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traits of children’s faces related
to perceptions of cuteness using
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Konrad Lorenz, an ethologist, proposed that certain physical elements are

perceived as cute and induce caretaking behavior in other individuals, with

the evolutionary function of enhancing o�spring survival. He called these

features Kindchenschema, baby schema. According to his introspection, these

include a large forehead, chubby round features, and chubby cheeks. Previous

studies are limited to examining the e�ects of these facial features on

perceived cuteness. However, other morphological factors may be related

to perceived cuteness. This study uses Bayesian optimization, one of the

global sequential optimization methods for estimating unknown functions, to

search for facial morphological features that enhance the perceptions of facial

cuteness. We applied Bayesian optimization incorporating Gaussian process

ordinal regression (GPOR), which allows an estimation of the latent cuteness

function based on evaluations using the Likert scale. A total of 96 preschool

children provided the facial images used in this study. We summarized the

facial shape variations using methodologies of geometric morphometrics and

principal component analysis (PCA) up to the third principal component (PC),

which we refer to as the face space. A total of 40 participants evaluated

the images created by warping the average facial texture of the children’s

faces with randomly generated parameters in the face space. Facial traits

related to perceived cuteness were estimated based on the averaged cuteness

function. Perceived cuteness was linked to the relative lower position of facial

components and narrower jawline but not to the forehead height.
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Gaussian process ordinal regression, Bayesian optimization, face, baby schema,
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1. Introduction

Ethologist Konrad Lorenz pointed out that certain physical

features of animals induce specific behaviors and affective

responses related to caretaking behaviors (Lorenz, 1943).

Further, he called such universal features across species the

baby schema (“Kindchenschema”). Lorenz argued that baby

schema includes features such as a large head, big eyes, high

and protruding forehead, chubby cheeks, small nose, and

mouth, that are perceived as cute. Many empirical studies have

supported this idea, suggesting a biological and evolutionary

basis for cognitive and emotional responses to specific features

typical of children’s faces (Kringelbach et al., 2016). For example,

some studies have shown that infants’ level of facial cuteness is

associated with a large forehead, small chin, full lips, and chubby

round features (Hildebrandt and Fitzgerald, 1979; Almanza-

Sepúlveda et al., 2018) suggesting that faces that are perceived

as cute have some traits in common.

However, facial traits that elicits the perception of cuteness

are not identical to the facial features possessed by human

infants. This is because the emphasis on infant facial traits

does not necessarily increase the levels of perceived cuteness

of children’s faces (Komori and Nittono, 2013). Therefore,

the factors that induce the perception of cuteness cannot be

clarified only by examining the objective characteristics of

human infants. Thus far, different approaches have been used

to investigate which facial features affect the perception of

cuteness. One approach is to take specific facial elements, such

as roundness of the face, the height of forehead and eyes,

nose and mouth size, and manipulate the images directly to

examine their effects on perceived cuteness (Sternglanz et al.,

1977; Alley, 1981; Glocker et al., 2009; Borgi et al., 2014;

Endendijk et al., 2018; Löwenbrück and Hess, 2021). However,

there is a limit to this method of determining a priori which

features to manipulate since there may be unknown factors

that increase the levels of cuteness. Another approach is to

create facial images having features that enhance cuteness by

computationally compositing images of faces with high cuteness

(Sprengelmeyer et al., 2009; Lobmaier et al., 2010; Hahn et al.,

2013; Nittono et al., 2022). However, such a method cannot

clarify which features are involved in cuteness perception and

the degree to which they are involved. The other approach

is analyzing the correlation between the locations of facial

landmarks and perceived cuteness. Almanza-Sepúlveda et al.

(2018) examined the relationship between infants’ facial traits

and cuteness based on a linear regression analysis. However, it is

possible that the relationship between facial traits and cuteness is

non-linear, similar to that between facial traits and attractiveness

(Komori et al., 2009b). Thus, this study aims to solve these

problems of previous methodologies by using a method that can

comprehensively examine the non-linear relationship between

morphological facial traits and perceived cuteness.

We assume that people have their own psychological

function f (x) (the present study refers to this function as the

utility function) that maps the multivariate input x (i.e., certain

traits of a presented face) to a scalar value representing the

degree of perceived cuteness of the person whose face has

been assessed. Thus, the problem of elucidating the impression

evaluation mechanism for others’ faces can be regarded as the

problem of estimating the parameters of the utility function f (x).

The input x of the utility function corresponds to the

morphological features of the faces. Instead of arbitrarily

targeting specific facial features for investigation, such as

forehead size and eye position, this study uses a methodology

of geometric morphometrics (Bookstein, 1991; Dryden and

Mardia, 1998) to represent the features of infants’ facial shapes

in a few dimensions. Geometric morphometrics is a technique

used to represent facial shape as multivariate data (Komori et al.,

2009b).

Even if facial features are represented in a small number

of dimensions, the number of combinations is so large that

it is not easy to reveal the utility function f . One way to

thoroughly examine a psychological utility function f (x) is

to explore the search space via a grid search. However, it is

challenging to obtain responses to multidimensional stimuli

by performing a grid search because of the high cost of the

evaluation task. Moreover, since the utility function of cuteness

perception may be complicated, it is inappropriate to apply

methods, such as conjoint analysis, which does not consider

feature combinations, to study the cuteness perception. Since the

utility function of perceived cuteness may be multi-peaked or

have a complex shape, it is also inappropriate to apply methods

such as conjoint analysis (Rao et al., 2014), which does not

take into account feature combinations, to the study of cuteness

perception.

This study aimed to estimate the relationship between child

facial features and perceived cuteness using the Gaussian process

regression (GPR) model (O’Hagan, 1978; Neal, 1997), a non-

parametric Bayesian approach to metric regression. Gaussian

process regression is amethod for estimating an unknown black-

box function using a kernel function and is often used to find

the maximum/minimum value of the function. Unlike linear

regression analysis, GPR has the advantage of being able to

estimate non-linear functions, such as multi-peaked functions,

and also provide probabilistic predictions.

However, there are problems in using GPR to estimate

psychological utility functions. In a typical GPR method, the

return value (i.e., the responses from the participants) from

an unknown function is expected to be a continuous quantity.

Conversely, psychological research commonly uses methods

that require discrete responses from participants, such as Likert

scales, dichotomous choices, and paired comparison methods.

Therefore, using discrete responses to estimate psychophysical

functions based on natural human responses is desirable.
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We used the Gaussian process ordinal regression (GPOR)

(Chu et al., 2005), which can estimate non-linear function f from

discrete responses (i.e., responses to a Likert scale).

Let D = (xi, yi)|i = 1, . . . ,N = (X, y) denote the set of

facial traits xi and the corresponding cuteness evaluation label

yi ∈ L, where L is a finite set of R ordinal categories, denoted

L = {1, 2, . . .R}. We assume that the utility function f follows a

zero mean Gaussian process prior defined by a kernel function

K.

f ∼ GP(0,K) (1)

Here, we used an RBF ARD kernel (MacKay, 1996).

K
(

xi, xj
)

= exp



−
1

2

D
∑

d=1

ηd

(

xdi − xdj

)2



 (2)

Let b be the threshold variable, where b0 < b1 < · · · < br

and b0 = −∞, br = ∞, which map f (xi) to the discrete variable

yi. Under noise-free conditions, the ideal likelihood function

would be defined as Pideal(yi|f (xi)) = 1 when byi−1 < f (xi) <

byi (0 otherwise). In the presence of noise from inputs or targets,

the latent functions are contaminated by Gaussian noise with

zero mean and unknown variance, denoted N (δ; 0, σ 2), where

δ is a Gaussian random variable. The ordinal likelihood function

becomes

P
(

yi | f (xi)
)

= 8

(

z
(yi)
i

)

− 8

(

z
(yi−1)
i

)

(3)

z
(s)
i =

bs − f (xi)

σδ
(4)

where 8(z) is the cumulative unit Gaussian (CDF) whereby

8(z) =
∫ z
−∞N (γ ; 0, 1)dγ . Based on Bayes’ theorem, the

posterior probability can then be written as

P(f | D) =
1

P(D)

n
∏

(i=1)

P
(

yi | f (xi)
)

P(f ) (5)

To approximate the posterior distribution and model

evidence P(D) we used the Laplace approximation at the

maximum a posteriori (MAP) estimate (Williams and Barber,

1998). Under the Laplace approximation, the predictive

distribution of the utility function can be described as a Gaussian

N (f (x);µ, σ 2) where the predictive mean (µx∗) and variance

(σ 2
x∗) for which the response y∗ is unknown.

µx∗ = k∗TK−1fMAP (6)

σ 2
x∗ = K(X,X)− kT∗

(

K+ 3−1
MAP

)−1
k∗ (7)

where; k∗ is the covariance between the test case and the

training data. Further, fMAP is the MAP estimate of the utility

function, 3MAP is a diagonal matrix whose i-th entry is the

second derivative of the likelihood function training sample i

concerning f (xi).

This study examines the effectiveness of GPOR as a novel

method for revealing the utility function f , a black box function

that describes the relationship between multidimensional facial

features and perceived cuteness, from two perspectives.

First, we compare the predictive performance of the GPOR

model used in this study with an ordinal logistic regression

model, a standard generalized linear regression model for

ordinal data, using the leave-one-out cross-validation (LOOCV)

approach.

Second, we average the utility functions obtained from

the participants in the experiment and examine their shape.

Furthermore, by identifying the face shapes corresponding to

the maximum and minimum values of the average utility

function, we explore the factors that determine the perceived

facial cuteness of a child. Finally, these results will be discussed

based on whether GPOR can provide useful information in

psychological studies.

2. Computational analysis of facial
images

2.1. Materials and facial shape
measurement

Japanese preschool children (n = 96, 48 boys and 48 girls;

age 3–4 years, mean age = 3.98, SD = 0.55) provided the facial

frontal images used in this study. Written informed consents

were obtained from the legal guardians for the publication

of non-personally identifiable images or data included in this

article. A neutral expression on each face was captured using a

digital camera. Additionally, the foreheads of the models were

exposed using a headband, after removing head accessories such

as eyeglasses. These images are the same as those used in the

authors’ previous study (Komori and Nittono, 2013).

Eighty facial landmarks were selected based on a previous

study (Komori et al., 2009a). These landmarks consisted of

morphological and functional points, such as the pupils,

contours of eyes, eyebrows, nose, and mouth, among others.

The authors visually measured all landmarks for each of the 96

photographs using a program written by the authors.

2.2. Facial shape standardization

Each face differed in location, size, and orientation. To

standardize them, we performed a generalized Procrustes

analysis (GPA) on the facial landmarks of all faces. This
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FIGURE 1

Average facial image.

method preserves information about the relative spatial

relationships of landmarks throughout the standardization.

For the standardization of location and size, we used the

centroid size technique (Bookstein, 1991). All facial shapes

were translated for that the centroid (center of gravity) to have

the exact location scaled to the same centroid size, which is

the sum of the squared distances from the centroid to each

landmark. For alignment of the orientation, rotations around

the centroid of the faces (Dryden and Mardia, 1998) were

performed to minimize the sum of the squared distances among

corresponding feature points between samples. The “Shapes”

statistical package, which runs in an R statistical analysis

environment, was employed for the analyses.

Facial differences derived from facial asymmetries are not

the focus of this study. Therefore, to exclude facial variations

derived from facial asymmetries and the coordinates of original

facial images, the mirror-reversed versions of the same images

were used to create a “symmetrical version” of the individuals

following the procedures of a previous study (Komori et al.,

2009a). Consequently, each “symmetrical version” of the

individuals was represented as a point on a linear space of

160 dimensions (x- and y-coordinates × 80 landmarks). This

study refers to this multidimensional space as “face space.” The

center of this face space corresponds to the average face of the

“symmetrical version” faces.

All face images were gray-scaled and warped to the

average face landmark coordinates using thin-plate splines

transformation (TPS), a non-linear image deformation

technique. Then, the average face texture was synthesized by

averaging the luminance values of the warped images (Figure 1).

2.3. Facial feature extraction

Variations in children’s facial features were summarized

using a principal component analysis (PCA). The results of the

PCA indicated that the contributions of the first three principal

components (PCs) for the total variance were relatively large

(PC1: 31.6%; PC2: 19.2%; PC3: 13.7%; cumulative contribution

ratio: 64.5%), and thus up to the PC3 was considered in the

study. Based on the distributions of children’s facial shapes,

the facial landmark coordinates changes along each PC were

calculated (Figure 2). The PC1 was related to lower chin position

and lower hairline, indicating that PC1 is related to relative eye

and mouth position. Further, the higher the score, the higher the

relative eye and mouth position. The PC2 was associated with

the face width face from the cheekbones to the jaw. PC3 was

linked to the height or the length of the forehead.

The facial images corresponding to the theoretical values of

−2SD,−SD, average,+SD, and+2SD along each PC were made

by warping the average facial texture of the children’s faces using

TPS (Figure 3).

3. Assessment of perceived cuteness

3.1. Participant

Forty undergraduates (20 men and 20 women; mean age

= 22.13, SD = 2.20) participated in the assessment of facial

cuteness.

3.2. Procedure

The images presented to the participants are the warped

images of the average facial image (Figure 3) using TPS so that

the facial shapes correspond to given PC scores in the face space.

Participants were instructed to evaluate the levels of cuteness of

face images. Further, they were rated on a 5-point scale where 1

= not cute (kawaii in Japanese) at all and 5 = very cute ((kawaii)

according to their first impressions of the images, i.e., without

contemplating their responses. No time limit was set for the

responses in each trial. Facial images were presented on an LCD

monitor. The participants responded with a keyboard.

The rating task consists of 20 practice trials and 60 test trials.

In the first 45 test trials, the stimulus images were generated

from the PC scores randomly selected from a range of ±2SD

in the face space. In the subsequent 15 trials, the images were

generated from the PC scores at which the upper confidence

bound (UCB) values are maximized based on the response

history of the participants in the previous test trials where N is

the number of trials:

UCBx = µx +

√

logN

N
σx. (8)

Upper confidence bound is a type of acquisition function

often used in Bayesian optimization. This type of experimental
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FIGURE 2

Facial shape changes along each PC. When the score of each PC increases, each facial landmark (depicted as a circle) moves along the leading

line.

FIGURE 3

Di�erences in face shape along the each principal component

(−2 SD/−SD/MEAN/+SD/+2 SD). The aspect ratios of the

images were di�erent from each other due to TPS warping.

procedure is called a sequential experimental design. The trials

were separated by 5 s of a blank gray screen. Each participant

completed the rating task in about 30 min. The application used

in the experiments was implemented in a PsychoPy environment

(Peirce, 2007).

4. Results

4.1. Leave-one-out error analysis

The predictive performance of GPOR was examined

using leave-one-out cross-validation (LOOCV). Specifically, we

withheld one response from each participant. Further, we fit

the models of GPOR and ordinal logistic regression on the

remaining responses of the participant and formed a prediction

of the held-out response using each of the learned models.

FIGURE 4

Distribution of ratings.

We then compared each learned model’s predictions with the

observed responses for the held-out trial and computed the

zero-one error and the squared error. Zero-one error gives an

error of 1 to every incorrect prediction. Absolute error is the

deviation of the prediction from the actual target. By computing

the mean of the held-out zero-one errors (MZE) and the mean

of absolute errors (MAE) across all participants, we can evaluate

the predictive performance of the models.

• Mean zero-one error (MZE): the fraction of incorrect

predictions on test data; 1
N

∑N
i=1 I

(

ŷi 6= yi
)

, where I(·)

denotes an indicator function which gives 1 when the

argument is true and 0 otherwise.

• Mean absolute error (MAE): the average deviation of

predicted test outputs from the true rank, in which we treat

the ordinal scales as consecutive integers, 1
N

∑N
i=1

∣

∣ŷi − yi
∣

∣.

The distribution of ratings is shown in Figure 4. The MZE

and mean MAE of the predictions by the GPOR model and by

ordinal logistic regression were obtained by LOOCV (Table 1).
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TABLE 1 Cross-validation results.

MZE MAE

Test Train Test Train

Ordinal logistic regression 0.723 0.664 1.122 0.942

GPOR 0.655 0.455 0.82 0.525

Mean zero-one error refers to the fraction of classes

predicted that differ from the correct response, which is the

fraction of incorrect predictions. This study’s chance level of

MZE is 0.8 because the participants were given a 5-point scale.

The MZEs of both models had higher prediction accuracies

than chance level [ordinal logistic regression: t(39) = −4.71,

p < 0.001, Cohen’s d = 0.74; GPOR: t(39) = −6.71, p <

0.001, Cohen’s d = 1.06]. The GPOR model had a lower error

rate than the ordinal logistic regression model [t(39) = −2.81,

p = 0.007, Cohen’s d = 0.44]. Mean of absolute error is

the average deviation of the prediction from the actual target

values in which ordinal scales are treated as consecutive integers,

and, as with MZE, GPOR performed better than ordinal logistic

regression [t(39) = −5.87, p < 0.001, Cohen’s d = 0.93]. These

results suggest that GPOR is more effective than the generalized

linear model in estimating the utility function that represents the

relationship between facial features and perceived cuteness.

4.2. Facial shape that maximizes and
minimizes perceived cuteness

The utility function fs of each participant s is expressed

as a set of predicted means estimated by using GPOR. The

predicted means and the variances were obtained within±2 SD.

of each dimension of the PCs with an interval of 0.4, resulting

in 1,331 points per participant. The maximum value of utility

function fs(x
∗
s ) for each participant was shown to be significantly

greater than zero [p(fs(x
∗
s ) ≤ 0) < 0.01 for each participant],

where x∗s = argmaxx∈A fs(x) in face space A, indicating that

differences in face shape had a consistent influence on individual

judgments.

Next, we calculated the mean of the predicted mean µSx and

the predicted variance σ 2
Sx for each coordinate x.M denotes the

number of participants in this study.

µSx =
1

M

M
∑

s=1

µsx (9)

σ 2
Sx =

1

M

M
∑

s=1

(

µ2
sx + σ 2

sx

)

− µ2
Sx (10)

Here, µSx is an estimate of the average perceived cuteness

for a given facial feature x, and we refer to the set of µSx as

the average utility function fS. Figure 5 the relationship between

the first, second, and third PCs of facial traits and the average

perceived cuteness. The perceived cuteness is higher for the

combination of slightly lower the first and the second PC

scores. However, the high scores of the third PC are consistently

associated with perceived cuteness.

x∗ denotes the coordinate of a maximum of averaged

cuteness in the face space A.

x∗ = argmax
x∈A

µSx (11)

The maximum predicted mean µSx∗ of the function fS

was significantly greater than zero [p(fS(x
∗) ≤ 0) < .05],

according to the combined predicted variance σ 2
Sx∗ . This

suggests that averaging utility functions of the participants is

valid in examining the average tendency of judgments.

The coordinates of the maximum value x∗ of the average

utility function were obtained (PC1: −0.8, PC2: −0.4, PC3:

0.8). Further, the coordinates of minimal value x− of the

average utility function were obtained (PC1: 0.0, PC2: 0.4,

PC3:−1.6).

x− = argmin
x∈A

µSx (12)

Figure 6 shows the face images corresponding to the

maximum and minimum values of the average utility function.

The face perceived to be the cutest, on average, is

characterized by low eye position, smaller chin, narrow

jawline and forehead, according to the first PC related

to relative eye position, the second to jawline width,

and the third to forehead height. Conversely, the face

with the minimum utility function for perceived cuteness

is characterized by high eye position, wide jawline, and

high forehead.

5. Discussion

The present study used GPOR (Chu et al., 2005), a

non-linear regression analysis, to estimate utility functions

that describe the relationship between multivariate children’s

facial shape traits and the degree of perceived cuteness.

We measured children’s face shapes and constructed a

face space through feature dimensionality reduction using a

combination of methodologies of geometric morphometrics

(Bookstein, 1991; Dryden and Mardia, 1998) and a PCA.

Participants were instructed to rate the cuteness of the

facial images synthesized within the face space on a 5-point

scale. Furthermore, the average utility function was calculated,
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FIGURE 5

Averaged utility function of perceived cuteness on (A) PC1 and PC2 and (B) PC1 and PC3. The height of each surface describes the strength of

the perceived cuteness. Red dots represent the PC score corresponding to the maximum of the function and blue dots represent the PC scores

corresponding to the minimum.

and the faces with the maximum and minimum values

were synthesized.

5.1. E�ectiveness of the proposed
method

The results of a LOOCV of ordinal prediction

accuracy showed that the GPOR model had better

prediction accuracy than the logistic ordinal regression

model, indicating that non-linear models are effective in

estimating the utility function of perceived cuteness. Another

advantage of using non-linear regression models is that

it allows the estimation of face shapes with maximum

and minimum perceived cuteness. Among non-linear

regression models (e.g., LOESS model, Komori et al.,

2009b), The GPR model is superior because it can assess

prediction uncertainty.

The commonly used method for estimating multivariate

utility functions is a technique similar to the analysis of

variance, called conjoint analysis (Rao et al., 2014). However,

the conjoint analysis generally does not examine higher-

order interactions because it requires a more significant

number of trials. Moreover, the complicated balance of

facial components influences perceived cuteness. Thus, the

GPR is more suitable for studies on faces than conjoint

analysis.

One of the conventional methods used to examine the

morphological characteristics of faces related to perceived

cuteness is to create a composite image of face images

judged to be relatively cute and explore the characteristics of

the composite image (Sprengelmeyer et al., 2009; Lobmaier

et al., 2010; Hahn et al., 2013; Nittono et al., 2022).

Such methods implicitly assume that the cuteness utility

function exhibits a unimodal response, but if this response

were multimodal, such procedures could lead to erroneous

conclusions. Contrastingly, using GPR, it is possible to

examine the relationship between face shape and perceived

cuteness even if the utility function is multimodal. The results

of this study do not show that the utility function for

cuteness was multimodal. Nevertheless, future studies may find

multimodality in the estimated function when adding the facial

feature dimension.

5.2. Facial features associated with
perceived cuteness

The parameters corresponding to the maximum value of

the mean utility function suggest that a face with a low eye

position, small chin, narrow jawline, and a small forehead are

features that enhance perceived cuteness. Almanza-Sepúlveda

et al. (2018) examined the relationship between infants’ facial

traits and cuteness argued that small chin and narrow jawline

are related to the roundness of the face, and consequently,

the roundness leads to cuteness. The results of this study are

consistent with this explanation.
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FIGURE 6

Facial images generated from the parameters corresponding to

(A) the maximum (PC1: -0.8, PC2: -0.4, PC3: 0.8) and (B) the

minimum of the averaged utility function of cuteness (PC1: 0.0,

PC2: 0.4, PC3: −1.6).

Although many previous studies have argued that a large

forehead is a cue for perceived cuteness (e.g., Hildebrandt and

Fitzgerald, 1979), the results of this study suggest that forehead

height itself does not contribute to cuteness enhancement.

Rather, the width of forehead (represented in PC1) appears to be

associated with perceived cuteness. Contrastingly, the relatively

low position of facial parts such as the eyes andmouth contribute

to cuteness. These results suggest that high foreheadsmay impair

the roundness of the face, resulting in low cuteness. It should

be noted that while previous studies examined infants’ faces,

this study used faces of 3- to 4-year-old children as stimuli.

This discrepancy may be the cause of the inconsistency of the

results. This means that different morphological factors may

have affected perceived cuteness in the previous and present

studies. It is necessary to conduct further research on the

possibility that the morphological features of the face that affect

perceived cuteness change along with growth.

5.3. Limitations and Future Directions

In this study, the locations of facial landmark coordinates

were determined based on previous studies (Kamachi et al.,

2001; Komori and Nittono, 2013), in which the shape of the

forehead was measured with reference to the hairline. However,

the shape of the hairline did not fully and accurately represent

or replicate the features of the child’s forehead. In the future, 3D

measurements would be needed to encompass and replicate the

three-dimensional shape of the forehead, which reflects the facial

features of children.

Next, children’s facial features were reduced to three

PCs using PCA. Nonetheless, these three dimensions do

not fully explain the variations in the facial features of

young children. Notably, facial features not included in the

three dimensions might affect perceived cuteness. Therefore,

future studies should consider even greater dimensions of

facial features. However, it is unclear how many trials

would be required to construct a model with sufficient

prediction accuracy when the number of dimensions considered

was increased.

6. Conclusion

This study examined the relationship between children’s

face shapes and perceived cuteness in multivariate data

using GPOR. Gaussian process ordinal regression is an

extension of GPR that can be applied to ordinal scale

responses and has not been used in psychological research

before. This study, estimated the average utility function

of perceived cuteness based on responses to a Likert

scale, thereby identifying facial features associated with

perceived cuteness.

This method can be applied to both research relating to

facial cuteness and that pertaining to the study of various

facial assessments, such as facial attractiveness, impressions,

and stereotypes, and the shapes of the utility functions

estimated from these investigations will provide clues

to finding the factors that determine various judgments

on faces.
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