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Cross-classified random e�ects models (CCREMs) have been developed for

appropriately analyzing data with a cross-classified structure. Despite its

flexibility and the prevalence of cross-classified data in social and behavioral

research, CCREMs have been under-utilized in applied research. In this article,

we present CCREMs as a general and flexible modeling framework, and

present a wide range of existing models designed for di�erent purposes as

special instances of CCREMs. We also introduce several less well-known

applications of CCREMs. The flexibility of CCREMs allows these models to be

easily extended to address substantive questions. We use the free R package

PLmixed to illustrate the estimation of these models, and show how the

general language of the CCREM framework can be translated into specific

modeling contexts.
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cross-classified data,multilevelmodel, item response theory,multitrait-multimethod,
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1. Introduction

Data in social and behavioral studies often show multilevel structures (Bryk and

Raudenbush, 1992). The multilevel structure may be purely hierarchical (or nested). In

a purely hierarchical structure, lower-level units belong to one and only one higher-level

unit. A canonical example of strictly nested data is found where students (at level 1) are

nested within classrooms (at level 2), and classrooms are nested within schools (at level

3). A pure hierarchy as such may no longer hold when lower-level units belong to two

or more types of higher-level units at the same level. This kind of situation yields a so-

called cross-classified structure. An example of cross-classified data can be found where

students (at level 1) are nested within schools and neighborhoods simultaneously (at

level 2). Students who live in the same neighborhoods may not attend the same schools,

and students who attend the same schools may be drawn from different neighborhoods;

therefore the schools and neighborhoods are not nested but crossed. If lower-level

units belong to two or more higher-level units of the same type, the data show a

multiple membership structure, rather than crossed; for example, students attend more
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than one classroom (multiple classroom membership) or more

than one middle school (multiple school membership). We will

focus on cross-classified structures, not multiple membership

structures, in this paper.

Standard regression models designed for single-level data

typically assume that units of analysis are independent of each

other. This independence assumption is violated when the

data show multilevel structures due to the clustering of units,

i.e., dependence among the units within the same clusters.

Hierarchical linear models (HLM; Bryk and Raudenbush,

1992), also called multilevel models, have been developed

to address such lack of independence and account for

dependence among units within the clusters where the units are

nested. To accommodate more complex dependence structures

due to cross-classified clustering in data, multilevel models

have been extended to cross-classified random effects models

(CCREMs; Raudenbush, 1993; Goldstein, 1994; Rasbash and

Goldstein, 1994). In applied settings, researchers may fail

to recognize the cross-classified structure of the data being

analyzed, neglecting some or all crossed factors in data

analysis. However, studies have shown that ignoring crossed

factors can bias variance estimates and standard errors of

the regression coefficients associated with predictors (Meyers

and Beretvas, 2006; Luo and Kwok, 2009; Ye and Daniel,

2017).

To promote the use of CCREMs in applied research, we

aim to introduce modern applications of CCREMs that may be

less well-known in the literature. In particular, we will present

several existing statistical/psychometric models as applications

of CCREMs. Understanding these models as CCREMs can

be beneficial; the flexibility of CCREMs allows researchers

to extend these models to address important substantive

issues by incorporating complex multilevel/cross-classified data

structures, covariates, and other model structures. In addition,

researchers can estimate these models and their extensions

using existing software packages available for CCREMs. This

means that researchers may not need to learn different software

packages designed for specific models separately every time they

need them.

We will illustrate the estimation of the discussed CCREM

applications with a freely available R package, PLmixed (Jeon

and Rockwood, 2018). PLmixed is a flexible R package

designed to estimate models with nested and/or crossed

random effects. It can estimate standard CCREMs as well

as extended CCREMs with factor structures (e.g., factor

loadings). The latter type, cross-classified models combined

with measurement models, may not be estimable with other

widely-used R packages, such as lavaan (Rosseel, 2012)

and mirt (Chalmers, 2012). Further, PLmixed extends the

popular R package lme4 (Bates et al., 2015), so researchers

who are familiar with lme4 syntax can use PLmixed with

minimal learning efforts. For each of the applications, we

provide the PLmixed syntax and an example dataset (in

the manuscript and in the supplement), so that readers

can easily apply and utilize the discussed models in their

own research.

The remainder of this paper is organized as follows. In

Section 2, we give a context to establish the notation of CCREMs.

In Section 3, we briefly review available software options for

CCREM estimation, and provide an overview of the PLmixed

package. In Section 4, we present several statistical/psychometric

models as special cases of CCREMs, and then present a couple of

other less well-known, but interesting applications of CCREMs.

Finally, in Section 5, we conclude the paper with a summary and

a discussion on limitations and future directions.

2. Model

2.1. Setting

To set up the notation, we suppose a researcher wants

to study the effects of elementary schools and neighborhoods

on students’ math performance, where the math performance

was measured based on standardized test scores (continuous)

or pass/fail evaluations (binary). The researcher also wants to

explore how some characteristics of schools (e.g., public vs

private), neighborhoods (e.g., residential income deprivation

scores), and students (e.g., student age and race/ethnicity) may

be related to the student performance measure. In this case

students, the level-1 units, are cross-classified by two different

level-2 units, schools and neighborhoods.

2.2. General formulation

Let yijk denote the math performance of student i (i =

1, . . . , I) who goes to school j (j = 1, . . . , J) and lives in

neighborhood k (k = 1, . . . ,K). I, J and K are the total numbers

of students, schools and neighborhoods, respectively.We specify

a CCREM for yijk as follows:

g(E(yijk|uj, uk)) = Xijkβ + uj + uk, (1)

where g(·) is a link function that transforms the linear

predictor on the right-hand side to the conditional expectation

E(yijk|uj, uk). Using a link function allows us to accommodate

outcome variables from various distribution families. For

example, if yijk is continuous test scores and can be assumed to

follow a normal distribution, an identity link function is used. If

yijk is binary (e.g., pass/fail), a logit or probit link function can

be used so that the linear predictor (which ranges from −∞ to

∞) is mapped to a 0 to 1 scale.

On the right-hand side of Equation (1), Xijk is a covariate

matrix, each row of which corresponds to a student and each

column of which corresponds to a covariate, and β is a vector of

regression coefficients for Xijk. The elements of the first column
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of Xijk are 1 when the first element of β is the intercept. With

no covariates and continuous math scores yijk, the intercept is

the grand mean, representing the averagemath scores of average

students who attend an average school and lives in an average

neighborhood.

In Equation (1), uj and uk are respectively the random

effects associated with the two level-2 crossed factors, schools

and neighborhoods, and are assumed to be normally distributed

as uj ∼ N (0, σ 2
school

) and uk ∼ N (0, σ 2
neighborhood

). Additional

technical details on CCREMs can be found in comprehensive

review articles, such as Fielding and Goldstein (2006) and Cafri

et al. (2015).

3. Software options

In this section, we provide a brief review of several existing

software programs and packages for estimating CCREMs. These

include HLM 7 (Raudenbush et al., 2011), MLwiN (Charlton

et al., 2020), R package lme4 (Bates et al., 2015), and functions

in SAS 9.4 (SAS Inc, 2014). Although not discussed here to

conserve space, additional software options are also available,

such as Mplus (Muthén and Muthén, 1998–2017), SPSS (IBM

Corp, 2020), and Bayesian options such as WinBUGS (Lunn

et al., 2000) and Stan (Carpenter et al., 2017).

Subsequently, we describe the R package PLmixed (Jeon and

Rockwood, 2018), which is selected for illustration in the present

article. PLmixed can be downloaded from CRAN (https://cran.

r-project.org/web/packages/PLmixed/).

3.1. Existing programs and packages

3.1.1. HLM 7

HLM 7 (Raudenbush et al., 2011) is a commonly-

used software program for fitting multilevel models. HLM

7 can fit two- and three-level CCREMs, using maximum

likelihood estimation through the expectation–maximization

(EM) algorithm (Raudenbush, 1993). For discrete outcome

variables, HLM 7 estimates the models using the higher-

order Laplace approximation. However, HLM 7 has limited

capabilities in estimating CCREMs with more than three levels.

3.1.1.1. MLwiN

MLwiN (Charlton et al., 2020) is another widely-used

statistical software program for fitting various types of multilevel

models. MLwiN can handle both continuous and discrete

outcome variables. MLwiN also allows for inconstant level-

1 variance (i.e., heteroscedasticity). MLwiN implements the

iterative generalized least squares (IGLS) and Markov chain

Monte Carlo (MCMC) estimation procedures (Browne, 2015).

Estimating CCREMs with IGLS can be computationally

intensive. Thus, splitting the data into separate groups is

recommended to reduce the amount of storage needed. For

example, in the school and neighborhood example, if some

schools only have students from certain neighborhoods, and the

students from these neighborhoods do not go to other schools,

these schools and neighborhoods can be treated as separate

groups. However, using this trick may not always be possible

in all data situations. Using the MCMC option might not

be an easy route either, as fundamental knowledge about the

Bayesian method would be required for proper usage of the

option.

3.1.1.2. R package lme4

lme4 (Bates et al., 2015) is a powerful R package for

maximum likelihood estimation of linear and generalized

linear mixed models. For non-continuous outcome variables,

lme4 utilizes the (penalized) iteratively reweighted least

squares using the Laplace approximation (Doran et al.,

2007). lme4 is highly flexible, allowing for many nested

and crossed random effects at multiple levels. lme4 has

also been used to estimate one-parameter logistic (1PL)

item response theory (IRT) models (e.g., Doran et al., 2007;

De Boeck et al., 2011), and their various extensions, such

as IRTree models (e.g., De Boeck and Partchev, 2012).

However, lme4 cannot estimate models that involve factor

loadings, such as two-parameter IRT models and factor analysis

models. blme (Dorie and Dorie, 2015), a Bayesian version

of lme4, offers additional flexibility, but estimating complex

CCREMs with factor loading structures may still be challenging

with this package.

3.1.1.3. SAS 9.4

SAS 9.4 (SAS Inc, 2014) is a general-purpose statistical

software program and it offers powerful procedures, such as

GLIMMIX and MIXED, for fitting mixed models. GLIMMIX

subsumes MIXED since it fits generalized linear mixed models,

of which linear mixed models are a special case. GLIMMIX

allows for accommodating complex nested and crossed random

effects structures. GLIMMIX employs the restricted pseudo-

likelihood (RPL) estimation (Wolfinger and O’connell, 1993),

a linearization-based method, as its default estimation method

for models with random effects. The PRL estimation method

may yield biased parameter estimates especially for binary

data. GLIMMIX also offers two integral approximation-

based estimation methods, the Laplace approximation and

adaptive Gauss-Hermite quadrature, but the latter may be

computationally inefficient for estimating complex CCREMs.

3.2. R package PLmixed

PLmixed extends the lme4 package to estimate

extended generalized linear mixed models with

factor structures. PLmixed implements a profile

maximum likelihood estimation approach (Jeon and
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Rabe-Hesketh, 2012), taking advantage of the lme4

estimation and the optim function (Byrd et al.,

1995). PLmixed follows lme4’s syntax structure, and

therefore, minimum learning may be required to

utilize PLmixed for users who are already familiar

with lme4.

To illustrate what PLmixed can do, let us return to

the example used in Section 2.1. Suppose the researcher

has tracked the students at multiple time points, and is

interested in how the effects of schools change over time.

For simplicity, assume the students did not change their

school membership and residential areas (neighborhoods)

during this time. In this longitudinal measurement context,

we can extend the CCREM specified in Equation (1)

as follows:

g(E(yitjk|ujt , uk)) = Xitjkβ + λtujt + uk, (2)

where yitjk indicates the i-th student’s performance measure

at time t (t = 1, . . . ,T) in school j and neighborhood k. Here

the new parameter λt is introduced to model the weight of

the school random effect ujt at time t. The weight parameters

λ = (λ1, . . . , λt , . . . , λT)
′ tell us how the impacts of schools

on the students’ math performance change over time. For

identification purpose, one of the weights is fixed at 1 as a

reference point (e.g., λ1 = 1). Since the weight parameter λt is

multiplied by random effect ujt and indicates the size/direction

of the relationship between the outcome measures across time

and the random effect, they can be seen as factor loadings

as in the factor analysis framework. For example, λt is the

factor loading of the random effect ujt (or latent variable

or factor) on the t-th outcome variable yitjk. In IRT, factor

loadings are also called item slopes or item discrimination

parameters. These factor loadings are not estimable

with lme4.

The main function of the PLmixed package is PLmixed.

The basic arguments of PLmixed function are identical to

lme4’s glmer function’s main arguments: formula (a two-

sided linear formula that describes the model), data (a

data frame containing variables in formula), and family

(a GLMM family to specify the distribution of response

variable). To estimate factor loadings, three new arguments

are introduced: load.var (a vector of variables correspond

to lambda and factor), lambda (the factor loading matrix),

and factor (a list of factor names in lambda). We will

further illustrate the usage of the PLmixed function in the

following section through several CCREM applications.

Of note, Rockwood and Jeon (2019) demonstrated the

applications of PLmixed in the context of complex

measurement and growth models, providing additional

technical details of the profile likelihood estimation. We

refer interested readers to Rockwood and Jeon (2019) for

additional information.

4. Applications

In this section, we introduce several applications of

CCREMs. We will first present several measurement models

and methods as special applications of CCREMs. We will then

introduce a couple of interesting CCREM applications that

may be less well-known in applied research. For each of the

applications, we first give a brief summary of the discussed

models or methods. We then describe how to fit the models

using PLmixed with an example dataset and briefly discuss the

estimated results.

4.1. Measurement models and methods

4.1.1. Random item-e�ect IRT models

4.1.1.1. Background

IRT models describe the relationship between categorical

item responses and the latent variable(s) to be measured with the

test. The one-parameter logistic (1PL) model, also known as the

Rasch model (Rasch, 1960), can be written for binary response

yij to item i given by person j as follows:

logit(P(yij = 1 | θj)) = βi + θj, (3)

where θj indicates person j’s level on the latent variable or

construct of interest; respondents are typically assumed drawn

from a population distribution, assuming θj ∼ N (0, σ 2). βi is

the item intercept parameter representing the easiness level of

item i. The 1PL model can also be seen as a two-level multilevel

model with item responses at level 1 and respondents at level 2,

where θj indicates person random effects and βi indicates item

fixed effects. The 1PL model can therefore be estimated with

multilevel modeling packages, such as the R package lme4 (Bates

et al., 2015).

The 1PL model is extended to the two-parameter logistic

(2PL) model by additionally accommodating the item slopes, or

factor loadings αi:

logit(P(yij = 1 | θj)) = βi + αiθj, (4)

The item slope parameters αi are multiplied by the latent

variable θj ∼ N (0, σ 2), similar to Equation (2). For

identifiability, one of the item factor loadings are fixed at 1 (or

σ = 1). The 2PL model can be seen as a two-level multilevel

model with a factor structure. Thus, PLmixed can estimate this

model, while lme4 cannot.

Van den Noortgate et al. (2003) presented an extended 1PL

IRTmodel that assumes both respondents and items are random

samples from the respective population distributions, therefore

considered as random effects.

This so-called, random item-effect IRTmodel can be written

as follows:

logit(P(yij = 1 | θj, δi)) = β0 + θj + δi, (5)
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where θj ∼ N (0, σ 2) and δi ∼ N (0, τ2) represent the

respondent and item random effects, respectively, and β0

indicates the intercept. In the sense that the same set of items

are given to respondents, item responses are cross-classified by

respondents and items. When both respondents and items are

considered random effects, as in Equation (5), the model can be

seen as a CCREM with no covariates.

Under the CCREM framework, the random item-effect IRT

model described above can be easily extended with person and

item covariates. For example,

logit(P(yij = 1 | θj, δi)) = β0+ xPj βP+ xIiβ
I+ xP,Iij βP,I+ θj+ δi,

(6)

where βP is a vector of regression coefficients for xPj , a vector

of person j’s characteristics (e.g., gender and motivation

level). βI is a regression coefficient vector for xIi , a vector of

item i’s features (e.g., item length and cognitive complexity).

βP,I is a vector of regression coefficients of xP,Iij , which is a

vector of person-by-item interactions (e.g., whether person i’s

background, such as gender, interacts with item i or item i’s

feature). In addition, the CCREM framework allows for further

expansions of the random item-effect IRT model with more

complex person and item clustering structures; for example,

respondents and/items are nested or cross-classified with

higher-level units (e.g., respondents are cross-classified with

schools and neighborhoods, and items are cross-classified with

two or more cognitive functions).

4.1.1.2. Illustration

To show how to fit a random item-effect IRT model with

PLmixed, we use the simulated data IRTsim in the package. The

installation of the package and the first six rows of the data are

presented below.

> install.packages("PLmixed")

> library(PLmixed)

> head(IRTsim)

sid school item sch_x stu_x y

1.1 1 1 1 -1.21 0 0

1.2 1 1 2 -1.21 0 0

1.3 1 1 3 -1.21 0 0

1.4 1 1 4 -1.21 0 0

1.5 1 1 5 -1.21 0 0

2.1 2 1 1 -1.21 1 0

The data contain 6 variables and 2,500 binary item responses

from a cognitive test. The first three columns of the data are sid,

school, and item, indicating student ID, school ID, and item ID,

respectively. There are a total of 500 students from 26 school and

5 items. sch_x represents a continuous school-level covariate.

stu_x is a binary student-level covariate. y indicates students’

binary responses that takes the value of 1 if the answer is correct

and 0 otherwise.

Model To illustrate, we specify a random item-effect IRT

model with a cross-classified structure of respondents with

schools. We include student-level and school-level covariates to

examine their impacts on the success probability.

logit(P(yijk = 1 | θjk, θk, δi)) = β0 + β1 × sch_xk + β2

×stu_xjk + δi + θjk + θk, (7)

where β0 is the intercept, β1 is the regression coefficient

for the school-level covariate, β2 is the regression coefficient

for the student-level covariate. δi ∼ N (0, τ2) is the

random item effect, where τ indicates how much the item

easiness varies across the test items. θjk ∼ N (0, σ 2
stu) and

θk ∼ N (0, σ 2
sch

) represent the student and school random

effects, respectively.

Fitting the model The model can be fitted with the below

PLmixed syntax:

> IRT.example <- PLmixed(formula = y~1

>+ sch_x + stu_x +

> (1|item)+(1|sid:school)+(1|school),

+ data = IRTsim, family = binomial)

The argument formula follows Equation (7). The item

response y is a function of three fixed-effect and three random-

effect terms. The inclusion of the term 1 indicates that the

intercept of the linear predictor β0 is estimated. With sch_x and

stu_x, the regression coefficients, β1 and β2, are estimated as

well. (1|item), (1|sid:school) and (1|school) are the three

random-effect terms. The colon between sid and school is used

to indicate that the students are nested within schools. Here, the

argument family = binomial means that the binomial family

with a logit link function is used. Other than the default logit

link, a probit link function can also be used with the syntax

family = binomial(link="probit"). All results are saved in an

object named IRT.example.

After fitting the model, the estimated results are summarized

with the summary() function.

> summary(IRT.example)

Profile-based Mixed Effect Model Fit With

PLmixed Using lme4

Formula: y~1 + sch_x + stu_x + (1|item)

+ (1|sid:school) + (1|school)

Data: IRTsim

Family: binomial (logit)

AIC BIC logLik deviance df.resid

2716.01 2750.95 -1352.00 2245.42 2494

Scaled residuals:

Min 1Q Median 3Q Max

-2.5110 -0.8657 0.4374 0.7744 2.1867

Random effects:

Groups Name Variance Std.Dev.

sid:school (Intercept) 0.6320 0.7950

school (Intercept) 0.7529 0.8677

item (Intercept) 0.3767 0.6138
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Number of obs: 2500, groups: sid:school,

500; school, 26; item, 5

Fixed effects:

Beta SE z value Pr(>|z|)

(Intercept) 0.2695 0.3432 0.7853 4.323e-01

sch_x 0.6963 0.2062 3.3771 7.326e-04

stu_x 1.3874 0.1326 10.4652 1.248e-25

lme4 Optimizer: bobyqa

Optim Optimizer: NA

Optim Iterations: 1

Estimation Time: 0.02 min

The first section of the summary echos the formula we

specified, the data, and the link function. The second section

presents model fit indices including the AIC, BIC, and a

summary of the scaled residuals.

In the Random effects section, the estimates of variances

and standard deviations of the three random effects are

presented. The last line of this section lists the numbers

of observations, students, schools and items. These estimates

indicate that about 42.7% (= 0.753/ [0.632 + 0.753 + 0.377]),

35.8% (= 0.632/ [0.632 + 0.753 + 0.377]), and 21.4% (= 0.377/

[0.632 + 0.753 + 0.377]) of the variation in the data are

explained by the differences between schools, between students,

and between items, respectively.

In the Fixed effects section, the estimates of the fixed

effects are presented. The intercept estimate is 0.2695, indicating

> head(RATERsim)

field rating assessor assessor_gender proposal researcher_gender

1 1 0.75 19 0 446 0

2 1 -0.31 20 0 579 0

3 1 -0.04 20 0 184 0

4 1 -0.40 20 0 71 0

5 1 -0.46 28 1 117 0

6 1 0.43 34 0 293 1

that the probability that the an average student (i.e., θjk = 0)

in the stu_x=0 group from an average school (i.e., θk = 0)

with sch_x=0 correctly answers an average item (i.e., δi = 0)

is about 0.577 (= 1/ [1+exp(–0.2695)]). The change in the logit

that is associated with one unit increase in sch_x is 0.6963, and

the corresponding standard error (SE) is 0.2062. The average

difference between the stu_x= 0 group and stu_x= 1 group

is 1.3874, with SE of 0.1326.

The last section of the result lists lme4 optimizer,

optim optimizer, the number of optim iterations, and the

estimation time.

4.1.2. Rater e�ect models

4.1.2.1. Background

Social science studies often utilize assessment by raters. In

this case, raters contribute to the variance in the assessment

data, and this variance due to rater effects is not related

to the variation of the ratees in their performance (Scullen

et al., 2000). Since rating data are cross-classified by raters

and ratees, CCREMs are a natural option to address rater

effects. For example, CCREMs have been used to estimate

rater effects in cross-sectional data (e.g., Jayasinghe et al., 2003;

Murphy and Beretvas, 2015; Lei et al., 2018; Martinez et al.,

2020; Chen et al., 2021) and in longitudinal data settings

(e.g., Guo and Bollen, 2013). Under the CCREM framework,

researchers can differentiate rater variance from other sources of

variances, and incorporate covariates to answer useful research

questions. For example, a large rater variance indicates that

ratings vary to a large degree across raters, implying that

rater training needs to focus on improving consistency across

raters (by making the scoring rubrics tighter and stricter,

for instance). With covariates, one can find out whether

particular characteristics of raters, ratees, and rater-and-ratee

combinations may be associated with systematically higher or

lower ratings.

4.1.2.2. Illustration

To show how to fit a rater effect model as a CCREM,

we first generate a dataset that mimics the empirical data

analyzed by Jayasinghe et al. (2003). The simulated data

include 2,401 evaluations of 1,580 assessors on 673 grant

proposals. Each assessor and proposal belongs to one of

the 28 fields of study, which can be further categorized

into nine general discipline panels, such as Physics and

Mathematics. The first six rows of the simulated dataset are

printed below.

The outcome variable is the rating (rating) of a proposal

(proposal) provided by an assessor (assessor) in a field of study

(field). The mean and standard deviation of the ratings are

0.14 and 1.05, respectively. The number of proposals assessed

by each assessor ranges from 1 to 3. The number of ratings

each proposal receives ranges from 2 to 7. The numbers of

assessors, proposals and ratings in the fields range from 15 to

83, from 12 to 33, and from 37 to 122, respectively. Other

covariates included in the data are the gender of the assessors

(assessor_gender) and the gender of the first author of the

proposals (researcher_gender). For these gender variables, 0

indicates the assessor/author is a male, and 1 indicates the

assessor/author is a female.
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ModelWe specify a three-level CCREM where ratings (at level 1) are cross-classified by assessors (raters) and proposals (at level 2)

both of which are nested within fields (at level 3). In addition to the random effects of assessors, proposals, and fields, we examine the

effects of the genders of assessors, first authors of proposals, and their interactions. The rater effect CCREM can then be specified as

follows:

yijk|uik, ujk, uk = β0 + β1x
R
ik + β2x

P
jk + β3x

R,P
ijk

+ uik + ujk + uk + εijk, (8)

where yijk is the rating of proposal j in field k assessor i provides. xR
ik
, xP

jk
and xR,P

ijk
are the assessor’ gender (1: female; 0: male), first

author’s gender (1: female; 0: male), and the interaction between the two (1: the assessor and author are both females; 0: the assessor

and author are of different genders or are both males), respectively. β0 is the intercept and β1 to β3 are the regression coefficients for the

three gender-related covariates. The regression coefficient β3 of the interaction term can answer an interesting question that whether

female assessors’ rating on the proposals written by female authors are consistently higher or lower. The assessor, proposal and field

random effects are assumed uik ∼ N (0, σ 2
assessor), ujk ∼ N (0, σ 2

proposal
), and uijk ∼ N (0, σ 2

field
).

Fitting the model The below PLmixed syntax can be used to fit the model specified in Equation (8).

> rater.example <- PLmixed(formula = rating~1 + assessor_gender

+ + researcher_gender

+ + assessor_gender*researcher_gender

+ + (1|assessor:field) + (1|proposal:field)

+ + (1|field), data = RATERsim, family = gaussian)

This syntax is similar in structure to the syntax shown in Section 4.1.1. Thus, we omit giving all specific details of the arguments. The

argument family = gaussian is used since the response data are continuous in this example. If family is omitted, Gaussian family with

an identity link function is applied by default.

The summary() function gives the summary of the estimated results. To save space, we print here only the parameter estimates and

the associated standard errors in the Random effects and Fixed effects sections.

> summary(rater.example)

Random effects:

Groups Name Variance Std.Dev.

assessor:field (Intercept) 8.876e-01 0.942151

proposal:field (Intercept) 1.672e-01 0.408946

field (Intercept) 2.541e-02 0.159413

Residual 9.575e-06 0.003094

Fixed effects:

Beta SE t value

(Intercept) 0.12239 0.043287 2.827

assessor_gender -0.15918 0.080937 -1.967

researcher_gender 0.14543 0.042842 3.395

assessor_gender:researcher_gender -0.03682 0.002183 -16.866

In the Random effects section, the estimates of variances are shown. Consistent with the results shown in Jayasinghe et al. (2003),

assessors explain about 82% (= 0.8876/ [0.8876+0.1672+0.0254]) of the total variation in ratings, proposals explain about 15% (= 0.1672/

[0.8876+0.1672+0.0254]), and fields explain 3% (= 0.0254/ [0.8876+0.1672+0.0254]) of the variation in the data. The large between-

assessor variance tells us that improving consistency in ratings across assessors would be a useful consideration to improve the proposal

assessment system.

In the Fixed effects section, the estimates of regression coefficients and the associated standard errors are presented. The results

suggest that female assessors on average provide lower ratings than male assessors, female authors on average receive higher ratings

than male authors, and proposals written by female authors receive lower ratings from female assessors.
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4.1.3. Multitrait-multimethod models

4.1.3.1. Background

Themultitrait-multimethod (MTMM) (Campbell and Fiske,

1959) models have been applied broadly in applied social science

research (e.g., Lance and Sloan, 1993; Biesanz and West, 2004;

DeYoung, 2006). When multiple traits (e.g., the Big Five)

are measured with multiple methods (e.g., self report or peer

report), MTMMmodels are used to differentiate method effects

from trait effects. MTMM analysis helps researchers evaluate

convergent and discriminant validity of the main measures; the

methods designed to measure the same traits should be highly

correlated, while the traits should not correlate highly with the

methods.

The flexible CCREM framework allows researchers to extend

the classical MTMM model in a variety of ways, e.g. by

adding covariates and dealing with multilevel/cross-classified

data structures. These extended models can be easily estimated

with a CCREM package of choice, such as PLmixed, without

needing to develop a new estimation routine.

4.1.3.2. Illustration

To show how the MTMM model can be estimated as a

CCREM, we simulate a dataset that reproduces the MTMM

covariance matrix reported by DeYoung (2006). The simulated

data include continuous scores on the Big Five obtained from

subjects (n = 500) and three of their peers. Each subject has 20

scores, where five are self-reported and the other 15 are reported

by three peers (five per peer). The five self-reported scores are

measures 1–5, and the 15 peer-reported scores are measures

6–10. The first six row of the simulated data are printed below.

> head(MTMM.data)

subject measure method trait peer score

FIGURE 1

Circles in the figure represent latent variables: E, Extraversion; A,

Agreeableness; C, Conscientiousness; N, Neuroticism; O,

Openness/Intellect; P, peer rater e�ect. Squares are observed

ratings: measures 1–5 are self-reported scores and measures

6–10 are peer-reported. The 1 in the figure represents fixed

loading (imposed for identification purposes). The ? represents a

loading that needs to be estimated.

[1,] 1 1 1 1 0 4.46

[2,] 1 2 1 2 0 3.62

[3,] 1 3 1 3 0 4.30

[4,] 1 4 1 4 0 4.30

[5,] 1 5 1 5 0 3.12

[6,] 1 6 2 1 1 5.13

The variable subject, measure, method, trait and peer are

indicators of subject, scale, method (1: self report, 2: peer report),

trait (1 = Extraversion, 2 = Agreeableness, 3 = Conscientiousness,

4 = Neuroticism, 5 =Openness/Intellect) and peer (0: self report).

The last column, score, is the outcome variable.

Model Figure 1 illustrates the MTMM model that we

consider for this dataset. Mathematically, the model is specified

as follows:

yitpj|θ
T
tj , θ

M
p = βi + λTitθ

T
tj + λMip θMp + εitpj, (9)

where yitpj represents peer p’s rating to measure i on trait t of

subject j. βi denotes the intercept of measure i, λTit indicates

measure i’s loading on θTtj for t-th trait, and λMip indicates

measure i’s loading on θMp , the peer rater effect. The trait latent

variables and peer/rater latent variables are assumed: θTj ∼

N (0,6T) and θMp ∼ N (0, σ 2
M). The residual term is assumed

εitpj ∼ N (0, σ 2
e ).

Fitting the model To fit the above model with PLmixed, we

first specify the factor loading lambda matrix according to the

diagram (Figure 1). Rows of the lambda matrix correspond to

the measures, and columns correspond to the latent variables.

For identification purpose, we fix the first loading of each lambda

matrix to 1. Note that as measures 6–10 are peer-reported, the

first five elements of the rater effect latent variable (i.e., the last

column of the lambdamatrix) are zeros. NA represents unknown

parameters that are to be estimated.

> lambda <- rbind(c(1, 0, 0, 0, 0, 0),

+ c(0, 1, 0, 0, 0, 0),

+ c(0, 0, 1, 0, 0, 0),

+ c(0, 0, 0, 1, 0, 0),

+ c(0, 0, 0, 0, 1, 0),

+ c(NA,0, 0, 0, 0, 1),

+ c(0,NA, 0, 0, 0, NA),

+ c(0, 0,NA, 0, 0, NA),

+ c(0, 0, 0,NA, 0, NA),

+ c(0, 0, 0, 0,NA, NA))

The full PLmixed syntax can be specified as follows:
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> MTMM.example <- PLmixed(score~0 + as.factor(measure)

+ + (0+E+A+C+N+O|subject)

+ + (0+rater|peer),

+ data = as.data.frame(MTMM.data),

+ lambda = list(lambda), load.var = "measure",

+ factor = list(c("E","A","C","N","O","rater")))

The 0 is included to ensure no intercept is estimated.We use as.factor(measures) to estimatemeasure-specific intercepts. The five trait

latent variables are named E, A, C, N and O. As assumed, these latent variables are correlated and vary across subjects. If independence is

assumed among the trait latent variables, the syntax would be specified as (E|subject) + (A|subject) + (C|subject) + (N|subject)

+ (O|subject). The last term in the formula argument corresponds to the random rater effects. The lambda argument indicates the

factor loading matrix we specified earlier. The load.var argument indicates the variable that defines the factor loading matrix. The

factor shows the names of the latent variables.

Below shows the summary of the estimated results.

>summary(MTMM.example)

Profile-based Mixed Effect Model Fit With PLmixed Using lme4

Formula: score~0 + as.factor(measure) + (0+E+A+C+N+O|subject) + (0+rater|peer)

Data: as.data.frame(MTMM.data)

Family: gaussian (identity)

AIC BIC logLik deviance df.resid

19181.24 19440.82 -9554.62 19109.24 9964

Scaled residuals:

Min 1Q Median 3Q Max

-3.3027 -0.5599 -0.0007 0.5554 3.0555

Lambda: measure

E SE A SE C SE N SE O SE rater SE

1 1 . . . . . . . . . . .

2 . . 1 . . . . . . . . .

3 . . . . 1 . . . . . . .

4 . . . . . . 1 . . . . .

5 . . . . . . . . 1 . . .

6 0.91 0.04 . . . . . . . . 1 .

7 . . 0.99 0.07 . . . . . . 0.91 0.06

8 . . . . 0.83 0.04 . . . . 0.83 0.04

9 . . . . . . 1.84 0.14 . . 1.54 0.12

10 . . . . . . . . -2.4 0.18 1.16 0.10

Random effects:

Groups Name Variance Std.Dev. Corr

peer rater 0.06228 0.2496

subject E 0.46781 0.6840

A 0.15870 0.3984 0.11

C 0.18075 0.4251 0.11 0.12

N 0.40576 0.6370 -0.10 -0.44 -0.28

O 0.31660 0.5627 0.27 0.01 0.08 -0.16

Residual 0.21202 0.4605

Number of obs: 10000, groups: peer, 1501; subject, 500
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Fixed effects:

Beta SE t value

as.factor(measure)1 3.336 0.03687 90.48

as.factor(measure)2 4.064 0.02723 149.23

as.factor(measure)3 4.060 0.02803 144.86

as.factor(measure)4 2.572 0.03515 73.18

as.factor(measure)5 3.670 0.03252 112.87

as.factor(measure)6 3.670 0.03081 119.12

as.factor(measure)7 4.104 0.02438 168.31

as.factor(measure)8 4.185 0.02324 180.06

as.factor(measure)9 2.610 0.03065 85.17

as.factor(measure)10 3.734 0.02513 148.58

lme4 Optimizer: bobyqa

Optim Optimizer: L-BFGS-B

Optim Iterations: 1120

Estimation Time: 36.61 min

The first section of the results echos the formula, and the second

section shows model fit indices. The Lambda section shows the

estimates of factor loadings and the corresponding standard

errors. The negative loading of measure 10 on the latent

variable O indicates that the peer-reported scores are negatively

associated with Openness/Intellect, suggesting that these peer-

reported scores of measure 10 should be closely examined

as they do not seem to properly measure the target latent

variable Openness/Intellect. Following the factor loading section,

the Random effects section lists the estimates of variances

of all latent variables, and the correlations of the five traits.

In the Fixed effects section, measure-specific intercepts are

presented. In the last section, information about lme4 optimizer

is listed.

4.1.4. Generalizability theory

4.1.4.1. Background

Generalizability theory (G-theory) is a statistical

framework for evaluating the generalizability (or reliability)

of measurements (Shavelson and Webb, 1991). In G-theory,

observed scores are decomposed into additive effects of

multiple facets (i.e., sources of variations). If levels of

a facet in a measurement design are viewed as random

samples from the universe of all levels, or if researchers

would like to generalize beyond these observed levels, this

facet is a random facet. In contrast, if all possible levels of

a facet are included in the design, or if there is no need

for generalization, this facet is treated as a fixed facet. G-

theory includes two types of studies, the generalizability

study (G study) and the decision study (D study). In a G

study, variances associated with the facets are computed.

In a D study, different generalizability coefficients are

constructed, using the variance estimates computed from

the G study. A generalizability coefficient is analogous to a

reliability coefficient, while it depends on which facets are

considered random.

Vangeneugden et al. (2005) utilized a linear mixed model

framework to estimate G-theory models, so that different

kinds of generalizability/reliability coefficients can be derived

from the estimates of variances. Choi (2013) and Choi and

Wilson (2018) presented a generalized linear latent and mixed

modeling approach (GLLAMM) (Skrondal and Rabe-Hesketh,

2004) to combine G-theory and IRT. Jiang (2018) and Jiang

et al. (2020) showed how generalizability variance components

from univariate and multivariate generalizability theory can

be estimated within the linear mixed model framework with

general-purpose R packages.

4.1.4.2. Illustration

To illustrate how a G-theory model can be estimated and

extended as a CCREM, we analyze the Brennan.3.2 dataset

from the gtheory R package (Moore, 2016). The dataset contains

scores of 10 persons’ performance on 3 tasks, each of which is

rated by 4 raters (i.e., the classical person×[rater:task] design).

The first six rows of the data are printed below.

> install.packages("gtheory")

> library(gtheory)

> head(Brennan.3.2)

Task Person Rater Score

1 1 1 1 5

2 1 2 1 9

3 1 3 1 3

4 1 4 1 7

5 1 5 1 9

6 1 6 1 3

The outcome variable is the score (Score), which ranges

from 1 to 9. The 10 persons (Person) complete all three tasks

(Task). Raters (Rater) 1 to 4 assess task 1, raters 5 to 8 assess task

2, and raters 9 to 12 assess task 3.

Model In this person×(rater:task) design, there are

five sources of variation: persons, tasks, raters, person-task

interactions and residuals. The data show a cross-classified

structure where the scores are cross-classified by persons and

raters, which are nested within tasks. We specify the G-theory

model as a CCREM as follows:

yijk|ujk, uk, uik = β0 + ui + ujk + uk + uik + εijk, (10)

where yijk is person i’s score on task k by rater j, ui ∼

N (0, σ 2
person) represents the person random effect, ujk ∼

N (0, σ 2
rater) is the rater random effect, uk ∼ N (0, σ 2

task
) is the

task random effect, uik ∼ N (0, σ 2
person×task

) is the person-

task interaction random effect, and εijk ∼ N (0, σ 2
e ) is the

residual term.

Fitting the model The PLmixed syntax to fit this model is

displayed below.
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> g.example <- PLmixed(formula = Score~1 + (1|Person) + (1|Rater:Task)

+ + (1|Task) + (1|Person:Task),

+ data = Brennan.3.2)

The summary of the estimated results is shown below; only the Random effects and Fixed effects sections are listed to

conserve space.

> summary(g.example)

Random effects:

Groups Name Variance Std.Dev.

Person:Task (Intercept) 0.5730 0.7570

Rater:Task (Intercept) 0.6475 0.8047

Person (Intercept) 0.4290 0.6550

Task (Intercept) 0.1561 0.3951

Residual 2.3802 1.5428

Number of obs: 120, groups: Person:Task, 30; Rater:Task, 12; Person, 10; Task, 3

Fixed effects:

Beta SE t value

(Intercept) 4.75 0.4334 10.96

With the estimates of variances associated with multiple variance sources, we can derive desired generalizability/reliability

coefficients. For example, if we want to generalize persons’ scores over raters and tasks, a generalizability coefficient is constructed as:

Rρ2Rel =
σ 2
person

σ 2
person + σ 2

rater + σ 2
task

+ σ 2
person*task

+ σ 2
e

=
0.5730

0.5730+ 0.6475+ 0.4290+ 0.1561+ 2.3802
= 0.14.

The reliability coefficient above is fairly low (consistent with the result from the gtheory package). This means that it would be difficult

to generalize subjects’ scores over different raters and tasks, calling for further investigation on the assessment data.

4.2. Other applications

4.2.1. Social network analysis

4.2.1.1. Background

Social network analysis (SNA) examines how individuals are connected and how social connections influence individuals and their

behaviors (Otte and Rousseau, 2002). A number of methods and techniques have been developed for social network analysis, such as

stochastic actor oriented models (SAOM) (e.g., Snijders, 1996, 2017), exponential random graph models (ERGM) (e.g., Holland and

Leinhardt, 1981; Frank and Strauss, 1986; Cranmer and Desmarais, 2011), and latent space models (e.g., Hoff et al., 2002; Sewell and

Chen, 2015).

CCREMs have also been utilized to study social network connections and dependencies among individuals generated due to their

social networks. For example, Tranmer et al. (2014) considered individuals’ ego-nets (of size 2 and 3) as their classification structures

and applied a CCREM to account for the dependencies due to the network structure. They found that ignoring network dependencies

as such would bias the estimates of fixed and random effect parameters in the model. De Nooy (2011) analyzed reviews/interviews

among 40 literary authors and critics in the Netherlands during 1970–1980. The network model adopted in this study can be viewed as

a CCREM in the sense that the model viewed review/interviews were cross-classified by authors and critics. Koster et al. (2015) showed

that the multilevel formulation of the Social Relations Model (SRM) (Snijders and Kenny, 1999) could be estimated as a cross-classified

Poisson model. The SRM as a CCREM partitions the total variance in social network data into variance components contributed by

multiple sources.

4.2.1.2. Illustration

To illustrate how a CCREM can be used for social network analysis, we analyze a dyadic network dataset used by Koster et al.

(2015). The data were collected in a village of indigenous Ye’kwana horticulturalists with eight households in Venezuela. These eight

households lead to 28 dyads. The first six rows of the data are printed below:
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> network <- network[order(network$dyad),]

> head(network)

giver receiver dyad relationship sharing association distance kinship

1 1 2 12 1 1 0.234 162 0.0156

8 2 1 12 8 0 0.233 162 0.0160

2 1 3 13 2 1 0.144 286 0.0000

15 3 1 13 15 5 0.144 286 0.0000

3 1 4 14 3 0 0.120 327 0.0000

22 4 1 14 22 2 0.120 327 0.0000

The outcome variable is the total number of meals (sharing) provided from one household (giver) to another (receiver). Each

giver-receiver pair defines a relationship (relationship). Note the relationship variable is directed, meaning that the values

may not be the same for household A-B and B-A pairs. Other covariates are the distance between households (distance), the

genetic relatedness between households (kinship), and an association index which is a measure of interactions between each pair

of households (association).

Model The number of meals yij that household i gives to household j is assumed to follow a Poisson distribution with mean µij,

i.e., yij ∼ Pois(µij). For simplicity, we consider no covariates and specify a Poisson CCREM as follows:

log(µij) = β0 + gi + rj + u|ij| + εij, (11)

where β0 is the intercept, gi and rj represent the giver and receiver random effects, respectively. The two random effects are assumed

to be independent with gi ∼ N (0, σ 2
giver) and rj ∼ N (0, σ 2

receiver). We further decompose the relationship random effects into two

parts: u|ij| represents the symmetric (undirected) relationship random effect, with u|ij| ∼ N (0, σ 2
dyad

). The | · | is used in the subscript to

indicate that this effect is symmetric, meaning that it takes the same value within each dyad. eij is the asymmetric (directed) relationship

random effect, with εij ∼ N (0, σ 2
relation

). This effect is asymmetric, meaning that the value of eij can be different for each observation

within a dyad. Covariates at the giver, receiver and relationship levels can be also incorporated into the model.

Fitting the model The network model described above can be fit with the below PLmixed syntax.

> network.exp <- PLmixed(sharing~1 + (1|giver) + (1|receiver)

+ + (1|dyad) + (1|relationship),

+ data = network, family = poisson)

We show below the Random effects and Fixed effects sections of the estimated results.

> summary(network.exp)

Random effects:

Groups Name Variance Std.Dev.

relationship (Intercept) 0.2401 0.4900

dyad (Intercept) 1.1990 1.0950

receiver (Intercept) 0.1060 0.3256

giver (Intercept) 1.8853 1.3731

Number of obs: 56, groups: relationship, 56; dyad, 28; receiver, 8; giver, 8

Fixed effects:

Beta SE z value Pr(>|z|)

(Intercept) 0.3114 0.5668 0.5495 0.5827

With the variance estimates of the random effects, we can quantify the contribution of each variation source to the total variance.

For example, the amount of total variation attributed to the givers is 0.549 (= 1.8853/[0.2401 + 1.1990 + 0.1060 + 1.8853]);

that is, givers explain 54.9% of the total variation in the data. In contrast, receivers explain only 3.1% of the variance (0.031 =

0.1060/[0.2401+ 1.1990+ 0.1060+ 1.8853]).
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4.2.2. E�ects of country of origin and destination

4.2.2.1. Background

Another interesting application of CCREMs is found in immigrant studies that examine impacts of countries of origin and

destination on various outcomes of immigrants. Examples of such studies include Levels et al. (2008), Kislev (2017), and Dronkers

et al. (2014).

4.2.2.2. Illustration

For illustration, we simulate data that mimic the PISA data analyzed by Levels et al. (2008). The simulated data include the math

scores of 7,403 immigrant students who were born in 35 different countries and took the PISAmath test in 13 different countries. Below

we print out the first six rows of the dataset.

> head(round(PISAsim))

student destination origin community score

1 1 1 6 1 429

2 2 1 6 1 479

3 3 1 6 1 569

4 4 1 6 1 428

5 5 1 6 1 596

6 6 1 6 1 436

The outcome variable is the math scores (score) of a student (student) who was born in an origin country (origin) and took

the PISA test in a destination country (destination). The mean and standard deviation of scores are 503 and 98, respectively. Each

combination of the origin and the destination countries defines an immigrant community (community). Since not all origin countries

are presented in all destination countries, the data contain 67 (instead of 13×35 = 455) different immigrant communities. The number

of students in each of the communities ranges from 90 to 144.

Model In this example, students are cross-classified by countries of origin and destination. The communities indicate the origin-

by-destination combinations. To differentiate the three types of contextual effects on students’ math scores, we specify the following

CCREMmodel:

yijk|uj, uk, ujk = β0 + uj + uk + ujk + εijk, (12)

where yijk represents the math score of student i’s, who was born in country j, took the test in country k and lives in the immigrant

community defined by the origin and destination countries. β0 is the intercept, uj ∼ N (0, σ 2
origin) and uk ∼ N (0, σ 2

destination
) are the

origin country and destination country random effects, respectively, and ujk ∼ N (0, σ 2
community) is the community random effects, as

specified as the cell effects (cells created by origin and destination country classifications). εijk ∼ N (0, σ 2
e ) is the residual term.

Fitting the model The above model can be estimated with the PLmixed syntax below:

> PISA.example <- PLmixed(formula = score~1 + (1|origin) + (1|destination)

+ + (1|origin:destination), data = PISAsim)

Elements in the formula argument correspond to the terms in Equation (12). The 1 represents the intercept, and (1|origin),

(1|destination) and (1|origin:destination) are the three random-effect terms.

Below we display the Random effects and Fixed effects sections of the estimated results.

> summary(PISA.example)

Random effects:

Groups Name Variance Std.Dev.

origin:destination (Intercept) 511.2 22.61

origin (Intercept) 803.2 28.34

destination (Intercept) 681.4 26.10

Residual 7459.7 86.37

Number of obs: 7403, groups: origin:destination, 67; origin, 35; destination, 13

Fixed effects:

Beta SE t value

(Intercept) 500 9.478 52.75
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The Random effects section lists the variance estimates

of random effects. Here origin:destination indicates the

community random effects specified as the cell effects. The

results suggest that the immigrant community, the country

of origin, and the country of destination explain 5.4% (=

511.2/[511.2+803.2+681.4+7459.7]), 8.5% (= 803.2/[511.2+

803.2 + 681.4 + 7459.7]) and 7.2% (= 681.4/[511.2 +

803.2 + 681.4 + 7459.7]) of the total variation in the math

scores, respectively. It is interesting that the country of origin

still has influence immigrant students’ math scores, and the

students’ immigrant community shows as large influence as the

destination county on immigrant students’ math outcomes.

5. Concluding remarks

In this article, we aim to introduce some modern

applications of CCREMs for social science studies.We presented

some existing models and methods widely used in applied

research as applications of CCREMs. These applications and

their connections to CCREMs might have been shown in the

literature by different authors in separate studies. However, to

our best knowledge, these different applications have not been

reviewed, discussed, and integrated together in a single paper.

We want to stress again the usefulness of understanding the

connections between different models that serve for seemingly

different purposes within the CCREM framework. As discussed

earlier, those models can easily be extended to accommodate

complex clustering and covariate structures in the data for any

units of analysis. Further, the models presented in this paper

can be integrated when desirable under the unifying framework

that CCREM offers. For example, the rater effect model can be

combined with the random item-effect IRT model, and/or with

the multitrait-multimethod model, and/or the G-theory model.

As another example, the model presented for a study of country

of origin and destination may be extended with a measurement

model such as the two-parameter IRT model. Without having

these perspectives, researchers may need to develop their own

estimation routines every time there is a need for such models,

which can be inefficient, time consuming, and unnecessary.

It may be worth commenting that the flexibility and

generality of the CCREM framework come with a cost in

the sense that researchers need to understand the CCREM

framework, and translate the general language of the CCREM

framework into the specific modeling contexts of choice, which

may not be an easy task. The current article is written to help

remediate such a challenge by providing a practical guide to the

CCREM and its applications.

Lastly, we chose the R package PLmixed to illustrate the

estimation of the discussed models. PLmixed is a convenient

choice as it is freely available and it can estimate all of the

models presented in this paper and many of their combinations.

Of note, when no factor structures are involved, the models

presented in this paper can also be estimated with the R

package lme4. But when factor loadings are included, lme4 can

no longer be used. In addition, an important future line of

work is to compare PLmixed with other packages specialized

for specific models as well as other general-purpose software

programs in terms of the model specification and estimated

results. Further, it would also be useful to conduct rigorous

simulation studies to compare the performance accuracy of

different software packages for estimating different CCREM

applications introduced in this paper.
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