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The identification of an empirically adequate theoretical construct requires 

determining whether a theoretically predicted effect is sufficiently similar to an 

observed effect. To this end, we propose a simple similarity measure, describe 

its application in different research designs, and use computer simulations 

to estimate the necessary sample size for a given observed effect. As our 

main example, we  apply this measure to recent meta-analytical research 

on precognition. Results suggest that the evidential basis is too weak for a 

predicted precognition effect of d = 0.20 to be considered empirically adequate. 

As additional examples, we apply this measure to object-level experimental 

data from dissonance theory and a recent crowdsourcing hypothesis test, as 

well as to meta-analytical data on the correlation of personality traits and life 

outcomes.
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“I am deliberately setting aside statistical significance testing, or the setting up of confidence 
intervals […]”

(Meehl, 1990; p. 128)

Introduction

As classical empirical findings fail to replicate and empirical studies often prove to 
be poorly conducted (Gervais, 2021; Nosek et al., 2022), the replication crisis or confidence 
crisis presents a major impasse for behavioral science (Fleck, 1935; Kuhn, 1962). While the 
motives for employing questionable research practices (Gelman and Carlin, 2014; Gelman, 
2018) and the limitations of research methods (Kerr, 1998) are increasingly better 
understood, most reform proposals today recommend transparency measures (e.g., study 
pre-registration or registered replications; Fiedler and Prager, 2018; Klein et al., 2018). Less 
frequently addressed is that scientific progress requires good theoretical constructs (Meehl, 
1978; Gigerenzer, 1998; Miłkowski et al., 2019; Muthukrishna and Henrich, 2019; Oberauer 
and Lewandowsky, 2019; Eronen and Romeijn, 2020; van Rooij and Baggio, 2020; 
Cornelissen et al., 2021; Eronen and Bringmann, 2021; Gervais, 2021; Irvine, 2021).
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A good theoretical construct minimally allows for an 
empirically adequate prediction. A theoretical construct “is 
empirically adequate exactly if what it says about the observable 
things and events in the world is true—exactly if it “saves [or 
captures] the phenomena” (van Fraassen, 1980, p. 12). In the 
context of experimental research, this means that the effect that is 
predicted by a theoretical construct must be sufficiently similar to 
a relevant observed effect.

The development of an empirically adequate construct 
depends on high-quality observations. But even observations of 
the highest quality cannot automatically generate a theoretical 
construct that offers a non-circular justification for why a future 
event occurs as predicted.1 Because a theoretical construct must 
deductively entail its prediction before observations are made, a 
non-circular approach to predicting a phenomenon of interest 
thus requires a deductive approach to the development of empirical 

1 The creative process of developing a theoretical construct is what 

C.S. Peirce called an abduction over past observations (Peirce, 1931–1958). 

Jointly with initial and boundary conditions, a theoretical construct allows 

for a deduction of a theoretical prediction about possible future 

observations. And a (dis-)confirmation of this prediction by new 

observations that are (in-)consistent with it relies on a testing process that 

the late C.S. Peirce called induction. Abduction thus is “the process of 

forming an explanatory hypothesis [and is] the only logical operation which 

introduces any new idea,” whereas “deduction merely evolves the 

necessary consequences of a pure hypothesis,” while induction “does 

nothing but determine a [truth] value” (Peirce, 5.171).

Importantly, the information content of a theoretical construct exceeds 

that of an inductive generalization (e.g., a mathematical function stating 

an observed law-like regularity) that descriptively subsumes past 

observations. Theoretical constructs acquire this excess content by 

featuring at least one theoretical entity that is not presupposed by the 

observational theory employed to make past observations (see Andreas, 

2021, and our Supplementary Appendix S2, dissonance theory). Behavioral 

scientist, however, who likewise develop theoretical constructs based on 

past observations, regularly fail to acknowledge, and to perform, what 

Hempel (1988) called theoretical (or inductive) ascent, i.e., “[…] a transition 

from a data sentence expressed in [an antecedent vocabulary] VA to a 

theoretical hypothesis […]” (p. 150) that is “formulated with the help of a 

theoretical vocabulary, VC, whose terms refer to the kinds and 

characteristics of the theoretical entities and processes in question” (p. 147, 

italics added) which themselves are the products of abduction.

Without theoretical ascent, therefore, the information content of a non-

genuine theoretical construct is at most as large as that of an inductive 

generalization. The main consequence is that the act of predicting future 

observations based on the inductive generalization that a non-genuine 

theoretical construct is, runs straight into Hume’s problem of induction 

(Hume, 1739): a non-pragmatic justification for a prediction of future 

observations based on an inductive generalization of past observations 

(sans theoretical ascent) presupposes that induction is a valid mode of 

reasoning. But this inference is circular (Henderson, 2020).

adequate theoretical constructs (Popper, 1959; Lakens, 2013; 
Lakens et al., 2018).

We begin by summarizing why the empirical adequacy of a 
theoretical construct should be  evaluated independently of 
statistical elements (Meehl, 1990; p.  128) and review the 
shortcomings of extant evaluative approaches. To this end, 
we propose a new formal measure that is independent of statistical 
elements, thus enabling a direct comparison between theory and 
observation. The intended application for this measure is theory 
construction. To demonstrate its use value, we  exemplarily 
evaluate recent meta-analytical findings on precognition (Bem 
et al., 2016). Additional examples, as well as a description of how 
this measure can be applied under various research designs, are 
provided in Supplementary Appendix S1, S2.

Summary

Evaluating whether a theoretical prediction agrees with 
observations requires a theory-accommodating approach. But if 
this approach combinates theoretical and statistical aspects, then 
the evaluative outcome depends on the variance of error-prone 
observations. Consequently, one cannot be  sufficiently certain 
about the accuracy of observations to which the theoretical 
prediction is compared. Since this uncertainty transfers to the 
evaluative outcome, the question of whether a theoretical 
prediction agrees with observations should be  addressed 
independently of how observations vary (Meehl, 1990, 1992, 1997).

Yet the opposite holds if a standardized effect size measure 
such as Cohen’s d = (m1 – m0) / s is used to quantify the 
observations. This measure combines the observed mean difference 
(m1 – m0) with the statistical element of the observed standard 
deviation (s). A theoretical construct, however, predicts only (m1–
m0), yet not s. This makes a standardized effect size measure an 
inappropriate formal tool to evaluate the empirical adequacy of a 
theoretical construct.

A theoretical construct contrasts most starkly with an inductive 
generalization that states a directional hypothesis. Because a 
directional hypothesis is informative only relative to its inductive 
basis, it can merely “predict” the pattern of past observations it 
subsumes. A theoretical construct, by contrast, is informative 
beyond this basis (see our note 1). Moreover, the construct must 
predict future observations not as a directional but as a point-
specific effect. Otherwise, one simply cannot evaluate whether the 
theoretically predicted mean agrees with the observed mean.

Shortcomings of the inductive 
strategy

Standard deviation

The observed standard deviation (s) is a measure of the 
variance of observations. The observed variance depends on the 
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extent to which an empirical setting is subject to uncontrolled 
(random) influences. Other things being equal, empirical settings 
that are more rigorously controlled for (random) influences go 
along with reduced observed variance, i.e., a smaller s. Compared 
to a less rigorously controlled setting, therefore, the value of 
Cohen’s d-measure increases.

Since the observed standard deviation quantifies the variance 
of error-prone observations, an observed effect must be related to 
a probability distribution. This process is known as standardization. 
Once standardized, the observed effect becomes a statistic of an 
entire sample of observations that can no longer be related directly 
to a theoretically predicted effect. With a standardized observed 
effect, therefore, one cannot evaluate the similarity between what 
a theoretical construct predicts and what a measurement 
instrument records. Instead, one evaluates the relative position of 
statistically transformed measurement scores on a measurement 
scale against a random distribution.

A statistical test relies on the observed standard deviation to 
evaluate whether the observed effect differs statistically 
significantly from a null hypothesis. A t-test, for instance, can 
often show that a large difference between the observed means in 
the experimental and the control group is statistically significant. 
But the standard deviation combines several causes that contribute 
to the observed variance (e.g., the sample selection process, the 
experimental implementation, the validity and the reliability of 
the in- and dependent variables, and the random influences on an 
empirical setting). Thus, a theoretically predicted and an observed 
effect may well agree. But if the observed effect depends on the 
observed standard deviation, then its statistical significance is an 
insufficient criterion to evaluate a theoretical construct as 
empirically adequate.

Parameter estimation

Parameter estimation is an inductive strategy to separate 
systematic patterns from non-systematic noise in data. A 
parameter operates at the level of statistics rather than the level of 
measurement. ‘Parameter’ thus refers not to the properties of 
observations but those of data (e.g., their central tendency as 
measured by the mean, or the strength of associations between 
variables as measured by correlation or regression coefficients). 
Since data provide the basis for a parameter estimate, its accuracy 
is informed by statistical procedures that evaluate the parameter 
against the observed variance. The latter results from the variation 
of behavioral responses and measurement shortcomings. A given 
measurement instrument, therefore, captures both a relevant 
phenomenon and random influences (e.g., due to participants’ 
salient memories, chronic moods, or even the weather).

This leads to three complications in estimating a parameter 
accurately. First, since perfectly error-free observations are 
impossible, the accuracy of a parameter must be evaluated against 
the observed variance by using statistical procedures (that rely on 
a significance level 𝛼 and an associated probability level p). Such 

procedures are often subjective and need not be  reliable (see 
p-harking, Kerr, 1998; p-hacking, Simmons et al., 2013). Crucially, 
statistical procedures cannot distinguish whether the observed 
variance results from measurement shortcomings or rather from 
uncontrolled (random) influences on an empirical setting.

Second, what matters for scientific discovery is the size of the 
parameter estimate. For instance, a small observed mean 
difference between people’s political orientation that varies with 
color preferences presumably fails to be a substantially meaningful 
finding. Whereas a similarly small observed difference that varies 
with cultural background presumably would be  substantially 
meaningful. This finding, however, should be further explored 
only if it is sufficiently large. But recent meta-meta-analyses 
(Olsson-Collentine et al., 2020; Schauer and Hedges, 2020; Linden 
and Hönekopp, 2021) strongly suggest that individual published 
studies across different behavioral science domains typically 
report observed object-level effects that are small and homogenous 
(read: small d, small s) or medium-to-large and heterogeneous 
(read: large(r) d, large s). A small observed variance thus tends to 
go along with a small observed mean effect. Whereas the findings 
of individual object-level studies that are sufficiently large to 
be further explored go along with a large observed variance. This 
necessarily results in a vague impression of the parameter that an 
empirical adequate theoretical construct would have to predict.

Third, a parameter estimate is useful for theory construction 
only if its inductive basis accurately captures an observed effect in 
a relevant population. Considerations of test-power and sample 
representativity dictate the use of sufficiently large samples to 
discover systematic behavioral patterns (law of large numbers). In 
small samples, by contrast, these patterns are likely truncated by 
uncontrolled (random) influences, resulting in inaccurate 
parameter estimates. Generally, large samples allow for more 
accurate parameter estimates if the underlying distribution of 
observations is uniform.

Among the widely used tools to estimate parameters are 
Cohen’s d-measure, confidence intervals, and tools that rely on 
inductive model fitting and probabilistic distributions.

Cohen’s d-measure
The goal of null-hypothesis significance testing is to determine 

whether an observed object-level effect differs significantly from 
a random effect. Relative to a predefined significance level 𝛼 and 
an associated probability level p, the statistical significance of an 
observed effect indicates the probability of observing this effect 
under the null hypothesis. But this says nothing about whether the 
null or the alternative hypothesis is true or whether the observed 
object-level effect is relevant for theory construction. For theory 
construction, therefore, the statistical significance of an observed 
object-level effect is merely a necessary criterion. In addition, 
publications should also report the observed object-level 
effect’s size.

Among the available tools to calculate the observed effect size, 
standardized effect size measures are often preferred because they 
weigh the observed effect by the observed variance, thus providing 
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a robustness check for the observed effect. As one of the most 
widely used measures in behavioral science (Schäfer and Schwarz, 
2019), for instance, Cohen’s standardized d-measure d = (m1 – 
m0) / s (Cohen, 1977) weighs the observed mean difference (m1 – 
m0) between the experimental (m1) and the control group (m0) by 
the pooled standard deviation in both groups (s). It should be easy 
to see that, if (m1 – m0) is constant, then the d-value is sensitive to 
the observed variance captured by s.

Even if an experimental study that relies on the d-measure 
would report a very large statistically significant effect, this is 
insufficient to motivate the development of a theoretical construct 
for it. To be theorized, after all, is the true parameter, rather than 
its ratio to the observed variance. The main challenge thus is to 
tease apart the causes that contribute to the observed variance (see 
above). Standardized effect size measures, however, simply cannot 
meet this challenge, making them inappropriate tools for theory 
construction research. Therefore, an additional layer of scrutiny 
must address the confidence that an inductive parameter estimates 
the true parameter.

Confidence intervals
A true parameter can be estimated with perfect accuracy only 

in theory. In praxis, (random) influences or measurement 
instrument shortcomings render a perfectly accurate parameter 
estimate unlikely. One can nevertheless state the parameter’s 
expected accuracy using a confidence interval (CI), the width of 
which depends on the level of significance 𝛼. To determine the CI, 
one simultaneously considers the observed mean difference, the 
observed variance, the level of significance, and the sample size. 
This is formally given as CI d z s n= ± × √( )/ .

Like Cohen’s d-measure, however, a CI cannot determine 
whether a true effect (e.g., the mean difference between two 
groups in a population) was estimated accurately because also a 
CI combines the mean difference with the statistical element s. 
Thus, the observed variance once again results in a vague 
impression of the parameter. Generally, unless the causes that 
contribute to the observed variance can be teased apart, vague 
observations will undermine theory construction research. And 
the one possible way of teasing these causes apart is to increase the 
sample size.

Inductive model fitting
Using inductive model fitting, researchers can address the 

complexity of human behavior by statistically modeling the 
associations between two or more estimated parameters, followed 
by testing the statistical model against a random model. Using 
various indexes (e.g., the Comparative Fit Index (CFI) or the Root 
Mean Square Error of Approximation (RMSEA)), a finite set of 
observations is compared against a class of statistical models (see 
the special issue on model selection, Myung et al., 2000; Burnham 
and Anderson, 2004). The model that best describes the data is 
said to be identified in the population (Bollen et al., 2010).

Inductive model fitting presupposes a reconstruction of the 
variance–covariance structure in the data. But fitting a statistical 

model to data inherits all attributes of the data (including errors 
due to measurement instrument shortcomings, uncontrolled 
random influences, non-uniform distributions, or outliers). So, 
although inductive model fitting improves over the estimation of 
a single parameter, its use-value for theory construction primarily 
depends on the quality of the data. Even the best-fitted model, 
however, cannot unequivocally tell meaningful data patterns from 
patterns owed to measurement instrument shortcomings or 
uncontrolled (random) influences. This holds regardless of 
whether the estimated parameter is statistically significant or 
whether the effect size is large. All an inductively fitted model can 
tell is whether data are described well.

Since model fitting is an iterative strategy, moreover, some 
parameters must be  estimated before others, so that the 
associations between parameters can be specified to obtain a data-
fitting model. The identification of the parameters that are to 
be estimated first would ideally rely on theoretical considerations. 
But when researchers fit a model to data, they instead often rely 
on p-harking or p-hacking strategies.

Bayesian probabilistic distributions
In the Bayesian approach to parameter estimation, the known 

probability of past observations is assumed to estimate the 
probability of (predicted) future observations. A theoretical 
construct can thus be evaluated based on the prior probability of 
a statistical model (Wagenmakers and Farell, 2004). The observed 
variance is here captured by the assumption that the theoretical 
construct is itself subject to variation. So, rather than evaluating 
the agreement between data and a single statistical model, 
Bayesians evaluate the agreement between data and a distribution 
of possible statistical models.

A theoretical construct is thus specified not as a single 
parameter, but as one that is embedded in a prior probability 
distribution (e.g., a normal or a Cauchy distribution). Of course, 
if this prior probability distribution accurately captures the true 
parameter, then a theoretical construct that is specified as a 
probability distribution may be useful for theory construction. 
What the true probability distribution is, however, one can never 
know. A Bayesian parameter estimate, therefore, depends not so 
much on the quality of the data, but more on a researcher’s 
(subjective) assumptions about the prior probability distribution 
(see Krefeld-Schwalb et al., 2018).

Since the theoretical construct is more likely to be associated 
with an upper and a lower probability bound than with a unique 
probability, the Bayesian approach to parameter estimation 
corresponds—except for the distribution of possible theoretical 
parameters—to the specification of a theoretical construct as an 
interval hypothesis (i.e., a two-point-hypothesis). Because the 
endpoints of this interval represent two distinct theoretical 
parameters, each endpoint must be separately evaluated against 
data. But the possibility of a separate evaluation of two 
theoretical parameters also shows that there is no genuine need 
to distribute them. After all, if the (subjective) a priori 
probabilities of both theoretical parameters are independent, 
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then as one parameter is assigned probability 1, the other can 
be assigned probability 0.

Toward a deductive strategy: Paul 
Meehl’s corroboration index

In the context of theory construction research, probably the 
first in behavioral science to recognize a problem in relating the 
theoretically predicted effect to the sample statistic s was Meehl 
(1990). Against the background of Lakatos’ (1978) “core vs. 
protective belt”-model of empirical theories—which recognizes 
that making suitable adjustments to the protective belt can (in 
principle forever) deflect the empirically inadequate predictions 
that constitute a theory’s falsification instances away from the 
core—Meehl argued that a formal measure for the empirical 
adequacy of a theoretical construct should ignore s.

“To construct a crude [corroboration-]index of a theory’s 
[predictive] track record, one first amends the earlier Popper 
to the later Popper by shifting emphasis from falsification to 
verisimilitude. […] Meanwhile, we  require of a candidate 
index that it somehow reflect how bad a numerical “miss” the 
experimenter chalks up against [the theory] T. […] We are 
examining the relationship between T and its track record in 
predicting numerical values of [a hypothesis] H, ignoring the 
stochastic slippage between H and the data set that is the main 
concern of the statistician.”

(Meehl, 1990; p. 128)

Meehl’s corroboration index (Ci) is the following:

 
C Cl Ini = ( )× ( )  

(1)

where Cl = the closeness of observed data to the 
theoretical prediction;

In  = the intolerance of the theory (e.g., the standardized 
precision of a prediction).

These terms can be expanded:

 ( )1 – /=Cl D S
 

(2)

where D = the deviation of observed data from the tolerance 
interval of the theory;

S  = “Spielraum,” i.e., the expected range of observed data 
regardless of whether the theory is true; and

 ( )1 – /=In I S
 

(3)

where I  = the interval tolerated by the theory (or the raw 
precision of a theoretical prediction).

For a given experiment, the index Ci is the product of the 
closeness of the data to the theoretical prediction (Cl) and the 

intolerance of a theory (In). Thus, large values of Ci are expected 
for an empirically adequate theoretical construct and small values 
of Ci for an empirically inadequate one. Although several critics 
considered the Ci measure overly complex (see the special issue of 
Psychological Inquiry, including Meehl 1990), Meehl (1992) rightly 
replied that formal measures are needed to develop empirically 
adequate theoretical constructs. Yet, Meehl’s key insight—that a 
formal measure to evaluate the empirical adequacy of a theoretical 
construct should ignore the statistical element s—further awaits 
uptake. Researchers instead continue to rely on statistical 
considerations (e.g., CIs, t, d, etc.) or on model-fitting approaches 
that combine theoretical with statistical elements.

Heeding Meehl’s insight, we propose the similarity index ISIM 
as an alternative formal measure, one far simpler than Ci.

The similarity index

As we  saw, if a parameter is induced from an interval of 
observations, then the parameter captures the uncontrolled 
(random) influences on an empirical setting that are represented 
by s. Although this parameter may (misleadingly) be referred to 
as a theoretical construct, this construct is as vague as the 
underlying interval of observations is wide. An inductive 
parameter, therefore, is at most as informative as a two-point, 
directional alternative hypothesis (H1). But a directional 
alternative hypothesis cannot stand in the one-to-one relation 
between prediction and observation that is required to evaluate 
whether a theoretical construct is empirically adequate (Klein, 
2014; Szucs and Ioannidis, 2017; Gelman, 2018). Only a point-
specific theoretical construct can do so.

For this reason, Meehl (1990) argued that the evaluation of the 
empirical adequacy of a theoretical construct should ignore s. Once 
the evaluation is independent of s, it pertains only to the similarity 
between a predicted and an observed mean difference in a sample. 
This is precisely what the similarity index ISIM captures (see 4).

 

THEO 0
SIM THEO OBS

1 0
ES /ES

m m
I

m m
−

= =
−

 
(4)

ES, effect size.
mTHEO, the theoretically predicted mean.
m1, the observed mean in the treatment group.
m0, the observed mean in the control group.
mTHEO – m0, the theoretically predicted mean difference (ESTHEO).
m1 – m0, the empirically observed mean difference (ESOBS).

A formal measure for the empirical adequacy of a theoretical 
construct should satisfy several criteria that are relevant to theory 
construction. First, an experimentally observed phenomenon 
must be  independent of the measurement scale that a given 
measurement instrument presupposes. Second, any two 
phenomena that are recorded on distinct measurement scales 
must remain comparable. Third, observations must remain stable 
under theoretically plausible transformations.
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But if different measurement scales are made comparable by 
a transformation into z-values, then recourse to the inductive 
element s entails that the measurement quality of the empirical 
setting is retained. A z-transformation thus inherits information 
originating from the uncontrolled (random) influences on an 
empirical setting. This is problematic for theory construction 
research because, given that s as a property of observations lacks a 
theoretical counterpart, recourse to s “blurs” the evaluation of the 
empirical adequacy of a theoretical construct.

ISIM uses a transformation that avoids s. The comparability of 
observations that are recorded on different measurement scales is 
guaranteed because a ratio of differences is invariant under the 
addition of a constant or multiplication by some factor.2 ISIM also 
guarantees that the direction of the observed effect can 
be interpreted. This matters for evaluating whether the observed 
effect leans toward the experimental or the control group. If the 
direction of the observed effect and the theoretically predicted 
effect agree, then ISIM is invariant concerning the order of means. 
That the same mathematical signs (+, −) now appear in the 
numerator and the denominator of ISIM can be neglected. Whereas 
if the direction of the observed effect and that of the theoretically 
predicted effect differ, then distinct mathematical signs indicate 
that the prediction fails to agree with observations. In this case, 
ISIM is set to 0.

Using ISIM, the theoretically predicted effect can thus 
be compared directly to the observed effect. A direct comparison 
should arguably also apply if a theoretically predicted effect is 
compared to a meta-analytically estimated population effect that 
is aggregated from the results of independent replication studies. 
But the opposite is the case if this comparison relies on a 
standardized effect size measure such as Cohen’s d, which is widely 
used for this purpose today. Sometimes, indeed, the observed 
d-value simply stands in for the estimated population effect.

The intended application for ISIM is a rigorously controlled 
empirical setting where participants are randomly allocated to the 
experimental and the control group, respectively are randomly 
selected as study participants in a correlational study.3 Since the 
use of this kind of setting to evaluate the empirical adequacy of a 
directional H1 undermines all efforts at controlling the setting, a 
rigorously controlled empirical setting should exclusively serve to 
evaluate the high-risk prediction that only a point-specific 
theoretical construct can offer.

2 With ‘a’ for the origin of the scale (normalization), ‘u’ for the unit of the 

scale (standardization), and ‘x, y, z’ for arbitrary measurement values, the 

ratio [(x + a) u − (y + a) u] / [(z + a) u − (y + a) u] = (x − y) / (z − y) is invariant for 

all values of a and u.

3 Such rigor often cannot be  achieved. Researchers in personality 

psychology, for instance, typically cannot randomly allocate study 

participants according to their personality characteristics. The object of 

inquiry, therefore, are not treatment effects but correlations between 

variables. These correlations can nevertheless be  generalized to a 

population if a sample is representative of it (Kish, 1965).

The similarity between theory and 
observations

The agreement between a theoretical prediction and 
observations is perfect if the ratio between both is one, i.e., 
ESTHEO / ESOBS = 1.00. A perfectly empirically adequate prediction, 
however, is a strong idealization because even the most rigorously 
controlled empirical setting is subject to some uncontrolled 
(random) influences and errors. So, even if a theoretical construct 
predicts a population effect perfectly (i.e., ESTHEO = ESPOP), a 
measurement instrument with imperfect reliability or random 
influences on an empirical setting do entail that the observed effect 
will be “blurred.” A formal measure for the empirical adequacy of 
a theoretical construct, therefore, can only approximate the 
agreement between a theoretical prediction and observations.

Analytically, the agreement between a theoretical prediction 
and observations varies between a match (ISIM = 1.00) and a 
mismatch in one of two directions (ISIM = 0 and ISIM > > 1). The 
reason for a mismatch—namely whether the theoretical construct 
predicts an empirically inadequate effect or whether the observed 
effect is subject to random influences—can be  teased out by 
collecting additional data, i.e., by increasing the sample size n. If 
the values of ISIM cluster around 1 as n increases, this indicates that 
the theoretically predicted effect approximately matches a relevant 
population effect (law of large numbers). As the observed effect 
thus progressively converges onto the population effect 
(ESOBS  = ESPOP), it can eventually be  excluded that random 
influences account for the observations. Thus, one gains evidence 
that the theoretically predicted effect is empirically adequate. This 
case is perfect for theory construction because the theoretical 
construct can be adopted into a theory.

Whereas if values of ISIM never cluster around 1 as n increases, 
then the theoretical prediction is empirically inadequate. This 
means one gains evidence that the theoretically predicted effect 
misrepresents the population effect, wherefore the theoretical 
construct requires adjustment. Subsequently, a new theoretically 
predicted effect must be  separately evaluated using 
new observations.

The similarity interval

Defining the range of acceptable deviations from a perfect 
match requires an interval of the form [x < ISIM = 1.00 < y]. The 
purpose of this similarity interval (SI) is distinct from that of a 
confidence interval (CI). When a population effect (ESPOP) is 
estimated from observations, a CI handles randomly distributed 
“noise” in an empirical setting by stating the interval within which 
ESPOP is expected to lie to some predefined probability (see the 
section Parameter Estimation). The SI, by contrast, differentiates 
between evidence for and against the empirical adequacy of a 
theoretical construct by stating the probability that the 
theoretically predicted effect is similar to observations if a study is 
repeated numerous times.
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The SI is motivated by two constraints. First, an empirically 
adequate theoretical construct must neither grossly under- nor 
grossly over-predict the population effect (ESTHEO ≅ ESPOP). 
Second, provided the first constraint holds, if the theoretically 
predicted effect keeps approximating the observed effect as the 
number of study repetitions increases, then the theoretically 
predicted effect becomes increasingly more promising as a 
parameter for theory construction because the prediction remains 
empirically adequate.

The SI particularly facilitates the identification of a preliminary 
match between a theoretically predicted effect (ESTHEO) and an 
observed effect (ESOBS), because an ISIM-based evaluation is 
fallible—future studies may lead to an opposite evaluation. 
We  define a preliminary match using an SI with bounds of 
[0.80;1.20]. If the ISIM value lies within these bounds, then the 
theoretical prediction is preliminarily empirically adequate. The 
bounds [0.80;1.20] are informed by 10,000 simulated study 
repetitions (see the section Simulated Data and Results). For 
instance, given n0 = n1 = 1,000 participants, our simulations show 
that if the population effect is a medium effect, ESPOP = 0.50, then 
ISIM-values fall within this SI in approximately 99% of 10,000 study 
repetitions. And, given n0 = n1 = 100 participants in each study 
condition, if the population effect is a large effect, ESPOP = 1.00, 
then ISIM-values fall within the SI in approximately 95% of 
10,000 repetitions.

Since a small sample suffices to detect a large population effect 
under small error-rates, whereas detecting a small population 
effect requires a large sample, the application of a 99%-SI to the 
small to medium effects that are normally observed in behavioral 
science would require unrealistically large samples (Linden and 
Hönekopp, 2021). Given the conventional error rate of 5%, 
however, already a 95%-SI can suffice as an evidence-based 
criterion to decide whether a theoretical construct can be accepted 
as empirically adequate, whether it should be  improved, or 
whether additional data should be collected.

Simulated data and results

If simulations approximate the universe of possible observed 
effects, they are useful to explore the stability of effects that real 
studies would observe (see Morris et al., 2019). Real observations 
are made in samples drawn from some population of interest. But 
researchers typically cannot access the entire population, neither 
in real life nor in simulations. To account for the ultimately 
unknown observed variance, real observations are treated 
statistically as a t-distribution, which is sensitive to n. As n 
increases, a t-distribution approximates the normal distribution 
that is expected for a population (central limit theorem).

We therefore simulated data from t-distributions in a universe 
of study settings that comprises 10,000 repeated individual studies 
of the same effect. A study setting is characterized by the means 
observed in the control (m0) and the experimental group (m1) and 
by the sample size (n0 = n1). All simulations were conducted in R 

(R Core Team, 2021) using the packages tidyverse (Wickham 
et  al., 2019), dplyr (Wickham et  al., 2021), and effsize 
(Torchiano, 2020).

In the first of two basic scenarios, where the theoretically 
predicted effect matches the population effect (ESTHEO = ESPOP), the 
sample size of a study setting was n0 = n1 = 20, 30, 50, 100, 300, or 
1,000. In the control group the observed mean was null (m0 = 0) 
and in the experimental group m1 = 0.20, 0.50, 0.80, 1.00, 1.20, 
1.40, 1.60, 1.80, or 2.00. In this way, we simulated 54 study settings 
times 10,000 repetitions, calculating the similarity index ISIM 
separately for each repetition of a study setting (see formula 4). 
For the percentages of ISIM-values falling inside and outside the 
similarity interval SI, see Table 1 and Figure 1.

Findings are consistent with the claim that an empirical 
adequate theoretical construct is associated with values of ISIM that 
fall inside the SI [0.80;1.20]. For example, values of ISIM fall inside 
this SI in approximately 95% of study repetitions if the sample size 
is n0 = n1 = 100 and if (m1 – m0) = 1.00. In contrast, values of ISIM 
fall inside this SI in approximately 67% of study repetitions given 
the same sample size and a smaller effect of (m1 – m0) = 0.50. This 
suggests that n0 = n1 = 100 suffices to evaluate a large theoretically 
predicted effect as preliminarily empirically adequate, whereas 
evaluating a small or medium theoretically predicted effect 
requires a considerably larger sample.

The second scenario, where the theoretically predicted effect 
failed to match the population effect (ESTHEO ≠ ESPOP), examined 
how false positive and false negative predictions fare in our 
simulated universe of study repetitions. A false positive prediction 
occurs if the theoretically predicted effect is mistakenly identified 
as matching the population effect. And a false negative prediction 
occurs if the value of ISIM falls outside the SI despite the 
theoretically predicted effect matching the population effect. In 
this scenario, we  simulated four study settings where the 
theoretically predicted effect varied from small to large, and the 
population effect was either over- or underestimated. Notice that 
the relevant quantity to guide the identification of an empirically 
adequate theoretical construct here is not the absolute probability 
of detecting an empirically (in-)adequate prediction, but the 
difference between the probabilities of detecting one or the other 
kind of prediction.

In each of the four study settings, the sample size was 
n0 = n1 = 20, 30, 50, 100, 300 or 1,000. In two of the four study 
settings, the theoretically predicted effect overestimates the 
population effect. Setting 1 simulated data from t-distributions 
representing a population effect of ESPOP  = 0.20, whereas the 
theoretically predicted effect was ESTHEO = 0.50. Setting 2 simulated 
data from t-distributions representing a population effect of 
ESPOP  = 0.80, whereas the theoretically predicted effect was 
ESTHEO = 1.00. In the remaining two study settings, the theoretically 
predicted effect underestimates the population effect. Setting 3 
simulated data from t-distributions representing a population 
effect of ESPOP = 0.80, whereas the theoretically predicted effect 
was ESTHEO = 0.20. Setting 4 simulated data from t-distributions 
representing a population effect of ESPOP  = 1.20, whereas the 
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TABLE 1 True predictions [ESTHEO = ESPOP equals (mTHEO – m0) = (mPOP – m0)]: expected ISIM-values for varying values of mTHEO and n.

mTHEO = mPOP n <0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1.0] (1.0,1.1] (1.1,1.2] (1.2,1.3] (1.3,1.4] >(1.4

0.20

20 52.2 5.55 5.67 5.34 4.52 3.44 2.69 2.3 1.96 16.33

30 45.89 6.64 6.43 5.7 4.84 4.14 3.61 2.78 1.92 18.05

50 35.97 7.86 7.43 7.29 6.29 5.06 4.24 3.49 2.75 19.62

100 20.84 8.4 9.97 9.98 9 7 5.3 4.39 3.46 21.66

300 3.26 5.69 11.86 15.24 15.25 12.31 9.1 6.6 4.6 16.09

1,000 0.04 0.71 5.62 17.65 25.46 21.84 13.84 6.94 3.87 4.03

0.50

20 18.04 8.61 10.18 10.67 8.86 7.93 6.07 4.77 3.71 21.16

30 10.25 8.03 10.77 12.29 11.78 9.09 7.05 5.74 4.36 20.64

50 3.32 6.03 10.57 14.8 15.65 12.71 9.16 6.33 4.28 17.15

100 0.33 2.58 8.69 18.15 20.52 16.48 11.87 7.1 5.31 8.97

300 0 0.04 1.96 15.78 32.69 28.31 13.69 5.02 1.51 1

1,000 0 0 0 3.68 46.41 42.07 7.32 0.5 0.02 0

0.80

20 3.82 5.49 11.44 15.23 14.87 12.24 8.93 7.06 4.26 16.66

30 1.1 4.02 10.5 16.51 18.03 15.48 10.74 7.25 4.96 11.41

50 0.08 1.26 7.74 17.78 23.74 19.29 12.41 7.53 3.96 6.21

100 0 0.05 2.42 16.08 30.82 26.69 14.27 6.06 2.24 1.37

300 0 0 0.11 6.03 44.34 39.03 9.41 1.02 0.05 0.01

1,000 0 0 0 0.28 49.5 49.18 1.04 0 0 0

1.00

20 1.19 3.96 10.87 16.73 17.35 15.2 10.68 6.71 4.87 12.44

30 0.19 1.65 8.32 18.17 22.51 17.97 12.35 7.55 4.49 6.8

50 0.01 0.29 4.33 17.45 28.02 22.9 13.84 7.24 3.09 2.83

100 0 0 0.8 11.7 36.43 32.75 13.23 3.98 0.82 0.29

300 0 0 0 2.75 48.25 43.03 5.77 0.2 0 0

1,000 0 0 0 0.04 49.99 49.84 0.13 0 0 0

1.20

20 0.17 2.07 8.31 18.05 21.51 17.93 12.61 7.18 4.25 7.92

30 0.03 0.57 5.43 18.69 25.74 21.59 13.15 7.29 3.51 4

50 0 0.02 2.03 15.88 31.69 27.75 14.34 5.33 1.87 1.09

100 0 0 0.25 9.25 39.33 37.34 11.53 1.95 0.33 0.02

300 0 0 0 1.15 48.05 47.62 3.12 0.06 0 0

1,000 0 0 0 0 49.58 50.4 0.02 0 0 0

1.40

20 0.02 1.03 6.74 17.44 24.80 20.73 13.02 7.28 4.04 4.90

30 0 0.21 3.40 17.22 28.40 25.32 13.83 6.60 2.90 2.12

50 0 0.01 0.95 13.18 36.19 30.6 13.48 4.04 1.15 0.4

100 0 0 0.01 6.21 43.14 39.94 9.67 0.99 0.03 0.01

300 0 0 0 0.46 49.71 48.36 1.47 0 0 0

1,000 0 0 0 0 49.94 50.06 0 0 0 0

1.60

20 0 0.39 4.62 17.25 27.52 23.28 13.94 6.78 3.32 2.90

30 0 0.08 2.02 15.50 33.03 27.58 13.67 5.17 1.96 0.99

50 0 0 0.44 10.87 38.88 34.33 12.22 2.79 0.38 0.09

100 0 0 0 4.06 45.70 42.55 7.25 0.43 0.01 0

300 0 0 0 0.1 50.43 48.8 0.67 0 0 0

1,000 0 0 0 0 50.4 49.6 0 0 0 0

1.80

20 0 0.19 2.83 16.56 30.69 25.19 14.10 6.30 2.43 1.71

(Continued)
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theoretical effect was ESTHEO = 1.00. All four study settings were 
repeated 10,000 times. For the percentages of ISIM-values falling 
inside and outside the SI, see Table 2 and Figure 2.

We first turn to cases where the theoretically predicted effect 
overestimates the population effect. Given a sample size of 
n0 = n1 = 100, values of ISIM fall inside the SI in approximately 2% 
of repetitions of setting 1 (ESPOP = 0.20, ESTHEO = 0.50), compared 
to approximately 31% of repetitions of a study setting where the 

theoretically predicted effect matches the population effect 
(ESTHEO = ESPOP = 0.20). The 29% difference between false positive 
and true positives predictions increases as n increases (see 
Tables 1, 2). For the 2% of false positive predictions, the decision 
is clear: the theoretical construct requires adjustment. Whereas 
in case of the 31% true positive predictions, the identification of 
an empirically adequate construct would benefit from 
increasing n.

FIGURE 1

Values of ISIM were calculated in 10,000 simulated study-settings with n0 = n1 = 100 under the assumption that the theoretically predicted effect 
matches the population effect. Each row of this graph represents different values of mTHEO.

mTHEO = mPOP n <0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1.0] (1.0,1.1] (1.1,1.2] (1.2,1.3] (1.3,1.4] >(1.4

30 0 0.01 0.94 13.79 35.09 30.50 13.77 4.43 1.06 0.41

50 0 0 0.1 8.07 42.21 36.61 10.85 1.83 0.28 0.05

100 0 0 0 2.26 48.66 43.88 4.98 0.22 0 0

300 0 0 0 0.03 49.82 49.99 0.16 0 0 0

1,000 0 0 0 0 49.72 50.28 0 0 0 0

2.00

20 0 0.11 2.01 15.78 32.42 27.64 14.13 5.23 1.82 0.86

30 0 0 0.49 11.42 38.40 32.96 12.47 3.33 0.71 0.22

50 0 0 0.07 6.51 44.16 39.04 9.13 1 0.08 0.01

100 0 0 0 1.45 48.14 46.84 3.49 0.08 0 0

300 0 0 0 0 50.68 49.21 0.11 0 0 0

1,000 0 0 0 0 50.62 49.38 0 0 0 0

Cells state the percentages of ISIM-values falling within specific ISIM intervals for various sample sizes (n), based on 10,000 simulations per row; (, value not included; ], value included.

TABLE 1 (Continued)
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Further, given a sample size of n0 = n1 = 100, values of ISIM fall 
inside the SI in approximately 36% of repetitions of setting 2 
(ESPOP = 0.80, ESTHEO = 1.00), compared to approximately 88% of 
repetitions of a study setting where the theoretically predicted 
effect matches the population effect (ESTHEO = ESPOP = 0.80). The 
53% difference between false positive and true positive predictions 
increases as n increases. In both cases, however, the decision to 
adjust the theoretical construct requires considerably larger 
samples to clearly distinguish a true positive from a false 
positive prediction.

We now turn to cases where the theoretically predicted effect 
underestimates the population effect. Given a sample size of 
n0 = n1 = 100, values of ISIM fall inside the SI in approximately 4% 
of repetitions of setting 1 (ESPOP = 0.80, ESTHEO = 0.20), compared 
to approximately 88% of repetitions of a study setting where the 
theoretically predicted effect matches the population effect 
(ESTHEO = ESPOP = 0.80). The 84% difference between true positives 
and false positive predictions arguably suffices to evaluate the 
theoretical construct as empirically inadequate.

Finally, given a sample size of n0 = n1 = 100, values of ISIM fall 
inside the SI in approximately 69% of repetitions of setting 1 
(ESPOP = 1.20, ESTHEO = 1.00), compared to approximately 97% of 
repetitions of a study setting where the theoretically predicted 
effect matches the population effect (ESTHEO = ESPOP = 1.20). The 
28% difference between false positives and true positive 
predictions suggests that it is more likely that values of ISIM fall 
inside the SI if the theoretical prediction matches the population 
effect than otherwise.

We proceed to exemplify the application of ISIM with a case study. 
Additional examples are provided in Supplementary Appendix S2.

Case study: The psi-effect

The question of whether humans can cognize the future (aka 
precognition or psi-effect) has interested several scholars in 
psychology. The authors of the largest meta-analysis on the 
psi-effect to date (Bem et al., 2016), comprising 90 experimental 

TABLE 2 False predictions (ESTHEO ≠ ESPOP): expected ISIM-values given discrepancies between ESTHEO (mTHEO – m0) and ESPOP (mPOP – m0) for varying n.

mTHEO ≠ 
mPOP

n <0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1.0] (1.0,1.1] (1.1,1.2] (1.2,1.3] (1.3,1.4] >(1.4

0.50 ≠ 0.20

20 28.08 0.84 1.47 2.70 3.38 3.86 4.18 3.98 3.56 47.95

30 22.41 0.40 0.94 1.37 2.53 3.09 3.95 4.19 3.88 57.24

50 16.11 0.03 0.11 0.54 1.19 2.21 2.99 3.86 4.15 68.81

100 7.47 0 0 0.01 0.13 0.45 1.04 1.93 3.29 85.68

300 0.59 0 0 0 0 0 0 0.09 0.39 98.93

1,000 0 0 0 0 0 0 0 0 0 100

0.50 ≠ 0.80

20 45.21 18.25 13.53 8.23 5.09 3.08 1.66 1.15 0.76 3.04

30 44.90 21.76 15.61 8.48 4.16 2.19 0.78 0.67 0.33 1.12

50 42.86 28.41 17.45 6.74 2.66 1.1 0.43 0.17 0.07 0.11

100 38.55 39.89 17.09 3.7 0.6 0.13 0.01 0.02 0.01 0

300 31.46 59.73 8.68 0.13 0 0 0 0 0 0

1,000 19.03 80.32 0.65 0 0 0 0 0 0 0

1.00 ≠ 0.80

20 0.80 0.69 2.53 5.76 10.07 12.96 12.61 10.64 8.69 35.25

30 0.14 0.16 0.97 4.04 9.52 13.54 14.83 13.22 11.21 32.37

50 0.03 0 0.09 1.51 6.88 14.29 18.59 17.29 13.49 27.83

100 0 0 0 0.11 1.99 11.39 22.93 24.65 17.87 21.06

300 0 0 0 0 0.07 2.97 25.10 42.35 22.06 7.45

1,000 0 0 0 0 0 0.03 14.63 68.47 16.37 0.50

1.00 ≠ 1.20

20 4.72 13.52 23.39 23.79 15.41 8.48 4.53 2.37 1.66 2.13

30 1.99 11.73 27.04 27.82 17.23 8.00 3.36 1.59 0.64 0.60

50 0.26 7.22 29.28 36.03 19.12 6.02 1.53 0.37 0.09 0.08

100 0 2.13 28.44 50.06 17.3 1.87 0.19 0 0.01 0

300 0 0.02 19.69 73.84 6.41 0.04 0 0 0 0

1,000 0 0 5.93 93.82 0.25 0 0 0 0 0

Cells state the percentages of ISIM-values falling within specific ISIM intervals for various sample sizes (n), based on 10,000 simulations per row; (, value not included; ], value included; 
mPOP, the true value in the population (i.e., the numerator of ISIM); mTHEO, the theoretical value in the population (i.e., the denominator of ISIM).
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studies of which 51 are peer-reviewed (see Bem et  al., 2016; 
Supplementary Table S1), claim to have obtained decisive evidence 
for a psi-effect. Whereas some concluded from this that the 
psi-effect is real (e.g., Cardena, 2018), others argued that Bem 
et al.’s (2016) meta-analytical data leave it too unlikely that the 
psi-effect is real (e.g., Witte and Zenker, 2017).

Across the 51 peer-reviewed object-level psi-studies, the 
observed effect ranges from d = 0.02 to d = 0.21 (Bem et al., 2016). 
These two values describe a ratio of 1 : 9.7, indicating that the 
observed object-level effects are very heterogeneous. The 
heterogeneity of the observed object-level effects may suggest that 
the average psi-effect should be  evaluated by combining a 
statistical inference strategy with an error account (Lord and 
Novick, 1968). This evaluation, however, would remain sensitive 
to how n and s vary across individual studies. But as statistical 
parameters, n and s lack theoretical meaning. Particularly s is 
merely a normalization factor to render several object-level 
effects comparable.

To achieve an evaluation that is independent of how n and s 
vary across the object-level studies, one should rather compare the 
point-specific ESTHEO directly to the point-specific ESOBS in each 
study, without averaging the effect. To this end, Bem et al.’s (2016; 
Supplementary Table A1) meta-analytical findings can 
be re-analyze as follows:

 1. As Bem himself proposed (Bem, 2011, p. 409, note 1), the 
theoretical psi-effect is specified as dTHEO = 0.20 using a 

scale of z-values where s  = 1. Consequently, 
dTHEO = ESTHEO. (A theoretical construct cannot reasonably 
predict a smaller psi-effect because it would be overlain by 
the standard measurement error.)

 2. To control for the quality of the object-level studies, 
we exclude the 49 non-peer-reviewed object-level studies, 
retaining the 51 peer-reviewed ones (see Bem et al., 2016, 
Supplementary Table S1).

 3. To eliminate the variation of s, the mean difference 
(m1 − m0) is calculated by multiplying the instance of ESOBS 
in each peer-reviewed object-level study with that study’s 
observed s. This yields ESOBS = (m1 − m0) / s, where s = 1.

 4. For each peer-reviewed object-level study, ISIM is computed 
as follows: (a) ISIM = 0 if the mean difference is negative; (b) 
ISIM is undefined if the between-group ESOBS-difference 
(treatment vs. control) is 0; otherwise, since s  = 1, (c) 
ISIM = (ESTHEO = 0.20 × s) / (ESOBS × s) = (0.20 / ESOBS).

Because s has been eliminated, the 95%-SI [0.80;1.20] can 
be applied to each peer-reviewed object-level study individually. The 
two relevant parameters are ESTHEO = dTHEO = 0.20 relative to the 
sample size of an object-level study, and the percentage of ESOBS-
instances that fall inside the 95%-SI given ESTHEO = dTHEO = 0.20.

The application of ISIM indicates that, although each of the 51 
peer-reviewed object-level studies was published as evidence for a 
psi-effect (Bem et  al., 2016), the mean difference is negative 
(ISIM = 0) in 16 studies (31% of 51 studies), that two studies show 

FIGURE 2

Values of ISIM were calculated in 10,000 simulated study-settings with n0 = n1 = 100 under the assumption that the theoretically predicted effect does 
not match the population effect. Each row of this graph represents different combinations of mTHEO and mPOP.
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no difference (ISIM is undefined), and that the ISIM-value falls 
outside the 95%-SI in 22 studies (43%). This means that ESOBS is 
insufficiently similar to ESTHEO.

In the remaining 11 studies (22% of 51 studies), where ESOBS 
is sufficiently similar to ESTHEO, the percentages of ISIM-values 
falling inside the 95%-SI (see Table 1) are nevertheless quite low: 
33% (n0 = n1 = 100); 37% (150); 33% (99); 33% (100); 33% (100); 
34% (109); 23% (49); 33% (100); 34% (111); 42% (201); 23% (50). 
This means that each study’s sample is too small to generate the 
evidence required to consider empirically adequate a theoretical 
construct that predicts ESTHEO = dTHEO = 0.20.

To appreciate the sample size that is needed to consider as 
empirically adequate a theoretical construct that predicts 
ESTHEO = dTHEO = 0.20, a one-sided t-test under α = 0.05 and test-
power of (1  −  β) = 0.80 already requires n0  =  n1  = 101. Under 
α = β = 0.05, it even requires n0 = n1 = 201. The reason for the large 
samples is that the theoretically predicted effect is small enough 
to be  accounted for exclusively by random influences on the 
empirical setting. But random influences are independent of 
ESTHEO and so lack theoretical meaning. Indeed, this is the reason 
why ESTHEO  =  dTHEO  = 0.20 requires a statistical corroboration 
against random influences in the first place.

In sum, although ESOBS is sufficiently similar to ESTHEO in 11 
out of 51 peer-reviewed object-level studies, these 11 studies 
individually fail to provide the evidence required to consider as 
empirically adequate a theoretical construct that predicts 
ESTHEO  =  dTHEO  = 0.20. Arguably, therefore, if the empirical 
adequacy of the theoretically predicted psi-effect had been 
evaluated before conducting additional studies, some research 
effort concerning the psi-effect could have been avoided.

Discussion

Whether a theoretical construct adequately predicts future 
observations is a distinct question from whether a data-based 
parameter estimate (induced from past observations) deviates 
statistically significantly from a random distribution. This 
difference matters because behavioral science research regularly 
uses a data-based parameter estimate and its associated confidence 
bounds as a proxy for a theoretical construct. But a parameter that 
is estimated using a z-standardized effect size measure such as 
Cohen’s d cannot distinguish whether particularly a small 
observed d-value points to a mean difference that is too small to 
be  observable, or rather to a large s. Without making this 
distinction, however, the evaluation of the empirical adequacy of 
a theoretical construct is out of reach.

The ISIM measure and the SI fare better. Both together can 
inform the evaluation of the empirical adequacy of a theoretical 
construct because, if the inductive element s that serves to 
z-standardize measurements is avoided, then the observed mean 
difference ceases to be “blurred” by random influences. As this 
enables a direct comparison between the theoretically predicted 
and the observed mean-difference, the evaluation of the empirical 

adequacy of a theoretical construct is placed within reach. On how 
ISIM and the SI can be  applied beyond a simple experimental 
setting, see Supplementary Appendix S1. For additional examples, 
see Supplementary Appendix S2. To apply ISIM and the SI to extant 
data, we provide an online tool at https://adrian-stanciu.shinyapps.
io/Similarity-Index/.

Practical implications

As behavioral science has come under scrutiny, replication 
crisis denotes that few previously “established” findings are 
independently replicable and that questionable research practices 
are regularly employed (e.g., Kerr, 1998; Klein, 2014; Irvine, 2021; 
Nosek et al., 2022). A familiar response to the replication crisis is 
to recommend measures that improve the quality of data (e.g., 
study pre-registrations, multi-lab projects, or open access to 
materials). Such measures constitute important elements of an 
inductive approach to parameter estimation. But some effort must 
also go toward developing theoretical constructs that logically 
entail an empirically adequate prediction, i.e., toward a deductive 
approach to theory construction.

A central limitation of the inductive approach to parameter 
estimation is exemplified by meta-analytical research. To arrive at 
robust meta-level or population effect size estimates, observed 
object-level effects are regularly sought to be made comparable by 
weighing them to the observed s (Schulze, 2004). But since s varies 
with the (random) influences on an empirical setting, this invites 
all the problems discussed above. So, if a meta-analysis retains the 
observed s of observed object-level effects, a robust meta-level or 
population effect size estimate cannot be had. For this reason, s 
should be avoided in both theory construction research and meta-
analytical research.

The similarity index ISIM fares better. First, ISIM offers a more 
transparent view of observations. This can assist in improving a 
theoretical construct because using ISIM and the associated 95%-SI 
allows distinguishing between an empirically adequate prediction 
(true positive; ESTHEO = ESPOP) and an empirically inadequate one 
(false positive; ESTHEO ≠ ESPOP). Making this distinction is required 
to decide whether a theoretical construct can be  maintained, 
whether its theoretically predicted effect should be adjusted, or 
whether additional data should be  collected. The last option 
particularly counts if available data indicate a small effect, which 
is generally not well-observable.

Second, the ISIM measure and the 95%-SI help to evaluate 
whether a false positive prediction indicates that the population 
effect is under- or overestimated. After all, for all possible 
combinations of a theoretically predicted effect and a sample size, 
as long as the percentage of non-matching observations 
(ESTHEO ≠ ESPOP) makes it unreasonable to evaluate the ESTHEO-
value as a true positive prediction, an empirically adequate 
prediction is more probable to fall inside the 95%-SI than not.

Third, assume that, as n increases, also the value of ESOBS 
becomes increasingly more similar to the value of the true 
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population parameter (law of large numbers). If so, then the 
corresponding increase in the percentage difference between a 
true positive and a false positive prediction goes along with an 
increase in the proportion of viable theoretical assumptions 
relative to all possible alternative theoretical assumptions. With 
each additional ISIM-value for a point-ESTHEO = x that falls inside 
the 95%-SI, therefore, it becomes more reasonable for researchers 
to develop a theoretical construct for x because “getting something 
right” about x is more probable than not.

Fourth, if additional independent studies happen to estimate 
a point-ESOBS  =  y that is similar to x, then ISIM continues to 
approximate the condition for a perfect match between prediction 
and observations (ISIM  = 1). The independence of additional 
studies entails that the approximation of ISIM = 1 is unlikely to 
occur by random. Consequently, a researcher’s confidence that 
ESTHEO  =  x is empirically adequate would increase. The same 
rationale underlies having confidence in a meta-analytically 
estimated point-ESOBS that is based on independently observed 
object-level effects (Hunter and Schmidt, 2004).

The use-value of an ISIM-based evaluation of a theoretical 
construct is perhaps most readily apparent in the context of the 
research program strategy (RPS) (Witte and Zenker, 2017; 
Krefeld-Schwalb et al., 2018). If the effects of several independent 
and topically related studies are observed under low error-rates, 
then RPS induces the observed mean effect as a parameter 
estimate (see the subsection Parameter Estimation). Next, RPS 
develops a theoretical construct that logically entails a 
theoretically predicted point-effect of identical size as this 
inductive parameter estimate. Provided new observations under 
low error-rates, finally, if the likelihood of the theoretically 
predicted effect sufficiently exceeds the likelihood of an 
alternative effect, then RPS evaluates the former as preliminarily 
verified, respectively as substantially verified if the likelihood of 
the theoretically predicted effect is sufficiently similar to the 
maximum likelihood of new observations. For the verification 
thresholds of this statistical likelihood model, see Krefeld-
Schwalb et al. (2018, p. 22).

Beyond this likelihood model, the attempt to verify a 
theoretically predicted effect by comparing it to observations 
requires an ISIM-like measure. An inductive parameter estimate, 
after all, has uncertainty bounds that reflect the variance of 
observations, whereas a theoretical construct that is developed 
based on theoretical considerations predicts a point-specific effect. 
For this reason, ISIM avoids comparing the theoretically predicted 
effect indirectly to observations, an indirectness that results from 
using a statistical error account and a data distribution (e.g., a t-, 
F-, or Х2-distribution). Instead, the theoretically predicted effect is 
compared directly to observations (as measured), while the 
admissible variation of a theoretical construct is captured by the 
95%-SI (see the section “Case study”).

This explains why we modeled the admissible variation of a 
theoretical construct by simulating random samples of possible 
measurements, rather than by using an inferential statistical 
theory (e.g., a likelihood model). In RPS, the inferential 

statistical evaluation of (simulated or real) observations is 
useful, only if the ISIM-value already lies within the 95%-SI, 
indicating that the theoretically predicted effect is similar to 
observations. Thus, ISIM evaluates the similarity between a 
theoretical construct and observations before inferentially 
testing the theoretically predicted effect (Witte and Heitkamp, 
2006). Nevertheless, for a specific theoretically predicted effect 
to be  accepted as empirically adequate, both its point-
specification and its statistical substantial verification are 
required. In brief, ISIM assists in specifying the effect size, while 
RPS verifies it.

Limitations

Rather than replacing standardized effect size measures such 
as Cohen’s d or inductive data-evaluation tools like a model-fitting 
index, ISIM complements them. ISIM should be applied mindfully. 
Several limitations apply:

First, ISIM does not offer a criterion for a data-based decision 
to accept or reject hypotheses. Rather than comparing two 
hypotheses (H0, H1) in view of data, ISIM evaluates only the H1-
hypothesis that states ESTHEO. Therefore, ISIM cannot enable a 
relative statistical corroboration of a theoretical construct against 
random influences. This continues to require statistical testing.

Second, if the theoretically predicted effect ESTHEO = x falls 
outside the 95%-SI, then x appears to be empirically inadequate. 
This appearance may mislead researchers to prematurely abandon 
x as a candidate value for ESTHEO. But as a rule, the decision to 
abandon x should squarely depend on having collected an 
adequately large sample.

Third, like all formal measures, ISIM is open to “tweaking” the 
data to let ESOBS and ESTHEO match artificially. With a new formal 
measure, therefore, additional temptation to engage in 
questionable research practices may arise.

Fourth, a simple “recycling” of the ESOBS-value as the ESTHEO-
value would trivially satisfy the perfect-match condition (ISIM = 1), 
known as p-harking. So, the same critical considerations apply as 
were stated immediately above (Kerr, 1998).

Fifth, in the context of a confirmatory factor analysis (CFA), 
which relies on an explorative factor analysis (EFA) to evaluate 
the deviation of predetermined parameters in some complex 
mathematical model, several of these parameters must 
be determined simultaneously (e.g., the number and correlations 
of factors, their weights, loadings, etc.). However, ISIM cannot 
be  applied to test whether the complex mathematical model 
itself agrees with the abstract data deduced from it; ISIM can only 
test whether a basic parameter (e.g., a mean or a correlation) 
agrees with empirical data. Given a correlation matrix, for 
instance, ISIM can evaluate the similarity between a single 
predicted correlation and an empirically observed correlation 
(see Supplementary Appendix S2, personality traits and life 
outcomes). As a basic (non-complex) measure, ISIM thus operates 
at the level of each element in a correlation matrix and can there 
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compare a prediction directly with observations (see Perez-Gil 
et al., 2000).

Conclusion

The identification of an empirically adequate theoretical 
construct requires determining whether a theoretically predicted 
effect is sufficiently similar to an observed effect. To this end, 
we proposed ISIM and the 95%-SI as a simple measure to evaluate 
the similarity between a theoretically predicted effect and 
observations, a measure that avoids the statistical element of the 
observed standard deviation. Using computer simulations, 
we estimated the sample size and the observed effect size that are 
necessary to identify an empirically adequate theoretical construct.

Generally relevant for theory construction research, the ISIM 
measure and the 95%-SI particularly serve to develop a point-
specific theoretical construct, where both should be  applied 
alongside a statistical corroboration measure (e.g., the likelihood 
ratio). If the ISIM-value falls within the 95%-SI, then a theoretical 
construct postulating a theoretically predicted point-specific effect 
ESTHEO = x can be (fallibly) maintained as empirically adequate. If 
independent studies subsequently observe a point-effect ESOBS = y 
that is similar to x, a researcher’s confidence that x is empirically 
adequate would increase. Whereas if too many ISIM-values fall 
outside the 95%-SI as the number of independent studies 
increases, then ESTHEO = x must be corrected, or the standard error 
must be reduced, e.g., by restricting the experimental setting. The 
most direct way of reducing the standard error, of course, is to 
increase the sample.

An exemplary application of ISIM to recent meta-analytical 
findings on the precognition effect (Bem et al., 2016) indicated 
that 51 peer-reviewed object-level studies individually fail to 
provide the evidence that is required to evaluate as empirically 
adequate a theoretical construct that predicts a precognition effect 
of d  = 0.20 (additional application examples are found in 
Supplementary Appendix S2).

In behavioral science as elsewhere, measurement comprises 
an ontological aspect related to the theoretical construct under 
development, and an epistemological aspect related to the specific 
measurement procedures employed. When using Cohen’s d 
measure, behavioral scientists tend to address a question that 
combines both aspects of measurement. This is understandable if 
theory-testing relies on statistical inference procedures, which 
simultaneously relate to both aspects of measurement. But to 
facilitate theory construction research and the development of 

measurement, the ontological and epistemological aspects are best 
kept separate. Otherwise, it is quite difficult to say what a 
measurement instance in fact measures.
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