct schemas for di�erent graph types either. Taken

together, the pattern of results is consistent with a hierarchical view according

to which a graph schema consists of parts shared for di�erent graphs and parts

that are specific for each graph type. Apart from investigating graph schemas,

the study provided evidence for performance di�erences among graph types.

We found that bar graphs yielded the fastest group comparisons compared to

line graphs and pie graphs, suggesting that they are the most suitable when

used to compare discrete groups.
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1. Introduction

Graphs are widely and increasingly employed to visualize

quantitative information in science, marketing, sports, politics,

etc. (Zacks et al., 2002; Shah et al., 2005; Ratwani et al.,

2008; Garcia-Retamero and Cokely, 2017; Padilla et al., 2018,

for reviews; Franconeri et al., 2021). Experimental evidence

has shown that it is easier to understand, communicate and

reason about information when it is presented in graphic

representations (Tufte, 1983; Wainer, 1992; Kastellec and Leoni,

2007). While there is a multitude of graph types (Garcia-

Retamero and Cokely, 2017; Padilla et al., 2018; Franconeri

et al., 2021), some formats seem to be characterized by high

typicality (cf. Reimann et al., 2022) and have been in use since

the early days of statistical graphing: The pie chart appears

in William Playfair’s Statistical Breviary of 1801. Line and bar

graphs were published by Playfair in 1786 (Spence, 2006). The

utility of line and bar graphs has been wellsupported by a body

of experimental research (Spence, 2006) and the formats have

been integrated into the education curriculums used throughout

the world to develop children’s ability to read and construct data

visualizations (Börner et al., 2019; Franconeri et al., 2021).

One of the most essential questions is how we decode

information from graphs. Different cognitive models of graph

comprehension (e.g., Pinker, 1990; Lohse, 1993; Padilla et al.,

2018) suggest that people have graph schemas stored in long-

termmemory and that comprehension of a given graph requires

that the visually encoded stimulus is matched to the appropriate

graph schema (Kosslyn, 1989). For instance, bar graphs and line

graphs are characterized by an “L-shaped” graph schema with

horizontal and vertical axes that define a Cartesian coordinate

system. In contrast, pie charts and doughnut graphs belong to

an “O-shaped” graph schema characterized by a circular space

defined by polar coordinates (angle and distance from center).

While researchers agree that activating the graph schema is

the most crucial stage in graph comprehension (Bertin, 1983;

Pinker, 1990), it is disputable to what extent different graph

types overlap in or share graph schemas. According to one

perspective, graph schemas might built on distinct perceptual

features (i.e., each graph has its own specific graph schema,

Lohse, 1993). Alternatively, one graph schema might be used

for different graph types (cf. Ratwani and Trafton, 2008) as

it captures the common invariant structure shared by the

graph types.

The study by Ratwani and Trafton (2008) examined

hypotheses of graph schemas by utilizing a fact-retrieval task

(e.g., how many widgets are there in Tray B). Yet group

comparisons (e.g., what is the numerical difference of group A

and group B) would be a task that would benefit greatly from

the power of graphs to enable relational information processing

(Zhao and Gaschler, 2021). While there have been earlier studies

on bar, line, and pie graphs (Eells, 1926; Simkin andHastie, 1987;

Hollands and Spence, 1992; Shah et al., 1999; Zacks and Tversky,

1999), we aimed to investigate whether or not they share a

common graph schema when the task is to assess numerical

differences by using the technique suggested by Ratwani and

Trafton (2008). Apart from targeting the mental representations

used in graph processing, we tested which graph type (bar, line,

or pie) is best suited for discrete comparisons.

1.1. Graph schema: Perceptual features
vs. common invariant structures

By considering the perceptual process as well as short-

term memory and long-term memory processes, many theories

of graph comprehension have been developed explaining how

we extract information from graphs (Pinker, 1990; Lohse,

1993; Shah and Carpenter, 1995; Peebles and Cheng, 2002,

2003; Shah and Hoeffner, 2002; Ratwani and Trafton, 2008).

First, pattern recognition methods are used to decipher the

visual information in the graph (e.g., length, width, darkness,

shape, and position, cf. Bertin, 1983). Second, abstract concepts

of the visual information are mentally constructed in the

capacity-limited working memory (c.f. Cowan, 2016). Third,

conceptual relations are retrieved from long-term memory, and

interpretative processes are initiated by activating the graph

schema (i.e., a generic scaffold to insert new information into

a complex knowledge representation, Simkin and Hastie, 1987).

Fourth, the desired information is located and provided if it

is contained in the activated mental representation. Otherwise,

interrogation processes and inferential processes are prompted

to add entries or adapt existing entries to the conceptual message

(Pinker, 1990).

Twomain assumptions are proposed regarding the structure

of graph schemas. The assumption that graph schemas are

defined based on specific perceptual features suggests that each

type of graph is determined by a unique graph schema, which

results in different task sets (i.e., active mental configurations

needed for processing) for different graphs (Lohse, 1993). This

view is in line with the scene perception literature (Potter, 1993,

2012), which suggests perceptual characteristics can trigger

specific graph schemas (e.g., objects in a graph, Kosslyn, 1989).

Bar graphs would thus activate a unique graph schema and so

would line graphs and pie charts. In contrast, the assumption

that graph schemas are based on an invariant structure suggests

that types of graphs are based on certain broad categories or

shared common characteristics (Peebles and Cheng, 2002, 2003;

Ratwani and Trafton, 2008; Zhao and Gaschler, 2021). Graph

schemas are organized hierarchically, combining a general

schema and a graph-specific schema (Pinker, 1990). The general

schema includes common features of many graphs, such as

a Cartesian coordinate system. The graph-specific schemas

include the unique features of individual graphs, such as bars

with different heights or widths.
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FIGURE 1

Graphs from Experiments 1–3: bar, line, and pie. Each graph presents the data of three groups: A, B, and C.

1.2. Features of bar, line, pie

Bar graphs consist of bars or closed containers in an L-

shaped Cartesian coordinate system with x- and y-axes (Tversky

et al., 2000). Bar graphs (Pinker, 1990) pair nominal groups

using separate bars on one axis (e.g., group in Figure 1)

with ordinally scaled values, indicated by the height of the

bars (e.g., number in the group) on the other axis. As bar

graphs specify individual entities by separating one group

from another, they are ideal for discrete group comparisons

(Cleveland, 1984; Cleveland and McGill, 1985; Carswell and

Wickens, 1987; Shah et al., 1999; Ward et al., 2015). Viewers

are more likely to spontaneously make discrete comparisons in

bar graphs, such as “a male’s height is higher than that of a

female’s” (Simkin and Hastie, 1987; Zacks and Tversky, 1999).

Bar graphs are less biased than line graphs when describing

the relationships of multivariate data (Shah and Shellhammer,

1999). Yet they are not ideal for all tasks. When viewing

the means of all groups, bar graphs appear to lead to an

underestimation of the grand mean (while dot plots do not;

Godau et al., 2016). It is more likely that any particular

data point within the bar will be assumed to lie within the

distribution (within-the-bar bias, Newman and Scholl, 2012).

Also, the length of a vertical bar is often estimated to be

10% longer than the equivalent horizontal bar (Cai et al.,

2017).

Line graphs consist of discrete data points that are connected

by continuous lines within an L-shaped Cartesian coordinate

system (Pinker, 1990). As discrete data points are connected by

lines, data points are chunked based on the Gestalt principle

of continuity (Todorovic, 2008). Viewers are more likely to

spontaneously describe the data in a line graph as a trend

(Carswell et al., 1993; Zacks and Tversky, 1999). Lines have

advantages when judging change, such as whether the slope of

one variable over a range of the other variable is increasing or

decreasing (Schutz, 1961; Hollands and Spence, 1992). Viewers

tend to integrate information from discrete data points as a

single object rather than interpret the data point by point

(Carswell and Wickens, 1990; Shah et al., 1999). Thus, discrete

comparisons can be difficult in line graphs, as viewers have

to trigger a top-down encoding process to focus on single

data points along the line (Pinker, 1990). As line graphs

can form various shapes (e.g., straight, V-shaped, smooth,

curved, scalloped, steep), they are preferred when illustrating

data with cause-and-effect relations, quantitative trends, and

interactions among variables (Simcox, 1984; Pinker, 1990; Shah

and Freedman, 2009; Ali and Peebles, 2013).

Pie charts consist of a circle divided by several lines radiating

from a central point in a polar coordinate system (Gillan and

Callahan, 2000). It uses angles, slices or arcs (radial areas) and

darkness to represent groups, and labels to represent values of

groups (see Figure 1). Viewers are more likely to spontaneously

make proportion judgments of the division to the whole (Simkin

and Hastie, 1987). Thus, pie charts are commonly used to

illustrate proportional information in opinion polls (Cleveland

and McGill, 1985; Spence and Lewandowsky, 1991) and they

are utilized for teaching children fractions, for instance, that

1/3 is greater than 1/4 (Wainer, 1992). Moreover, viewers often

estimate proportions by referencing to an anchor (e.g., a quarter,

half and three quarters, Eells, 1926). The reaction time (RT) and

the error rate of proportion judgments increase as the difference

between the segment’s size and the anchor increases (Gillan

and Callahan, 2000). Pie charts are superior to bar graphs for

comparisons involving combinations of components, such as

comparing A + B vs. C + D (Spence and Lewandowsky, 1991).

Most viewers read pie charts clockwise and the accuracy of

comparisons can be supported by ordering the segments by size

(Huestegge and Pötzsch, 2018). Pie slices, however, cannot be

easily compared, as all radii of pie slices are equal in their radial

positions and, to be compared, the pie slices should be mentally

spread out horizontally to compare their length (Secrist, 1920, S.

166). Additionally, when labels are positioned within the slices

of a pie chart, it can be difficult to extract the referents due to

alignment issues, and when labels are displayed outside the pie
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FIGURE 2

Conditions in a mixed block with switch and non-switch conditions taking Experiment 1 (bar graphs vs. line graphs) as an example. Experiment 2

compared bar graphs and pie graphs, and Experiment 3 compared line graphs and pie graphs.

(in a circular order) they can increase clutter (Huestegge and

Pötzsch, 2018).

1.3. Switching between graph types

Adopting experimental techniques from basic research on

action regulation seems promising when investigating how data

graphs are processed. Borrowing from task switching (Rogers

and Monsell, 1995; see for a review, Kiesel et al., 2010), Ratwani

and Trafton (2008) used mixing costs (Los, 1996) to track which

data graphs are processed based on same vs. different schemas

in a task. They reasoned that only one graph schema can be

active at a time. If the graph presented in a current trial does not

fit to the schema still activated from the last trial, deactivating

the previous schema and activating the appropriate one will

consume time. In blocks with one type of graph, one schema can

remain active throughout, so no extra time would be needed to

unload and load each schema. The same should be true in blocks

with two different types of graphs if these types are processed

using the same schema. Ratwani and Trafton (2008) interpreted

the slower RT in mixed blocks compared to pure blocks as

an indicator suggesting that the two graph types are based

on different schemas. A previous study (Zhao and Gaschler,

2021) adopted the mixing-costs paradigm to examine the graph

schemas of bar graphs, dot plots, and tally charts. Processing

time was similar (no mixing costs) in pure vs. switch vs. non-

switch conditions when bar graphs were paired with dot plots.

However, processing timewas different (mixing costs) in pure vs.

switch vs. non-switch conditions when tally charts were mixed

with bar graphs or dot plots. This suggested that bar graphs and

dot plots are built on the same schema, yet tally charts are built

on a schema distinct from that of bar graphs and dot plots.

However, mixing costs might not be the best measure to

make inferences about graph schemas. Longer RTs in mixed

blocks compared to pure blocks might not be exclusively

attributed to different graph schemas being involved. One can,

for instance, speculate that effort, motivation or fatigue might

differ in pure vs. mixed blocks. Hence, it seems promising to

use a measure below the block level that can also be related

to a potential deactivation and activation of graph schemas. In

the task-switching literature, switch costs are regularly used to

assess the need to deactivate and activate task representations

(Rogers and Monsell, 1995; Kiesel et al., 2010). Longer RTs

in trials with a task switch compared with task repetition are

assessed within mixed blocks. Here we apply switch costs to

trials with different data graph types, aiming to learn about

graph schemas. Taking Experiment 1 (bar vs. line; Figure 2)

of the current study as an example, different trial types are

characterized by their transition. Bar switch refers to a line

graph preceded by a bar graph; bar non-switch refers to a bar

graph preceded by a bar graph; line switch refers to a bar

graph preceded by a line graph; line non-switch refers to a line

graph preceded by a line graph. If graphs in a pair are built

on distinct schemas, it should take longer to mentally configure

the appropriate schema than if they are processed using the

same schema, resulting in time costs when switching from one

graph type to the next. Conversely, if different graph types are

processed using the same schema, RTs in switch trials can be as

short as in no-switch trials.
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This study adopted the switching paradigm, as it can more

appropriately attribute delays in RTs to differences in graph

schemas. Each experiment had three trial types: pure vs. switch

vs. non-switch.We focused only on comparisons between switch

and non-switch trials. Each of our three experiments targeted

a pair of graph types, for example, bar vs. line in Experiment

1. Using two graph types ensures that switch trials and

non-switch trials are equally frequent. A discrete comparison

task (cf. Zhao and Gaschler, 2021) was used based on the

following cognitive processes (Kosslyn, 1980; Ullman, 1984;

Simkin and Hastie, 1987; Pinker, 1990; Gillan and Callahan,

2000): The first process is scanning positions and distances

of the compared groups in a graph. The second is projecting

horizontal rays from the height of the graph to the axis from

where they extract the values of the relevant groups. When

projection is inadequate, superimposition is activated (Spence

and Lewandowsky, 1991) by rotating one group until it aligns

with the other. It is important to note that projection can be

conducted via a routine, where higher bars are attended first (cf.

Michal and Franconeri, 2017). The third process is comparing

two components by adjusting the unaligned border of one

component to the other and by applying arithmetic operations

and logical inference rules. In a graph, the positions of the

groups can also influence the time needed for the comparison.

For instance, a previous study showed that the adjacent groups

were compared faster than the non-adjacent groups (Zhao and

Gaschler, 2021). Thus, we also considered the position difference

in the current study.

1.4. Research questions

According to the assumption that graph schemas are based

on perceptual features, all pairings of graph types should lead to

switch costs as they all differ in crucial features. According to

the assumption that graph schemas are defined by a common

invariant structure, only some pairings will lead to switch

costs. Bar graphs and line graphs use heights, points and

lines to display quantitative information in a Cartesian system

(thus, they share crucial features), whereas pie charts use

angular slices in a polar coordinate system (thus, they do not

share crucial features with bar and line graphs). Therefore,

if the underlying graph schemas share a common invariant

structure, switching between pie charts and either bar graphs

or line graphs would lead to switch costs while switching

between bar graphs and line graphs would not (or to a much

lesser extent).

Ratwani and Trafton (2008) used a fact-retrieval task to

examine the features of graph schemas. However, it is not

yet clear whether the results can be replicated by using

discrete comparisons, as line graphs and pie charts can be

disadvantageous for discrete comparisons (Secrist, 1920; Pinker,

1990). This leads to the following question and hypotheses.

Question 1: Are graph schemas defined by distinct

perceptual features for each graph type or by common invariant

structures shared between certain graph types?

Hypothesis 1a: Bar graphs and line graphs share the same

graph schema, which will lead to similar processing times in

switch- and non-switch trials.

Hypothesis 1b: Pie charts do not share the same graph

schema with bar graphs and line graphs, which will lead to

longer processing times in switch trials compared with non-

switch trials.

Bar graphs have been shown to be processed quicker

than line graphs and pie graphs for value identification

(Ratwani and Trafton, 2008). However, the cognitive processes

when identifying values are different from when comparing

values (Follettie, 1986; Simkin and Hastie, 1987; Michal and

Franconeri, 2017). Moreover, it is not yet clear whether bar

graphs are still superior over line graphs and pie graphs when

making discrete comparisons with randomized group positions.

This leads to the following question and hypotheses.

Question 2: Which graph type (bar, line, or pie) is the most

suitable for the comparison of groups when it is required to

report the exact numerical difference?

Hypothesis 2a: Bar graphs will be processed faster than line

graphs and pie graphs.

Hypothesis 2b: Adjacent groups (in all graph types) will be

compared faster than non-adjacent groups.

2. General method

2.1. Design and materials

Three graph types were compared in three experiments:

Experiment 1 compared bar vs. line graphs, Experiment 2

compared bar vs. pie graphs, Experiment 3 compared line vs. pie

graphs. All experiments followed a within-subjects design with

three experimental blocks (i.e., two pure blocks, one for each

graph type, and onemixed block) consisting of 60 trials each and

180 in total. Each trial contained the instruction to compare the

groups A and B, a graph, and a text field to type in the answer

(see Figure 2). The graphs presented on the screen all depicted

the quantities of three groups (A, B, and C), ranging from 1 to 9.

The participants compared the quantities of two of the groups (A

and B). The values always varied, which led to group differences

with values between 1 and 8. The position of the three groups (A,

B, and C) was randomized from 1 to 3. Therefore, the position

difference of group A and group B could be either 1 (next to

each other), or 2 (group A and group B separated by group C).

Participants were allowed to take a break after each block. The

experiment was programmed in R by using the package Shiny,

and each graph was randomly generated.

Based on the switching paradigm, we only compared RTs

(i.e., onsets from displaying the graphs to pressing the Enter
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key) in switch and non-switch trials in the mixed block (e.g.,

one block of both bar graphs and line graphs, see Figure 2). A

repeated-measures analysis of variance (ANOVA) was separately

performed in each experiment with the following factors: trial

type (switch vs. non-switch), graph type (e.g., bar vs. line), and

position difference (of A and B: 1 vs. 2, for adjacent vs. non-

adjacent position). The raw data are available online (Zhao,

2022). Due to characteristics of our design, an analysis of mixing

costs (instead of switch costs) with regard to our research

questions was not feasible (see below, Footnote 1 for details).

2.2. Procedure

Participants were tested in a quiet room and informed

about the aim of the study. They answered ten questions

on a 6-point Likert scale regarding their subjective graph

literacy (Garcia-Retamero et al., 2016). For instance, “How well

can you work with bar graphs?” (1 = not well at all to 6

= extremely well). Afterwards, the experiment was initiated

in a browser on a Lenovo Thinkpad T530 laptop with a

12.5-inch display. Participants typed in their demographic

data, how frequently they use computers, and agreed with

the declaration of consent. They were instructed to report

the group difference (e.g., between A and B) in terms of

the absolute difference value as accurately and quickly as

possible. The participants used the number keys on the

keyboard to give their answers and pressed Enter to go to

the next trial. All number keys and the Enter key were

marked by stickers. The 30-min experiment was part of

8 Bachelor of Science theses and participants received no

extra reward.

3. Experiment 1: Bar vs. line

3.1. Participants

An a priori power analysis using G∗Power 3.1 (Faul et al.,

2009) for a repeated-measures ANOVA testing the main effect

of trial type (switch vs. non-switch) while using two graph types

(bar vs. line) suggested that a sample size of 40 would allow the

detection of an effect of η2p = 0.08 (the effect size of η2p in Zhao

and Gaschler, 2021, Experiment 1 was 0.10) at α = 0.05 with a

statistical power (1 - β)= 0.95.

Sixty participants (29 females) participated in Experiment

1 (36.0 ± 9.8 years, computer ability with 1 = never used

a computer to 6 = everyday use: 4.5 ± 1.2). The mean age

of participants was higher than in many laboratory studies

in cognitive psychology as students of FernUniversität in

Hagen (state-run distance teaching university in Germany) are

older and more heterogeneous in age than students at other

universities. On average, graph literacy (Garcia-Retamero et al.,

2016) was 4.2 ± 0.8 (1 = not good at all to 6 = extremely

good). All participants had normal or corrected-to-normal

vision acuity.

3.2. Results

The current study used the median of RTs (cf. Simkin and

Hastie, 1987), as the data were left-skewed with a large SD

(7.651 s). The mean RT was 5.476 s. The average median RT

for all trials among all participants was 4.651 s (SD = 1.303 s).

We conducted the repeated-measures ANOVA on median RTs

per participant per condition, while using only two levels

of trial type (switch vs. non-switch)1 × 2 (graph type: bar

vs. line) × 2 (position difference of A and B: 1 vs. 2) (see

Table 1, Figure 3). Importantly, the main effect of trial type was

marginally significant, [F(1,59)] = 3.63, p = 0.062, η2p = 0.06

(the estimated Bayes factor was H01 = 1.74). There was an

interaction of trial type × graph type, [F(1,59)] = 6.77, p = 0.01,

η2p = 0.10. The follow-up test yielded that switch trials were

processed with significantly longer RTs than non-switch trials

for line graphs, t(59) = 5.06, p < 0.001, but this was not the

case for bar graphs, t(59) = −1.08, p = 0.29. This suggested

that switching between bar graphs and line graphs resulted in

switch costs for line graphs, but not for bar graphs (rejecting

Hypothesis 1a). A significant main effect of graph type, [F(1,59)]

= 136.40, p < 0.001, η2p = 0.70, indicated that bar graphs were

processed quicker than line graphs (confirmed Hypothesis 2a).

The main effect of position difference was significant, [F(1,59)]

= 29.14, p < 0.001, η2p = 0.33. So were the interactions of trial

type × position, [F(1,59)] = 5.74, p = 0.02, η2p = 0.09 and trial

type × graph type × position, [F(1,59)] = 6.20, p = 0.02, η2p

= 0.10, indicating adjacent groups were processed quicker than

non-adjacent groups (confirmed Hypothesis 2b), and the effect

of position was larger for non-switch trials in line graphs than

in other conditions. No other effect was found, graph type ×

position, [F(1,59)] = 1.11, p = 0.30, η2p = 0.02. The analysis of

error rates only showed a main effect of graph type, [F(1,59)]

= 25.49, p < 0.001, η2p = 0.30, indicating that bar graphs had

significantly lower error rates than line graphs (more details see

Supplementary material).

1 The analyses including three trial types (pure vs. switch vs. non-

switch) in 3 Experiments can be found in the Appendix. Note that the

order of the blocks was not counterbalanced in the study and pure

blocks occurred most often (90% of the time in Experiment 1; 95.1%

in Experiment 2; 89.7% in Experiment 3) in the first and second blocks.

Potentially as a result of general practice e�ects, RTs were much longer

in pure blocks than mixed blocks in Experiment 1 (pure: 4.904 s ±

2.578; mixed: 4.521 s ± 1.178, t(59) = 3.95, p <.001, two-tailed), and in

Experiment 2 (pure: 5.600 s± 1.679;mixed: 5.773 s± 2.050, t(40)= 3.25, p

=.002). Pure blocks andmixed blocks did not di�er in Experiment 3 (pure:

5.773 s ± 2.050; mixed: 5.569 s ± 2.034, t(57) = 1.54, p =.13). This might

reflect a general practice e�ect (early blocks slower than later blocks)

rather than mixing cost.
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TABLE 1 Average median reaction time (in seconds) between di�erence of positions of Group A and Group B (Di�Pos) in pure trials and switch and

non-switch trials for Experiments 1–3.

Pure block Mixed block

Switch Non-switch

Graph type Di�Pos1 Di�Pos2 Di�Pos1 Di�Pos2 Di�Pos1 Di�Pos2

Exp. 1 (N = 60)

BarM (SD) 4.113 (1.169) 4.322 (1.133) 4.008 (0.948) 4.331 (1.367) 4.105 (1.064) 4.326 (1.379)

Line 5.440 (2.090) 5.742 (2.130) 4.900 (1.419) 5.028 (1.527) 4.412 (1.204) 5.053 (1.408)

Exp. 2 (N = 41)

Bar 5.248 (1.808) 5.258 (1.778) 4.895 (1.417) 5.163 (1.922) 4.656 (1.359) 5.105 (2.322)

Pie 5.924 (2.058) 5.971 (1.764) 5.390 (1.531) 5.921 (2.061) 4.911 (1.322) 5.762 (1.975)

Exp. 3 (N = 58)

Line 5.671 (1.926) 6.127 (2.211) 5.760 (3.156) 5.622 (2.221) 5.470 (2.847) 5.820 (3.241)

Pie 5.436 (2.478) 5.859 (2.435) 5.622 (2.099) 5.823 (2.557) 4.824 (1.431) 5.612 (2.018)

FIGURE 3

Average median reaction times in switch vs. non-switch trials in Experiments 1–3.

3.3. Discussion

Experiment 1 showed switch costs for line graphs, when

bar graphs were paired with line graphs. Yet participants were

similarly fast when working on a bar graph following a line

graph or another bar graph. These results suggest that bar

graphs and line graphs are not processed by the same graph

schema, which is inconsistent with previous findings (e.g.,

Ratwani and Trafton, 2008). Moreover, bar graphs needed less

comparison time than line graphs (cf. Zacks and Tversky,

1999). It might be more difficult to locate the height of line

graph data points on the y-axis as the slope of the line

graph might interfere with the horizontal shift of attention

(Todorovic, 2008). Therefore, it is easier to read a bar’s height

than a data point’s value in lines, as values are individually

displayed in bar graphs but not in line graphs. In line with

previous results, less time was needed when comparing adjacent

groups rather than non-adjacent groups (cf. Zhao and Gaschler,

2021).

4. Experiment 2: Bar vs. pie

Experiment 2 compared bar graphs and pie graphs. Please

note that the position difference (i.e., group assignments) in pie

graphs were shown in the legend box (see Figure 1). Graphs were

programmed so that the first group was always in white, the

second group was in gray, and the third group was in black.

4.1. Participants

Forty-one participants (20 females, 29.5 ± 10.7 years,

computer ability was 3.8 ± 2.3) took part in Experiment 2. The

graph literacy was on average 4.2± 0.7.
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4.2. Results

RTs were left-skewed with a large SD (15.264 s). The mean

RT was 6.817 s. The average median RT for each trial among

all participants was 5.326 s (SD = 1.442 s). RT per condition

is reported in Table 1, Figure 3. The 2 (trial type: switch vs.

non-switch) × 2 (graph type: bar vs. pie) × 2 (position

difference of A and B: 1 vs. 2) ANOVA on median RTs per

participant per condition showed a main effect of trial type,

[F(1,59)] = 6.18, p = 0.017, η2p = 0.13, suggesting non-switch

trials were processed quicker than switch trials (confirmed

Hypothesis 1b). Furthermore, there was a main effect of graph

type, [F(1,59)] = 13.82, p < 0.001, η2p = 0.26, indicating bar

graphs were processed quicker than pie graphs (confirmed

Hypothesis 2a). The main effect of position difference, [F(1,59)]

= 19.39, p < 0.001, η2p = 0.33, suggested that adjacent groups

were processed quicker than non-adjacent groups (confirmed

Hypothesis 2b). No other effect was found, trial type× position,

[F(1,59)] = 1.15, p = 0.29, η2p = 0.03, graph type × position,

[F(1,59)] = 2.57, p = 0.12, η2p = 0.06, trial type × graph

type, and trial type × graph type × position, Fs < 1. The

analysis of error rates only showed a main effect of position,

[F(1,59)] = 5.05, p = 0.03, η2p = 0.11, indicating that a larger

position difference led to lower error rates (more details see

Supplementary material).

4.3. Discussion

Experiment 2 showed switch costs in terms of differences

between switch and non-switch trials, when bar graphs

were paired with pie graphs. Comparing groups was

quicker when using bar graphs rather than pie graphs,

which is consistent with previous studies (Secrist, 1920;

Simkin and Hastie, 1987; Huestegge and Pötzsch, 2018).

This might be due to disadvantages of a graph schema

for pie charts in discrete comparisons. Areas of pie

slices involve curved and straight lines and one has to

mentally rotate their angles to compare their differences

(Gillan and Callahan, 2000; Huestegge and Pötzsch, 2018).

Additionally, adjacent groups were compared faster than

non-adjacent groups.

5. Experiment 3: Line vs. Pie

5.1. Participants

Fifty-eight participants (31 females, 40.6 ± 12.7

years, computer ability was 4.2 ± 1.4) took part in

Experiment 3. Data on graph literacy was missing for

twenty participants, the rest were on average at a level

of 4.1± 0.9.

5.2. Results

RTs were left-skewed with a large SD (24.761 s). The mean

RT was 7.248 s. The average median RT for each trial among

all participants was 5.511 s (SD = 1.836 s). The 2 (trial type:

switch vs. non-switch)× 2 (graph type: line vs. pie)× 2 (position

difference of A and B: 1 vs. 2) ANOVA on median RTs per

participant per condition showed a main effect of trial type,

[F(1,59)] = 6.39, p = 0.014, η2p = 0.10, and an interaction of

trial type × graph type, [F(1,59)] = 5.21, p = 0.03, η2p = 0.08,

suggesting that non-switch trials were processed faster than

switch trials when switching from line graphs to pie graphs

(confirmed Hypothesis 1b), and this effect was larger for pie

graphs than for line graphs. There was a main effect of position

difference, [F(1,59)] = 6.57, p = 0.01, η2p = 0.10, indicating

quicker processing with adjacent groups than non-adjacent

groups (confirmed Hypothesis 2b). The interaction of trial type

× position, [F(1,59)] = 4.90, p = 0.03, η2p = 0.08, reflected that

this effect was larger in non-switch trials than in switch trials.

No other effect was detected, graph type × position, [F(1,59)]

= 3.27, p = 0.08, η2p = 0.05, graph type, and trial type ×

graph type × position, Fs < 1. The analysis of error rates did

not show any main effect or interaction, indicating that line

graphs had similar error rates as pie graphs (more details see

Supplementary material).

In all three experiments, switch costs were present. As this

suggests that none of the graph types fully overlap in graph

schema, we explored whether there might be differences in

switch costs for the different pairings. This would be in line

with a hierarchical view of graph schemas. The hierarchical

view implies that graph schemas are organized hierarchically

with a general schema and graph-specific schemas (cf. Pinker,

1990). Whenever switching from one graph type to another, the

specific schema needs to change in any case. This could lead to

at least some switch costs even when the general schema does

not necessarily change. Conversely, the pairs where graphs differ

in general and with respect to graph-specific schemas might

show larger switch costs than the pairs that differ only in their

specific graph schemas but share the same general graph schema.

Accordingly, a post-hoc analysis was conducted to compare for

differences in switch costs (RTs of non-switch trials subtracted

from RTs of switch trials) across experiments. Figure 4 shows

that the switch costs between bar graphs and line graphs in

Experiment 1 (M = 0.152 s, SD = 0.435) were lower than the

switch costs between bar graphs and pie graphs in Experiment

2 (M = 0.327 s, SD = 0.348), t(99) = −2.15, p = 0.03. This

result is consistent with the view that bar graphs and line graphs

share the same general graph schema but differ in graph-specific

schemas, while bar graphs and pie graphs might differ in general

as well as with regard to specific schemas. Furthermore, the

switch costs between line graphs and pie graphs in Experiment

3 (M = 0.300 s, SD = 601) did not differ significantly from the

switch costs between bar graphs and line graphs in Experiment
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FIGURE 4

Average switch costs in seconds in Experiment 1 with bar graphs

vs. line graphs, Experiment 2 with bar graphs vs. pie graphs, and

Experiment 3 with line graphs vs. pie graphs. * indicates p < 0.05.

1, t(116) = −1.53, p = 0.13, and it did not differ from the

switch costs between bar graphs and pie graphs in Experiment

2, t(97) = 0.27, p = 0.79. Note however that the significant

difference reported above does not prove robust when applying

a Bonferroni-correction (see Discussion).

5.3. Discussion

Experiment 3 shows switch costs by pairing line graphs with

pie graphs. Processing time was faster for pie graphs than for

line graphs when comparing groups in a non-switch condition

with a position difference of 1. Adjacent groups were compared

quicker than non-adjacent groups. In addition, the comparisons

of switch costs across experiments provided tentative evidence

for a pattern consistent with the hierarchical account of graph

schema (cf. Pinker, 1990). More specifically, switching between

bar graphs and pie graphs seemed to lead to higher switch

costs than switching between bar graphs and line graphs. Yet

switching between line graphs and pie graphs did not differ in

terms of the switch costs between bar graphs and line graphs,

and between bar graphs and pie graphs. As the significant

difference between Experiment 1 and 2 does not prove robust

when applying a Bonferroni-correction, there is need for further

empirical work. This should ideally address differences in switch

costs in a fully randomized experimental design rather than in

an across-experiment comparison.

6. General discussion

This study used a group comparison task involving the

report of numerically exact group differences to test whether

graph schemas are based on perceptual features or common

invariant structures and to determine which graph type (bar, line

or pie) is the most suitable for group comparisons. There are

three main findings.

6.1. Graph schemas can be based on
common invariant structures in a
hierarchical structure

The study suggests that bar graphs and line graphs are

more alike (in terms of the underlying schema) than pie graphs

compared with bar or line graphs (i.e., pie graphs clearly fall

under a different schema than bar and line graphs). A previous

study by Ratwani and Trafton (2008) examined whether the

assumptions that graph schemas are defined by a common

invariant structure or by perceptual features by identifying the

value of a group in bar, line, and pie graphs. In contrast,

the present study used a discrete comparison task (cf. Zhao

and Gaschler, 2021). Inconsistent with Hypothesis 1a, bar

graphs had no switch costs when paired with line graphs, but

line graphs had switch costs when paired with bar graphs.

Comparisons of switch costs across experiments revealed that

the switch costs between bar graphs and line graphs were

lower than the switch costs between bar graphs and pie graphs.

Consistent with Hypothesis 1b, pairing pie graphs either with

bar graphs or line graphs led to switch costs, as pie graphs

use a polar coordinate system. It is probable that there was

a gradual effect with line graphs and bar graphs belonging to

a more similar graph schema and pie graphs belonging to a

distinct schema.

Moreover, this study provides tentative evidence supporting

the hierarchical view of the graph schema (cf. Pinker, 1990),

which suggests that graph schemas can be hierarchically

structured with a general graph schema and graph-specific

schemas. The general graph schema refers to common invariant

features of all graphs, and the graph-specific schemas refer to

the unique features of individual graphs. Figure 4 illustrates

that pairing graphs that differ in general and graph-specific

schemas (Experiment 2 bar vs. pie) led to greater switch costs

than pairing graphs that differ mainly in graph-specific schemas

(Experiment 1 bar vs. line). The hierarchical structure of graph

comprehension also corresponds to studies on comprehension

and memory, which demonstrate that human memory is

organized in a hierarchical structure along a continuum from

general to specific (Meyer, 1975; Carpenter and Just, 1977;

Schank and Abelson, 1977; Kintsch and van Dijk, 1978). Our

results suggest that bar graphs and line graphs are more alike (in

terms of the underlying schema) than pie graphs compared with

bar or line graphs (i.e., pie graphs clearly fall under a different

schema than bar and line graphs).

6.2. Bar graphs are ideal for discrete
comparison compared with line graphs
and pie graphs

During discrete comparisons, participants are assumed to

first scan the locations of relevant groups, then they project
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horizontal rays from the height of the bar or line graph to the

axis from where they then extract the values of the relevant

groups, and finally they compare the differences (Kosslyn,

1980; Ullman, 1984; Simkin and Hastie, 1987; Pinker, 1990;

Gillan and Callahan, 2000). Consistent with Hypothesis 2a, bar

graphs allow for a quicker comparison of group differences than

line graphs and pie graphs. The error analysis also suggested

that bar graphs led to lower error rates than line graphs

(in Experiment 1 bar vs. line). According to Cleveland and

McGill (1984), bar graphs compared with other graphs (e.g.,

dot plots) allow for a better mapping of entities to distinct

spatial locations. Bar graphs use individual entities to separate

one group from other groups, and use heights to represent

the values of each group (Pinker, 1990). Bar graphs are thus

associated with discrete comparison (Zacks and Tversky, 1999).

Line graphs use points to represent groups and heights to

represent the values of each group, and the discrete data points

are connected by lines (Pinker, 1990). Line graphs are thus

associated with trends (Carswell et al., 1993; Zacks and Tversky,

1999). Accordingly, it is easier to pair discrete bars in bar

graphs than compare the connected points in line graphs, as

lines are interpreted as a single object rather than discrete data

points based on the continuity Gestalt principle (Todorovic,

2008).

Pie charts use slices to represent groups and labels to

represent values of groups (Gillan and Callahan, 2000). A

pie chart uses area size to encode information. Viewers are

more likely to spontaneously make proportional judgments

with pie charts (Simkin and Hastie, 1987). As all pie

slices have the same length of radii, viewers have to

superimpose (i.e., mentally rotate until alignment, Spence

and Lewandowsky, 1991) the angles of slices to compare

the differences. In addition, labels in pies are displayed in

a circular order, which is uncommon for referent extraction

(Huestegge and Pötzsch, 2018). According to the principle of

spatial alignment (Matlen et al., 2020), discrete comparison

is more efficient when the required components in the

graphs are in direct alignment. It is thus easier to compare

heights of individual entities in bar graphs than slices in

pie graphs.

Moreover, the task of discrete comparisons includes the

time of graphical perception, which can be different for each

graph (Kosslyn, 1980). For instance, perception of change is

direct in bar graphs and line graphs, but not in pie graphs

(Hollands and Spence, 1992). Horizontal pictographs (i.e.,

data points in rectangular form) are perceived more quickly

and more accurately than vertical pictographs (Price et al.,

2007). Nevertheless, one should be aware that although bar

graphs are processed fast in discrete comparison tasks, they

lead to biased judgement when estimating the means of all

groups (Godau et al., 2016) and when judging if specific

data points lie within a distribution (Newman and Scholl,

2012).

6.3. Adjacent groups are compared
quicker than non-adjacent groups

Consistent with Hypothesis 2b, position differences of

groups of interests indeed affected processing time. Adjacent

group comparisons required shorter processing time than

non-adjacent group comparisons, which replicates the results

of a previous study (Zhao and Gaschler, 2021). It also

corresponds to the split-attention effect, which finds that larger

saccades and more time are needed to integrate relevant

information that is displayed separately (Chandler and Sweller,

1992; Mayer and Moreno, 1998; Johnson and Mayer, 2012).

Several eye-tracking studies on graph comprehension also

provided evidence on more transitions and longer fixations

in integrative processes (i.e., infer quantitative relations) and

suggested minimizing the overload of integrative processes.

For instance, Carpenter and Shah (1998) measured the

eye movements while participants interpreted and answered

questions about line graphs. They suggested a sequential process

of graph comprehension: pattern-recognition, interpretive,

and integrative processes. During the integrative processes,

participants showed considerable transitions on labels and

values of the variables that determine relations. They thus

recommended graphic designers reduce the effort required to

identify the to-be-compared graphs. Huestegge and Philipp

(2011) recorded eye movement patterns while participants

judged the compatibility of data and statements in bar graphs

and line graphs. Participants had fewer gaze transitions between

data–legend compatible graphs than incompatible graphs,

which suggests less difficulty in graph comprehension. Körner

(2004, 2011) and Körner et al. (2014) conducted a series

of eye–tracking studies on hierarchical graphs with nodes

and relation lines (e.g., computer file systems, family trees).

The results yielded that participants first search for relevant

graph nodes and then solve problems by reasoning about the

relationships (e.g., is a better than c?). They suggested supporting

the serial cognitive processes of graph comprehension by

decreasing the overload of search and integrative processes.

Taken together, one implication is that we should, when

possible, put the to-be-compared groups near each other to save

processing time.

6.4. Limitations

This study has several limitations. We currently do not

know which specific aspects of the graphs might have led to

differences in switch costs. While bar and line graphs use

a Cartesian coordinate system, a polar coordinate system is

relevant in pie charts. This aspect might be the key difference

among the graph schemas used for the different graph types.

Yet, in order to support this assumption, one would need
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to include more comparisons of graphs with a polar and a

Cartesian coordinate system. The graphs used in this study

were taken from Ratwani and Trafton (2008) and have specific

characteristics relevant for future work. Legends are displayed

outside pie charts, values are labeled directly over the slices,

and groups were displayed using different colors. The present

results are potentially difficult to generalize to other forms of

bar, line, and pie graphs (e.g., with and without direct labeling

of values, labels; graphs with different specific arrangements or

features, etc.). Further studies should examine the robustness of

results by using bar graphs and line graphs with similar visual

characteristics in terms of legends, labels and colors (cf. Shah

and Hoeffner, 2002, for a review; Michal and Franconeri, 2017).

Moreover, anchoring should be further examined by adding

grid lines in bar and line graphs (cf. Schutz, 1961), as viewers

tend to compare slices in pie charts by using 25%, 50%, or

75% anchors (Gillan and Callahan, 2000). The task in this study

was to compare discrete groups based on one-variable data. It

might be intriguing to consider multivariate data (e.g., three-

variable data), as viewers tend to give different descriptions

regarding main effects and interactions when viewing bar and

line graphs (Shah and Freedman, 2009). The positions of

depicted groups were randomized in this study, which makes

it difficult to identify a particular trend evolving from group A

to group B. Future studies should use more data points with

different numbers of trend reversals (i.e., slopes of adjacent

lines from positive to negative or vice-versa), as it was shown

that they have an impact on comprehension time (Carswell

et al., 1993). Future studies should also examine how schema

switches might affect graph processing when a single task

involves comparisons between multiple (similar or different)

graphs, that is, in complex graph display (e.g., see Riechelmann

and Huestegge, 2018; Poetzsch et al., 2020). Other types of

tasks should be used in future studies, such as a more basic

“which is larger” comparison, A + B vs. C + D, as pie charts

are ideal to combine even non-adjacent slices compared to

summing up heights in bar graphs (Spence and Lewandowsky,

1991). Further studies should compare vertical and horizontal

bars, as previous studies showed that horizontal bars are slightly

preferred to and less biased than vertical bars (Culbertson

and Powers, 1959; Cai et al., 2017). Lastly, the age, education

and work experience of the subjects should be considered in

the future.

6.5. Conclusion

Using graphs (e.g., bars, lines, or pies) to compare

quantitative data is common, especially in the media. This study

suggests that bar graphs and line graphs are more alike (in

terms of the underlying schema) than pie graphs compared with

bar or line graphs (i.e., pie graphs clearly fall under a different

schema than that of bar and line graphs). Moreover, this study

shows tentative evidence for the hierarchical structure of graph

schemas. Bar graphs are more effective than line graphs and

pie graphs in discrete comparisons due to the specific graphical

patterns of individual entities and values represented by heights.

In addition, this study provides the implication to place to-be-

compared groups adjacently to save processing time. This can

be especially important for contexts where speed and accuracy

are highly relevant, such as when estimating the survival odds

for a treatment (Price et al., 2007).
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