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Cultural similarities and differences in facial expressions have been a 

controversial issue in the field of facial communications. A key step in 

addressing the debate regarding the cultural dependency of emotional 

expression (and perception) is to characterize the visual features of specific 

facial expressions in individual cultures. Here we developed an image analysis 

framework for this purpose using convolutional neural networks (CNNs) that 

through training learned visual features critical for classification. We analyzed 

photographs of facial expressions derived from two databases, each developed 

in a different country (Sweden and Japan), in which corresponding emotion 

labels were available. While the CNNs reached high rates of correct results 

that were far above chance after training with each database, they showed 

many misclassifications when they analyzed faces from the database that 

was not used for training. These results suggest that facial features useful for 

classifying facial expressions differed between the databases. The selectivity 

of computational units in the CNNs to action units (AUs) of the face varied 

across the facial expressions. Importantly, the AU selectivity often differed 

drastically between the CNNs trained with the different databases. Similarity 

and dissimilarity of these tuning profiles partly explained the pattern of 

misclassifications, suggesting that the AUs are important for characterizing the 

facial features and differ between the two countries. The AU tuning profiles, 

especially those reduced by principal component analysis, are compact 

summaries useful for comparisons across different databases, and thus might 

advance our understanding of universality vs. specificity of facial expressions 

across cultures.
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Introduction

Culture-related similarities and differences in facial expression 
communications have been the subject of intense debate over the 
past few decades (Ekman et al., 1992; Izard, 1994; Russell, 1994; 
Jack, 2013; Barrett et al., 2019). On the one hand, facial expressions 
are suggested to be universal across cultures. Ekman and colleagues 
showed that a set of photographs of facial expressions of six basic 
emotions (happy, fearful, sad, angry, surprised, and disgusted) 
resulted in mostly the same recognition of emotions across different 
cultures (Ekman et al., 1969). On the other hand, cultural differences 
in recognizing facial expressions have often been demonstrated. For 
instance, facial expressions displayed by individuals in a cultural 
group are more accurately recognized by observers of the same 
group than those of other cultural groups (Elfenbein and Ambady, 
2002). Recognition of facial expressions relies on culture-specific 
facial features in addition to those shared by different cultures.

A key step to understanding the culture-specific and -nonspecific 
aspects of facial expression recognition is to clarify whether and 
how a specific emotion is consistently associated with specific 
patterns of facial movements across different cultures. This requires 
quantifying the similarities and dissimilarities of the facial 
movement patterns in different cultures, and should rely on large-
scale data to identify the cultural variability beyond simply the inter-
individual fluctuations that occur within a single culture. Facial 
movement patterns can be  quantitatively characterized with a 
framework of action units (AUs) defined in the facial action coding 
system (FACS; Ekman and Friesen, 1976; Ekman et al., 2002). Each 
AU represents a specific facial movement generated by particular 
facial muscles. The combinations of AUs comprehensively describe 
the entire patterns of facial movements displayed by humans.

In this study we applied the framework of AU to characterize 
the visual features of facial expressions in two image databases of 
facial expressions created in different countries: the Karolinska 
Directed Emotional Faces (KDEF) database, developed in Sweden 
(Lundqvist et al., 1998), and the Kokoro Research Center (KRC) 
facial expression database, developed in Japan (Ueda et al., 2019). 
The two databases consist of facial photographs of several tens of 
posers, each displaying the six basic expressions and neutral one, 
taken from several different directions. Because the posers of each 
database live in geographically distant and culturally distinct 
countries, their facial behaviors most likely reflect cultural 
differences between the two countries.

We took an approach of using convolutional neural networks 
(CNNs) to analyze these image databases. A CNN, consisting of 
several computational layers serially connected by variable 
weights, undergoes supervised learning and thereby learns to 
classify each input into one output category (LeCun et al., 2015). 
In the case of image classification, a CNN adapts itself to the image 
database used for training and thus acquires database-specific 
feature representations that are useful for the classification. CNNs 
are constructed to share a similar architecture with the visual 
system of the brain (Hassabis et al., 2017). Feature representation 
in the CNNs constructed this way has been shown to be similar to 

that of the brain (Yamins et al., 2014; Güçlü and van Gerven, 2015; 
Yamins and DiCarlo, 2016). Importantly, a subset of feature 
representations selective for AUs is suggested to be  useful for 
classifying facial expressions (Zhou and Shi, 2017). These previous 
findings motivated us to use CNNs to quantify selectivity to AUs.

We show that CNNs learned to classify facial expressions of the 
basic emotions (and neutral faces) in database-specific manners. 
The ability of the CNNs for classifying the facial expressions was 
not fully generalized between the KDEF and KRC databases, 
suggesting that the visual features of the facial expressions differ 
between Sweden and Japan. Analysis of the final layers of the CNNs 
revealed that their outputs were selective to subsets of the AUs. The 
patterns of this AU selectivity differed considerably between the 
two databases. Similarities and dissimilarities of the AU selectivity 
between the databases might reflect cultural commonalities and 
differences in the encoding of facial expressions.

Materials and methods

Image database

We used two image databases of facial expressions: the 
Karolinska Directed Emotional Faces (KDEF) database, developed 
in Sweden (Figure 1A; Lundqvist et al., 1998), and the Kokoro 
Research Center (KRC) facial expression database, developed in 
Japan (Figure 1B; Ueda et al., 2019). The KDEF database comprises 
faces of 70 individuals, and the KRC database faces of 74 
individuals. From each database, we selected 60 individuals who 
were facing forward and who displayed seven different facial 
expressions. These were labeled as neutral, happy, afraid, sad, 
angry, surprised, and disgusted in the KDEF database, and neutral, 
happy, fearful, sad, angry, surprised, and disgusted in the KRC 
database. We  adopted the KRC labels for both databases to 
simplify the terminology in this study.

Original color photographs in the KDEF and KRC databases 
were pre-processed by the following procedures. After converting 
into grayscale images, they were fed into a face detection algorithm 
of a computer vision library, OpenCV,1 to extract the facial region. 
Then, the pixel intensity histogram of the facial region was 
adjusted in each image so that the mean and standard deviation 
of the histogram became 128 and 32, respectively. Finally, 
irrelevant features outside of the facial region such as body and 
background scene were removed by a mask which had a smooth 
boundary with the center oval region.

Network

We used a CNN that was pre-trained to classify images into 
1,000 different object groups (“AlexNet”; Krizhevsky et al., 2012). 

1 https://opencv.org/ (accessed October 7, 2022).
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The CNN consists of five convolutional layers (CONV1–5) and 
three fully connected layers (FC1–3; Figure 1C). Max pooling 
operations were implemented after the CONV1, CONV2, and 

CONV5 layers. We replaced the three FC layers with new ones 
that were subjected to training of discriminating between the 
seven facial expressions. The new FC1, FC2, and FC3 layers 

A

B

C

FIGURE 1

Input images and the architecture of the CNN. Example images of seven facial expressions in the KDEF database (A) and those in the KRC database 
(B). Examples are BF01NES, BF01HAS, BF01AFS, BF01SAS, BF01ANS, BF01SUS, and BF01DIS from the KDEF database, and fd19_neu_d, fd19_hap_d, 
fd19_fea_d, fd19_sad_d, fd19_ang_d, fd19_sur_d, and fd19_dis_d from the KRC database. The CNN consisted of five convolutional (CONV) layers 
and three fully connected (FC) layers (C). The weights of the convolutional layers were adopted from “AlexNet,” which was pre-trained for 
classification of object images in the ImageNet database (Russakovsky et al., 2015). We trained our CNNs to optimize the weights of the FC layers 
to classify the seven facial expressions through the experimental runs.
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contained 4,096, 4,096, and seven units, respectively. A dropout 
process was added before the FC1 and FC2 layers, and the 
proportion of units dropped out of each weight update was set to 
0.1. This procedure was taken for facilitating learning across all 
units. For each input image, the seven computational units in the 
FC3 layer computed the score of the corresponding facial 
expressions. The scores ranged from 0 to 1 after a softmax 
operation, and were interpreted as probabilities of the classified 
emotion for a given input image. Before starting training with the 
KDEF or KRC databases, the FC layers were initialized by random 
weights sampled from a normal distribution (He et al., 2015). The 
pre-trained weights outside of the FC layers were unchanged 
throughout the experiments.

Training

We trained the modified CNN to classify facial expressions by 
supervised learning using the emotion labels of input images as 
teaching signals. In each run, we randomly divided the images of 
60 individuals into a training dataset (40), validation dataset (8), 
and test dataset (12). We periodically presented the validation 
dataset to the network during training to check whether overfitting 
to the training dataset occurred (see below). After completion of 
the training, we evaluated the performance of the CNNs using the 
test dataset. We artificially increased the number of face images by 
manipulating their size and position, and by reflecting them left-
to-right horizontally, resulting in a total of 50 variations for each 
image (5 sizes × 5 positions × 2 reflections). Input size was 224 
pixels × 224 pixels. In each epoch, therefore, 14,000 samples 
(40 × 7 × 50) and 2,800 samples (8 × 7 × 50) were used for training 
and validation, respectively. We  further randomly divided the 
training set into mini-batches (32 samples each, except for the last 
mini-batch with 16 samples) and used stochastic gradient descent 
as the optimizer. We referred to a weight-updating process with a 
single mini-batch as an iteration. Cross-entropy was computed as 
“loss” (a measure of the difference between an estimated value and 
a true value). The training comprised 12,000 iterations over 29 
epochs. We initially set the learning rate to 0.0001 for all FC layers, 
and updated it to 0.00001 and 0.000001 at 4,000 and 8,000 
iterations, respectively. We checked the correct rate and loss for 
the validation dataset in each epoch to monitor signs of overfitting. 
For each database, we repeated the experimental runs 40 times; 
i.e., we  trained and examined 40 CNNs each for the KDEF 
database and for the KRC database.

Tuning to AUs

We examined the selectivity of the seven computational units 
of the FC3 layer to the AUs of facial movement by analyzing their 
responses to AU-manipulated face images generated by FaceGen 
software (Singular Inversions, Toronto, Canada). We focused on 
the 20 AUs listed in Table 1. These AUs are associated with one or 

more basic emotion(s) (Ekman et  al., 2002). In the FaceGen 
parameter settings, we increased the intensity of one of the AUs 
from the minimum (0.0) to the maximum (1.0) at 11 steps so that 
it gradually appeared in the generated images. While we were 
manipulating a particular AU, we shut off the other AUs and they 
did not appear in the images. We  thus obtained 20 series of 
images, each with a particular modified AU, and used them to test 
the selectivity of the FC3 units to the 20 AUs. Note that the 
generated image with the minimum intensity was identical across 
the 20 AUs because the image did not contain any AU (hereafter 
we refer to this image as the “null image”). We performed these 
manipulations on a face image to which we had applied the texture 
of the neutral female face averaged across the KDEF database 
available in the Averaged KDEF database (Lundqvist and 
Litton, 1998).

We independently analyzed the responses (before the softmax 
operation) to the generated images in each computational unit. 
We adjusted the baseline activity by subtracting the response to 
the null image from the data so that the response magnitude to the 
null image became 0 in every computational unit.

Correlation of response profiles

For a given pair of FC3 units, we evaluated the similarity of 
the selectivity by computing Spearman’s rank correlation 
coefficient (rs) between the full profiles of their responses to the 
AUs. We  excluded the responses to the null image from the 
computation of the correlation coefficient because these responses 

TABLE 1 List of action units (AUs) analyzed in this study.

Action unit number Name of facial movement*

AU#1 Inner brow raiser

AU#2 Outer brow raiser

AU#4 Brow lowerer

AU#5 Upper lid raiser

AU#6 Cheek raiser

AU#7 Lid tightener

AU#9 Nose wrinkler

AU#10 Upper lip raiser

AU#11 Nasolabial furrow deepener

AU#12 Lip corner puller

AU#15 Lip corner depressor

AU#16 Lower lip depressor

AU#17 Chin raiser

AU#20 Lip stretcher

AU#22 Lip funneler

AU#23 Lip tightener

AU#24 Lip pressor

AU#25 Lips part

AU#26 Jaw drop

AU#27 Mouth stretch

*After Ekman et al. (2002).

https://doi.org/10.3389/fpsyg.2022.988302
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Inagaki et al. 10.3389/fpsyg.2022.988302

Frontiers in Psychology 05 frontiersin.org

were identical across the AUs, units, and CNNs as a result of our 
normalization procedure. The combination of the two sets of the 
seven units from the KDEF-and KRC-trained CNNs yielded a 
7 × 7 matrix of correlation coefficients.

Principal component analysis

We applied principal component analysis to gain insight into 
how AU selectivity differed across the seven facial expressions and 
the two databases. In most cases the shapes of the tunings were 
simple (e.g., monotonically increased or decreased, or having a 
single peak or trough); thus, we reduced the dimensionality of a 
response profile from 220 (20 AUs × 11 levels) to 20 by adopting a 
single peak or trough value for each AU. We then aligned these 
values taken from the seven profiles of the two CNNs to create a 
feature matrix (20 × 14) to which we  applied principal 
component analysis.

We used a machine learning library, PyTorch, to perform 
these experiments with a GeForce 1,070 (NVIDIA, Santa Clara, 
CA, United  States). Data were analyzed and visualized by 
MATLAB (Mathworks, Natick, MA, United States).

Results

Classification performance

Training with the KDEF or KRC database improved the 
classification performance of the CNNs to a similar extent. With 
both databases, the average correct rate across the seven facial 
expressions in the training dataset rose steeply from the chance 
level (0.14), and surpassed 0.7 after around 2,000 iterations 
(Figures  2A,B; orange lines). The correct rate stayed nearly 
unchanged after 4,000 iterations, and reached similar levels for the 
two databases although it was slightly higher in the KDEF than in 
the KRC (average of 8,001 to 12,000 iterations, 0.80 for KDEF and 
0.78 for KRC; p < 0.0001, t test). During training of each CNN with 
its respective training set, we periodically checked the classification 
performance for the validation dataset as well. The correct rate for 
the validation dataset also reached a plateau, indicating no sign of 
overfitting. The loss value for the training dataset initially sharply 
decreased and became relatively stable after the first 4,000 
iterations both for the KDEF and KRC databases (Figures 2A,B; 
cyan lines). Thus, the loss value showed a profile that mirrored 
that of the correct rate. These results indicate that with this 
number of iterations, the CNNs trained with the KDEF and KRC 
databases obtain a high classification performance without  
overfitting.

After the training, we evaluated the classification performance 
with the test dataset to ensure that the CNNs did not simply sort 
the training images into the seven facial expressions according to 
the instruction signals, but acquired the true ability to classify the 
expressions of face images including previously unseen ones. 

Figure 3 represents confusion matrices and correct rates of the 
CNNs trained with either the KDEF or KRC database. The correct 
rates were generally higher than the chance level (0.14; dashed 
lines) in both the KDEF-trained and KRC-trained CNNs. The two 
CNNs showed no difference in the average correct rates across the 
seven expressions (0.76 for KDEF-trained CNN, 0.75 for 
KRC-trained CNN, p = 0.15, t test). Notably, however, the way in 
which the correct rates depended on the facial expressions differed 
between the two databases (two-way ANOVA; database, p = 0.13; 
facial expression, p < 0.0001; interaction, p < 0.0001). In the KDEF-
trained CNN, the correct rates were relatively high for neutral, 
happy, surprised, and disgusted faces, and were worst for fearful 
faces (Figure 3C). In the KRC-trained CNN, the correct rates were 
also relatively high for neutral, happy, surprised, and disgusted 
faces, but those for sad and angry faces were worse than those for 
fearful faces (Figure 3D). The high correct rates of neutral, happy, 
surprised, and disgusted faces suggest that facial features are 
consistent across exemplars of these facial expressions within each 
database. By contrast, fearful faces in KDEF and angry faces in 
KRC may be more diverse in their appearance than the other 
facial expressions.

A

B

FIGURE 2

Changes in the correct rate and the loss (estimation error) during 
training. The correct rates (orange lines) and loss values (cyan 
lines) are plotted as a function of the iteration number for the 
KDEF-trained CNNs (A) and the KRC-trained CNNs (B). They 
were computed with the training dataset. The solid lines and 
shaded areas represent the means and standard deviations across 
40 runs, respectively. Every 10th value is plotted along the 
horizontal axis.
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Given the facial expression–dependent difference in the 
correct rates between the KDEF-trained and KRC-trained CNNs, 
we  next examined how well the CNNs generalized their 
performance to faces in the database not used for training. For this 
purpose, we swapped the test dataset of the used database for that 
of the unused database, i.e., from KDEF to KRC, or from KRC to 
KDEF. Confusion matrices revealed that many misclassifications 
of facial expressions occurred in the database-swapped conditions, 
while these were not found in the database-matched conditions 
(compare Figures 4A,B with Figures 3A,B). Higher choice rates 
outside of the principal diagonal in the confusion matrices were 
indicative of misclassifications (Figures 4A,B). For instance, the 
KDEF-trained CNNs often labeled neutral and angry faces as sad 
when they were tested with the KRC database (Figure  4A). 
Additionally, the KDEF-trained CNNs rarely chose happy and 
angry labels, resulting in much lower correct rates (near the 
chance level or less) for these two facial expressions (Figure 4C). 

Similar misclassifications also occurred when the KRC-trained 
CNNs were tested with the KDEF database (Figures 4B,D). In this 
case, the CNNs showed a clear bias against choosing the sad label 
for any faces (Figure  4B), and thus demonstrated poor 
classification performance for sad faces (Figure 4D). Overall, the 
correct rates in the database-swapped conditions were lower than 
those in the database-matched conditions in both the KDEF-
trained CNNs (two-way ANOVA; matched or swapped, p < 0.0001; 
facial expression, p < 0.0001; interaction, p < 0.0001) and the 
KRC-trained CNNs (two-way ANOVA; matched or swapped, 
p < 0.0001; facial expression, p < 0.0001; interaction, p < 0.0001). In 
several cases, the correct rates even dropped to the chance level or 
less. As a consequence, the correct rates averaged across the seven 
facial expressions were lower in the database-swapped conditions 
than in the database-matched conditions (KDEF, 0.76 for database 
matched, 0.41 for database swapped, p < 0.0001, t test; KRC, 0.75 
for database matched, 0.50 for database swapped, p < 0.0001, t 

A B

C D

FIGURE 3

Classification performance of the CNNs in the database-matched conditions. The confusion matrices computed with the test datasets are shown 
for the KDEF-trained CNNs (A) and the KRC-trained CNNs (B). The test and training datasets were derived from the same database. The mean 
choice rates averaged across 40 runs were coded by color (scale bar to the right). The correct rates of seven facial expressions are plotted for the 
KDEF-trained CNNs (C) and the KRC-trained CNNs (D). The means and standard deviations across 40 runs are plotted. The dashed lines represent 
the chance level (1/7 = 0.14).
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test). Thus the ability of the CNNs to classify facial expressions was 
not fully generalized across the databases.

Selectivity to AUs of facial movement

The poor classification performance in the database-swapped 
conditions (Figure 4) suggests that the facial pattern corresponding 
to each facial expression differed somewhat between the two 
databases. We  characterized this difference by analyzing the 
response selectivity of the output units in the CNNs to the AUs of 
facial movement. We  measured the responses of the seven 
computational units in the FC3 layer to AU-manipulated faces 
(see section “Tuning to AUs”). Figure  5 shows the response 
profiles of the “happy” units in the KDEF-trained CNNs (A–C) 
and the KRC-trained CNNs (D–F). Manipulation of the intensity 
of AU#12 (lip corner puller) elicited positive responses (relative to 
the response to the null image) in both the KDEF-trained CNNs 

(Figure 5A) and the KRC-trained CNNs (Figure 5D). Note that 
the other AUs were not manipulated when the effect of AU#12 was 
tested. The responses gradually became stronger with an increase 
of AU#12 intensity. These results indicate that the appearance of 
lip corners pulled up represented by AU#12 is a feature 
characterizing happy faces in both databases. Some other AUs 
elicited negative responses when they were set to higher intensities. 
For instance, AU#27 (mouth stretch) caused weak negative 
responses over the entire range of intensities in the KDEF-trained 
CNNs (Figure 5B), and gradually stronger negative responses with 
increased intensities in the KRC-trained CNNs (Figure  5E). 
Suppression of the output below the response to the null image 
means that the appearance of mouth stretching represented by 
AU#27 is indicative of non-happy faces. The full response profiles 
to all 20 AUs of the “happy” units were generally similar between 
the KDEF-trained and KRC-trained CNNs (compare Figure 5C 
with Figure  5F; Spearman’s correlation coefficient rs = 0.71, 
p < 0.0001).

A B

C D

FIGURE 4

Classification performance in the database-swapped conditions. The confusion matrix (A) and correct rates (C) of the KDEF-trained CNNs when 
tested with the KRC database. The confusion matrix (B) and correct rates (D) of the KRC-trained CNNs tested with the KDEF database. Other 
conventions are the same as in Figure 3.
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The other facial-expression units in the FC3 layer 
demonstrated less similar profiles between the two groups of the 
CNNs. Figure 6 shows a comparison of the response profiles of the 
“angry” units. Higher intensities of AU#4 (brow lowerer) elicited 
positive responses in both the KDEF-trained (Figure 6A) and 
KRC-trained CNNs (Figure  6D). By contrast, AU#22 (lip 
funneler) had opposite effects in the two groups of CNNs: positive 
responses in the KDEF-trained CNNs (Figure 6B) and negative 
responses in the KRC-trained CNNs (Figure  6E). The lips-
funneled gesture is linked with an angry face in the KDEF 
database, but opposes classification of the face as angry in the KRC 
database. The full response profiles of the “angry” units were 
dissimilar between the KDEF-trained and KRC-trained CNNs 
(Figures 6C,F; rs = 0.12).

Figure 7 shows the full response profiles of all facial-expression 
units of the KDEF-trained and KRC-trained CNNs. For each 
facial expression, we  quantified the similarity of the profiles 
between the two groups of the CNNs by computing Spearman’s 
correlation coefficients. The degree of similarity in the AU 
selectivity varied considerably across facial expressions. The 
coefficient value was highest for the “happy” units (rs = 0.71, 
p < 0.0001), and gradually decreased for the units in the following 
order: “surprised” (rs = 0.69, p < 0.0001), “disgusted” (rs = 0.49, 
p < 0.0001), “fearful” (rs = 0.39, p < 0.0001), “neutral” (rs = 0.25, 
p = 0.00037), “sad” (rs = 0.18, p = 0.0090, n.s. with Bonferroni 
correction), and “angry” (rs = 0.12, p = 0.094, n.s. with Bonferroni 
correction). The profiles of the two groups of the CNNs were 
similar to each other to varying degrees in the “happy,” “surprised,” 

A B C

D E F

FIGURE 5

Selectivity of the outputs of the “happy” unit in the FC3 layer to the AUs. Responses of the “happy” unit of the KDEF-trained CNNs are shown for 
varying intensities of AU#12 (A, lip corner puller) and AU#27 (B, mouth stretch). The means and standard deviations across 40 runs are plotted. On 
top, three example images are shown for corresponding AU intensities of 0 (left), 0.5 (middle), and 1 (right). These images of AU manipulations are 
generated with the neutral female face, FNES, in the Averaged KDEF database (Lundqvist and Litton, 1998; see Tuning to AUs for details). (C) The 
response profile of the “happy” unit in the KDEF-trained CNNs to all 20 AUs with varying intensities. The mean responses averaged across 40 runs 
are coded by color (scale bar to the right). The responses are normalized so that the maximum absolute value of the profile becomes 1. Note that 
the same normalization was also applied to the data shown in (A) and (B). The filled and open arrowheads indicate AU#12 (shown in A) and AU#27 
(shown in B), respectively. (D,E) Tuning curves for AU#12 (D) and AU#27 (E) and the response profiles to all 20 AUs of the happy unit in the KRC-
trained CNNs (F). The conventions are the same as in panels (A–C).
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“disgusted,” “fearful,” and “neutral” units, but differed substantially 
in the “sad” and “angry” units.

The overall similarity or dissimilarity of AU tunings between 
the KDEF-trained and KRC-trained CNNs can be more explicitly 
shown by plotting the addition or subtraction of the AU-tuning 
profiles of the same facial expression in the two groups of CNNs 
(Figure 8). We found some positive responses (green color in the 
panels of Figure  8A) in the added profiles, indicating shared 
tunings between the CNNs trained with the different databases. 
For instance, in agreement with Figures 5A,D, AU#12 (lip corner 
puller) had a strong positive effect on the added profile of the 
“happy” units. Another example of shared positive responses was 
AU#22 (lip funneler) in the profile of the “fearful” units and AU#4 
(brow lowerer) in the profiles of the “angry” units. Additionally, in 
the profile of the “disgusted” units, several AUs, such as AU#4 and 
AU#9 (the latter of which indicates nose wrinkler), showed 
positive responses. We  also found negative responses (purple 
colors in Figure 8A) shared by the two CNNs. For instance, AU#12 
caused negative responses in the added profiles of the “neutral,” 

“sad,” “angry,” and “disgusted” units, in contrast to the strongly 
positive responses of the “happy” unit. Note that the added profile 
of the “neutral” unit was dominated by negative responses. This is 
reasonable, because the appearance of any facial movements 
implies that the face is not neutral but demonstrates some other 
facial expressions.

Subtraction of AU-tuning profiles of the same facial expression 
(KDEF − KRC) demonstrated opposite responses between the 
two CNNs (coded by either green or purple color in Figure 8B; 
green for larger responses in KDEF than in KRC, purple for larger 
responses in KRC than in KDEF). For instance, AU#22 (lip 
funneler) clearly elicited opposite effects between the KDEF-
trained and KRC-trained CNNs in the profiles of the “sad” and 
“angry” units. The “sad” unit in the KDEF-trained CNN responded 
negatively to AU#22, while the “sad” unit in the KRC-trained 
CNN responded positively (compare “sad” panels in Figures 7A, 
B). For the “angry” unit, by contrast, the KDEF-trained and 
KRC-trained CNNs showed positive and negative responses, 
respectively, as already shown in Figures 6B,E.

A B C

D E F

FIGURE 6

Selectivity of the outputs of the “angry” unit in the FC3 layer to the AUs. Tuning curves of the “angry” unit of the KDEF-trained CNNs for AU#4 (A, 
brow lowerer) and AU#22 (B, lip funneler), and the response profiles of the KDEF-trained CNNs (C) are shown. Lower panels (D–F) show the 
response profiles of the “angry” unit of the KRC-trained CNNs. The conventions are the same as in Figure 5.
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Relation of response profile similarities to 
confusion matrices

A crucial question is whether the similarities and 
dissimilarities of the AU-response profiles between the KDEF-
trained and KRC-trained CNNs (Figures 7, 8) accounted for the 
confusion matrices in the database-swapped conditions 
(Figure 4). We computed the pairwise correlation coefficients 
between the two sets of seven profiles each of which was 
obtained from KDEF-trained and KRC-trained CNNs, thus 
resulting in a 7 × 7 matrix (Figure 9). Note that the vertical axis 
of the correlation matrix (corresponding to the “true” label in 
the confusion matrix) was set to the profiles of the KRC-trained 
CNNs in Figure 9A, and to those of the KDEF-trained CNNs in 
Figure  9B. As already described above in Figure  7, the 

correlations of the pairs of the same facial expression, which lie 
along the principal diagonal, showed a variety of coefficient 
values, some of which were fairly high. Several combinations of 
facial expressions, such as the pair of the “sad” profile in the 
KDEF-trained CNNs and the “angry” profile in the KRC-trained 
CNNs, demonstrated higher correlation coefficients (shown in 
orange in Figures 9A,B) than other combinations (shown in 
blue and white). If the selectivity to the AUs underlies the 
classification performance of the CNNs, one might expect that 
pairs with higher correlation in terms of the AU selectivity 
would show higher choice rates in the confusion matrix. This 
was indeed the case. Higher correlation coefficients were 
associated with higher choice rates in both database-swapped 
conditions (Figures 9C,D; KDEF to KRC, rs = 0.59, p < 0.0001; 
KRC to KDEF, rs = 0.49, p = 0.00038). These results suggest that 

A

B

FIGURE 7

Full response profiles of the selectivity to 20 AUs. The response profiles of the seven computational units in the FC3 layer are shown for the KDEF-
trained CNNs (A) and the KRC-trained CNNs (B). The mean responses averaged across 40 runs are coded by color (scale bar to the right). In each 
panel, the responses are normalized so that the maximum absolute value of the entire profile becomes 1. Spearman’s rank correlation coefficients 
are shown for each of the seven computational units.

https://doi.org/10.3389/fpsyg.2022.988302
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Inagaki et al. 10.3389/fpsyg.2022.988302

Frontiers in Psychology 11 frontiersin.org

the classification of the facial expressions by the CNNs was at 
least partly mediated by the selectivity to the AUs.

Dimension reduction by principal 
component analysis

Finally, we  performed principal component analysis to 
visualize how selectivity of the seven facial-expression units to the 
AUs differed from each other. Figure 10 shows the distribution of 
the facial expressions in the two- or three-dimensional spaces 
spanned by the combinational pairs of the first three principal 
components (A–C) or by all of them (D). The differently shaped 
symbols indicate different facial expressions. Filled and open 
symbols indicate the data for the KDEF-trained and KRC-trained 

CNNs, respectively. Happy (upward-pointing triangles), surprised 
(pentagons), and disgusted (hexagons) faces were clustered in the 
vicinity between the KDEF and KRC (see dashed circles in 
Figure  10B). The other expressions were located at greater 
distances between the two databases. These figures may serve as 
an intuitive summary of the relationship between the facial 
expressions defined by AU selectivity.

Discussion

In this study, we performed CNN-based image analysis to 
compare the features of facial expressions in different cultures. 
We trained CNNs to classify images of facial expressions in two 
image databases, one developed in Sweden and the other in Japan 

A

B

FIGURE 8

Similar and dissimilar tunings between the KDEF-trained and KRC-trained CNNs. For each of the seven computational units in the FC3 layer, the 
response profiles of the two groups of the CNNs are either added (KDEF + KRC) (A) or subtracted (KDEF − KRC) (B). In A, positive and negative 
responses shared by the two groups are represented by darker green and purple colors, respectively. In B, green or purple indicates opposite 
tuning between the two groups. Green indicates positive responses in the KDEF-trained CNNs and negative responses in the KRC-trained CNNs. 
Purple indicates negative responses in the KDEF-trained CNNs and positive responses in the KRC-trained CNNs.
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(KDEF and KRC, respectively). Sweden and Japan are far apart in 
distance and belong to European and Asian countries, respectively. 
Because differences in mental representations for facial 
expressions between Europeans and Asians have been suggested 
(Jack et  al., 2012), we  assumed that cultural differences were 
reflected in these two databases. After training with one of the two 
databases, the CNNs were able to classify facial expressions in the 
same database with high accuracy. When the database was 
swapped between the training and test datasets, however, the 
performance of the CNN was degraded, with frequent confusion 
between specific pairs of facial expressions. Classification 
performance was only partially transferable between the 
databases. These results suggest that the CNN trained with a 
different dataset exploited different facial features to classify the 
facial expressions. Analysis of the selectivity of the FC3 
computational units to the AUs of facial movements revealed a 
variety of tunings to a subset of AUs (each either positive or 
negative). These tunings depended on the databases used for the 

training as well as on the facial expressions to be classified. The 
similarity or dissimilarity of these tunings across the databases 
and facial expressions was correlated with the confusion matrix of 
the CNN classifications in the database-swapped conditions. 
Taken together we show that the visual features of characterizing 
facial expressions differ between KDEF and KRC (hence, between 
Sweden and Japan), and the differences in associating specific AUs 
to particular expressions partially define this difference. These 
findings support the interpretation that our results reflect culture-
specific differences in expressing emotions rather than differences 
of databases as such. In a more general context, the results 
demonstrate the usefulness of the AUs in characterizing facial 
features represented in the CNNs. With this justification, 
we summarized the representations of the facial expressions in the 
CNNs by applying principal component analysis to the AU 
selectivity. The distribution in this low-dimensional space may 
serve as an intuitive summary for systematic comparisons of 
different facial expressions in different databases.

A B

C D

FIGURE 9

Correlation matrix of the response profiles of the KDEF-trained and KRC-trained CNNs and its relation to the confusion matrix in the database-
swapped conditions. (A,B) Correlation matrix computed with the full profiles between the KDEF-trained and KRC-trained CNNs. Note that the 
horizontal axis and vertical axis are interchanged between (A) and (B), while correlation values themselves are unchanged. (C,D) Correlation 
between the correlation matrix and confusion matrix in the database-swapped conditions. There are 49 (7 × 7) data points in the scatter plots, each 
data point representing the combination of two facial-expression units.
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Comparison with classification data in 
humans

The CNN used in this study was very powerful, and its 
performance in classifying facial expressions was superior to that 
of humans. The grand averages of the correct rates across the facial 
expressions were 0.76 and 0.75  in the KDEF-trained and 
KRC-trained CNNs, respectively, and were higher than those in 
psychological validations of human observers (KDEF, 0.72, 
Goeleven et al., 2008; KRC, 0.62, Ueda et al., 2019). The CNNs 

effectively learned the visual features important for classification 
of facial expressions in the KDEF or KRC databases.

The correct rates depended on the facial expressions in the 
database-matched conditions (Figures  3C,D). As in the CNNs, 
classification accuracy in humans also varies across facial expressions. 
For the KDEF database, the mean correct rates across observers in a 
classification task were ranked in descending order as happy, angry, 
surprised, sad, disgusted, neutral, and fearful faces (Goeleven et al., 
2008). This order is consistent with our data in that the highest and 
lowest correct rates were observed for happy and fearful faces, 

A B

C D

FIGURE 10

Principal component analysis of the AU selectivity of the computational units in the FC3 layer. Distribution of the response profiles of the facial 
expressions in two-dimensional spaces spanned by principal components 1 and 2 (A), principal components 1 and 3 (B), and principal 
components 2 and 3 (C). The distribution in the three-dimensional space is shown in (D). Symbols with different shapes denote different facial 
expressions. Circles: neutral; upward-pointing triangles: happy; squares: fearful; diamonds: sad; downward-pointing triangles: angry; pentagons: 
surprised; hexagons: disgusted. Filled and open symbols indicate data from the KDEF-trained and KRC-trained CNNs, respectively. In (B), the 
closely located pairs of expressions between the two databases (neutral, disgusted, surprised) are encircled by dashed lines.
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respectively (rank order: happy, neutral, surprised, disgusted, angry, 
sad, and fearful). For the KRC database, a classification experiment in 
human participants demonstrated that the rank order was neutral, 
surprised, happy, sad, disgusted, angry, and fearful faces (Ueda et al., 
2019). The top three facial expressions were the same as in our data 
(rank order: happy, surprised, neutral, fearful, disgusted, sad, and 
angry). Patterns of the correct rates were partially matched between 
the CNNs and human observers.

Tuning to AUs

The classification ability of the CNNs was not fully generalized 
between the databases: the CNNs trained with one of the two 
databases made frequent mistakes in classifying the facial expressions 
when test images were drawn from the other database (Figure 4). 
These results suggest that facial features associated with each facial 
expression may differ between the two databases. To address this 
issue, we characterized a face by FACS (Ekman and Friesen, 1976; 
Ekman et al., 2002), which codes facial movement by a set of AU 
intensities. We  took this approach for multiple reasons. First, an 
AU-based representation has only a few tens of components (i.e., 
AUs) and can efficiently generate facial expressions because of the 
close relationship of AUs with the anatomy of the face. These 
advantages were highlighted by the fact that many psychological 
studies have adopted this framework (see Barrett et al., 2019, for a 
review). Second, an electrophysiological study in non-human 
primates suggested that some neurons of a face selective region 
(middle face patch) in the visual temporal cortex encode AU-like 
components of facial movement (Freiwald et al., 2009). Such AU 
selectivity may constitute precursors for the facial-expression 
selectivity exhibited by some neurons in downstream areas (Hasselmo 
et al., 1989; Nakamura et al., 1994; Sugase et al., 1999; Gothard et al., 
2007; Hoffman et al., 2007; Inagaki et al., 2022). Third, in CNNs, the 
performance of classifying facial expressions can be improved by 
pruning feature maps that are not selective to AUs (Zhou and Shi, 
2017). Indeed, in our data, the tunings to the AUs were related to the 
prediction of the facial expressions by the CNNs in the database-
swapped conditions (Figure 9).

FC 3 units exhibited both positive and negative responses to 
higher AU intensities that are accompanied by the clear expression 
of corresponding facial movements in an image. A positive response 
(i.e., stronger than that to the null image) to a specific AU in a 
specific facial-expression unit indicates that the existence of the 
corresponding facial movement promotes classification of the input 
face as this facial expression. Note that positive responses captured 
only the linear effects of AUs and not the nonlinear interactions 
among AUs, because AUs were individually manipulated to obtain 
each AU tuning. The nonlinear interactions would happen to a 
combination of multiple AUs, each localized at different positions in 
a face (e.g., eye region vs. mouth region). Although the interactions 
were potentially informative factors as well, our approach clarified 
the representation of the AUs in the FC3 units as a first order 
approximation. Some of the positive responses were consistent with 
the original proposal of the relation between specific AUs and 

expressions (Ekman and Friesen, 1976; Ekman et al., 2002). For 
instance, both the KDEF-trained CNNs and KRC-trained CNNs 
showed positive responses to AU#12 (lip corner puller) in the 
“happy” unit, as AU#12 is suggested by the FACS guide to 
be indicative of a happy facial expression (Figure 8A, panel “Happy”). 
Both groups of CNNs also responded positively to AU#4 (brow 
lowerer) in the “angry” unit, which is associated with an angry facial 
expression according to the guide (Figure  8A, panel “Angry”). 
Among the positive responses in the “disgusted” unit (Figure 8A, 
panel “Disgusted”), only that to AU#9 (nose wrinkler) was supported 
by the guide. However, other positive responses in this unit, such as 
to AU#4, AU#6 (cheek raiser), and AU#7 (lid tightener), were 
supported by another study (Cordaro et al., 2018) in which facial 
movements elicited by emotional stories were analyzed by human 
raters. Overall, the pattern of the positive responses was partly 
matched to the AU-based characterization of facial expressions 
(Ekman et al., 2002; see Barrett et al., 2019, for a review).

A negative response (i.e., weaker than that to the null image) 
indicates that the existence of the corresponding facial movement 
inhibits the input face from being classified as this facial expression. 
Negative responses might thus contribute to correctly rejecting 
irrelevant facial expressions, although it is unclear exactly how their 
patterns are related to the original FACS guide. This uncertainty does 
not mean that negative responses are useless for analyzing image 
databases. Rather, the negative response patterns found in the 
present study might facilitate the characterization of facial 
expressions according to AUs. This is because in a psychological 
examination, it is difficult and time-consuming, if not impossible, to 
confirm whether a specific AU induces rejection of irrelevant facial 
expressions. Our analysis might shed light on a hitherto unexplored 
aspect of the relationships between AUs and facial expressions.

The tunings to the AUs markedly differed between the KDEF-
trained and KRC-trained CNNs (Figure 8B). Because one of our 
aims was to build an image analysis framework that can be used to 
compare many image databases, we need a compact summary of 
the AU tunings obtained from different databases. For this purpose, 
we applied principal component analysis (Figure 10). Distributions 
of facial expressions in the low-dimensional space deduced from 
principal component analysis suggest that neutral, disgusted, and 
surprised faces are similar between the two databases compared to 
the other facial expressions (Figure 10). Application of this analysis 
to various databases may give an intuitive overview of the 
similarities and dissimilarities of the facial expressions based on the 
AUs across different countries or cultures.

A potential concern of our approach is a sampling bias of the 
face images used for the analysis. We  selected images of 60 
individuals each from the KDEF and KRC databases to compare the 
two databases using a fixed number of images in the main analysis. 
A small sample size may fail to capture the large variation in the AU 
tunings among individuals of the target population. To address this 
issue we increased the number of face images by using all available 
data (70 individuals in KDEF, 74 individuals in KRC) and compared 
the AU tunings of the FC3 units with those of the main data 
(obtained from 60 individuals). For the KDEF database, the 
correlation coefficients between the response profiles obtained from 
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the two conditions (60 individuals vs. 70 individuals) ranged from 
0.967 to 0.998 for the seven facial expressions. For the KRC database, 
the correlation coefficients between the two conditions (60 
individuals vs. 74 individuals) were from 0.985 to 0.997. The 
response profiles were quite similar between different sample sizes, 
suggesting that the main data based on the images of 60 individuals 
captured the major variations in these databases.

Another concern is a possible difference in the intensity of facial 
expressions. If a database consists of face images only faintly expressing 
emotions, one might fail to assess the features of facial expressions. The 
previous validation studies showed that the mean score of the intensity 
of the six basic emotions rated by human observers ranged from 5.28 
to 6.23 (tested with 9 point Likert scale) in the KDEF database 
(Goeleven et al., 2008) and from 4.19 to 5.32 (tested with 7 point Likert 
scale) in the KRC database (Ueda et al., 2019). The intensity scores 
were moderate in both databases on average. These findings suggested 
that the face images in these two databases expressed the basic 
emotions with a similar intensity level, and thus they were suitable for 
analyzing the visual features of the facial expressions.

Image analysis of facial expressions

A previous study on human participants used a biologically 
plausible neural network to infer mechanisms underlying high 
in-group recognition accuracy of facial expressions (i.e., Japanese 
participants show higher correct rates for expressions by Japanese, 
while American participants show higher correct rates for 
expressions by Americans; Dailey et al., 2010). They trained their 
neural network with dataset mixtures consisting of different 
proportions of American and Japanese faces, and reproduced this 
in-group advantage of facial expression recognition. In agreement 
with their finding, the performance of our CNNs was higher in the 
database-matched conditions than in the database-swapped 
conditions. We further showed that the tunings of the output units 
to AUs differed between the KDEF-trained and KRC-trained 
CNNs. The specialization to different sets of AUs may underlie the 
higher performance in the data-matched conditions, suggesting 
that people in different cultures develop specific sensitivity to AUs.

The outputs of the FC3 layer of our CNNs were selective to AUs. 
A previous study showed that some portions of the outputs of the 
CONV5 layer (after max pooling), which is located upstream of the 
FC layers, are already selective to AUs (Zhou and Shi, 2017). As in 
our CNNs, their CONV5 layer is pre-trained with the ImageNet 
database (Russakovsky et al., 2015) and not trained with a face 
database. Therefore, the selectivity of the outputs of CONV5 layer 
to AUs must have been obtained through learning with a variety of 
object and scene images in the ImageNet database without dense 
exposure to images of facial expressions. The AU-selectivity in the 
pre-trained CONV5 layer may contribute to classification of facial 
expressions through the FC layers which learn in the training with 
face databases how to combine the AU-selective outputs from the 
CONV5 layer. This transferability of the learning by CONV layers 
from pre-training to facial-expression discrimination training is 

beneficial because training of the entire CNN including both 
CONV and FC layers with a face database is time-consuming and 
requires a large number of images of facial expressions.

Recently, software programs of automated scoring have developed 
to evaluate AUs of faces (den Uyl and van Kuilenburg, 2005; Littlewort 
et al., 2011; Olderbak et al., 2014; Girard et al., 2015). These automatic 
analyses are applied to images of faces to determine whether and how 
each AU appears in them. In the present study we also developed a 
framework of automatic analysis of AUs, which was, however, not 
directly applied to images of faces. Instead we tested the AU selectivity 
of the outputs of the CNNs trained with images of faces. Because the 
CNNs were optimized to the facial-expression classification, their 
output selectivity reflected diagnostic information of facial features 
useful for discriminating different facial expressions. The response 
profiles for the AUs shown in Figure 7, therefore, characterized how 
effectively each AU differentiates the corresponding facial expression 
from the others in a specific database used for the training. Our 
method might shape the profiles more compact compared with those 
obtained from other analyses working on images themselves.

In conclusion, we developed a novel method of CNN-based 
image analysis to determine visual features characterizing facial 
expressions. We  applied this analysis to facial image databases 
developed in different countries. The technical merits of this 
approach are that emotion labels annotated for face photographs 
provide clues for understanding culture-specific relations between 
facial movement patterns and facial expressions, and that image 
analysis can be  performed without any experimenter bias. 
We confirmed the validity of our method by demonstrating that the 
visual features of characterizing facial expressions differ between two 
databases developed in Sweden and Japan. Our framework of image 
analysis can be easily extended to new databases when they become 
available, and will facilitate systematic comparisons of visual features 
characterizing facial expressions across different cultures.
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