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How can artificial neural 
networks approximate the brain?
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The article reviews the history development of artificial neural networks (ANNs), 

then compares the differences between ANNs and brain networks in their 

constituent unit, network architecture, and dynamic principle. The authors 

offer five points of suggestion for ANNs development and ten questions to 

be investigated further for the interdisciplinary field of brain simulation. Even 

though brain is a super-complex system with 1011 neurons, its intelligence 

does depend rather on the neuronal type and their energy supply mode than 

the number of neurons. It might be possible for ANN development to follow 

a new direction that is a combination of multiple modules with different 

architecture principle and multiple computation, rather than very large scale 

of neural networks with much more uniformed units and hidden layers.
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Introduction

Studies in ANNs have been the focus of contemporary society since the Image Net 
competition in visual object recognition was won by a deep neural network(Kietzmann 
et al., 2019; Kriegeskorte and Golan, 2019). Engineers dream of pursuing a class of brain-
inspired machines. The situation of robots superseding humans in many functions may 
soon be a reality. Meanwhile, neurobiologists and psychologists wonder about progress in 
neural networks due to the great differences between ANNs and biological brains(Crick, 
1989; Carlson et al., 2018).

This article reviews the contemporary theories and technical advances in three related 
fields: ANNs, neuroscience and psychology. ANNs were born mainly from more than two 
thousand years of mathematical theories and algorithms; over the past two hundred years, 
neuroscience has revealed more truths about the mysteries of the brain; and psychology 
has just passed its 143th anniversary of accumulating conceptions about conscious and 
unconscious cognitive processes. Cognitive sciences, encapsulating the disciplines of both 
natural and artificial intelligence, were founded in the mid-1970s to inquire into the 
mystery of intelligent substitutes, including humans, animals and machines. Although 
progress in these related fields is promising, a completed brain-inspired intelligent machine 
is far from the human brain. How can we reduce the distance between engineers’ dreams 
and reality? Some suggestions for brain simulation will be offered in the paper.
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Three generations of ANNs

Artificial neural networks simulate brain intelligence by 
mathematical equations, software or electronic circuits. As the 
first constituent sub-discipline of cognitive sciences, ANNs 
already have a 79-year history since the conception of the “neural 
unit” and “Hebbian synapse” as well as the first model of the 
perceptron neural network in the 1940s–1950s (Mcculloch and 
Pitts, 1943; Hebb, 1949; Rosenblatt, 1958). We  review the 
developmental course of the discipline and divide its history into 
three stages that represent the view of the human brain and 
intelligence from the perspective of mathematics. The first 
generation of ANNs is linear logic networks; the second generation 
is connectionist networks, including parallel distributed 
processing (PDP) and deep neural networks (DNNs); and the 
third generation is spike neural networks (SNNs).

The first generation of ANNs: Linear logic 
networks

The first sentence in the first ANN paper was “Because of the 
‘all-or-none’ character nervous activity, neural events and the 
relations among them can be treated by means of propositional 
logic.”(Mcculloch and Pitts, 1943). Then, the authors described ten 
theorems and emphasized the calculus principle and academic 
significance in the following sentence in the last part of the paper: 
“Specification for any one time of afferent stimulation and of the 
activity of all constituent neurons, each an ‘all-or-none’ affair, 
determines the state.” It is worth paying attention to the keywords 
in the cited sentence, all-or-none and determine, which mean that 
perception is associated with the statistic separation of two-state 
affairs as a deterministic system. The second classical ANN paper 
stated, “When an axon of cell A is near enough to excite a cell B 
and repeatedly or persistently takes part in firing it, some growth 
process or metabolic change takes place in one or both cells such 
that A’s efficiency, as one of the cells firing B, is increased” 
(Hebb, 1949).

The first ANN perceptron model was a linear network model 
that comprised A units and R units. Eleven equations were used 
to analyze the model’s predominant phase through six parameters 
clearly defining physical variables that were independent of the 
behavioral and perceptual phenomena. As a result, the model was 
able to predict learning curves from neurological variables and 
likewise to predict neurological variables from learning curves. 
The author assertively wrote, “By the study of systems such as the 
perceptron, it is hoped that those fundamental laws of organization 
which are common to all information handling systems, machines 
and men included, may eventually be understood” (Rosenblatt, 
1958). It is obvious for the classical writer to have too optimistic 
foresee for his linear network model. In fact, the linear model 
could not solve mathematic puzzles such as XOR partition. 
Therefore, a monograph (Minsky and Papert, 1969) claimed 
assertively that the investigation of linear networks must be only 

a game on paper. As a result, much foundation grant money was 
withdrawn, no longer supporting the projects.

The second generation of ANNs: 
Connectionist networks

2-G ANNs began to be developed in the mid-1980s and can 
be divided into two periods: parallel distributed processing (PDP) 
and deep learning. In addition to the demand for ANN 
development, the demand for debugging in artificial intelligence 
(AI) also promoted the renaissance of ANNs in the 1980s.

A few dedicated scientists persisted in their neural network 
programs after 1969, their achievements provided a prelude for an 
ANN renaissance. For example, two neural network models, the 
discrete two-state model(Hopfield, 1982) and the continuous-
response model (Hopfield, 1984), were published. A two-volume 
book (Rumelhart and McClelland, 1986) about PDP written by 16 
experts as coauthors was spread quickly over the world. Many 
neural models and learning algorithms, such as the massively 
parallel network with hidden unit-Boltzmann machine (Ackley 
et  al., 1985), error backpropagation (Rumelhart et  al., 1986), 
competitive learning, neural Darwinism, adaptive systems, and 
self-organized learning, were created quickly during the 1980s–
1990s. Meanwhile, connectionist modern supercomputers were 
developed, and very large-scale analog integrated circuits, analog 
neural computers, and applied electronic chips, such as electronic 
retina chips and see-hear chips, emerged.

It is worth discussing backpropagation algorithm (BP) due to 
its broad applications in the field of ANNs. Rumelhart et al. (1986) 
described the learning procedure and abstracted a universal 
δ-learning rule. The results in implementation of the learning 
algorithm demonstrate that there is error gradient descent in 
weight-space, so that network’s output reaches at its targeted value 
in a little by a little, meanwhile the error derivatives (δ) between 
the output and the desired result propagates back along the 
gradient descent. In fact, the efficiency of learning procedure 
usually is very low. For example, it is necessary more than several 
hundred even thousand turns of training for a very simple 
network with a hidden unit to solve a task of XOR function 
partition. BP is not a nonlinear model, error back-propagation is 
just an implicit nonlinear mapping without a really feedback loop. 
The number of hidden nodes has to be make sure by experience 
or testing without theoretical guideline. The authors wrote in the 
end of their paper that “the learning procedure, in its current 
form, is not a plausible model of learning in brains. However, …it 
is worth looking for more biologically plausible ways of doing 
gradient descent in neural networks.”

The studies in DNNs were initiated by the heuristic ideas: 
parallel distributed processing (PDP), and stochastic computing, 
for example, Boltzmann machine. Although its initial step began 
early in 1980s, it did not shoot a flash in scientific society until 
Alex-Net won image competition in 2012. Alex-Net was 
composed of 650,000 artificial neural units, consisted five 
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convolutional layers, some of which were followed by max-pooling 
layers and three fully connected layers with a final 1,000 ways to 
output the results. It successfully recognized and classified 1.2 
million high-resolution images by 60 million parameters in the 
ILSVRC-2012 competition (Krizhevsky et al., 2012). Recently, a 
deep CNN based Kaggle network won the contest to recognize 
real-time facial expression in the 5th ICEEICT (Sultana 
et al., 2021).

Beside the multiple hidden layers of network, a number of 
new algorithm has given DNNs a strong support, for example, 
convolutional algorithm, wavelet, and principal component 
analysis (PCA), increased high accuracy of feature extracting and 
pattern classification. The roles of traditional shallow models in 
pattern recognition had been changed in recent years, because of 
deep CNNs with strong learning ability—the deep learning-based 
object detection. The situation is based on some premises, such as 
the database of large scale networks had been accumulated during 
Image Net twice competitions in LSVRC-2010 and LSVRC-2012 
(Deng et  al., 2009); CNNs for speech recognition had been 
reported (Hinton et  al., 2012); a design of regions with CNN 
features was successively applied (Girshick et al., 2014). In short, 
CNNs can learn object representations without the need to design 
features manually and can straightforwardly process visual or 
auditory complex objects without object dividing or component 
extracting. The deep learning-based object detection models and 
algorithms, covering different application domains, had been 
reviewed in detail (LeCun et al., 2015; Zhao et al., 2019; Naveen 
and Sparvathi, 2022). It is possible for the progress in studies of 
machine deep learning to promote ANNs serving social life and 
economic development. But there are many mysteries opening 
with regard to how does the CNNs learn the ability. The answer is 
that BP learning procedure trains CNNs approximating the 
desired output by the mechanism of error-backpropagation 
(Lillicrap et al., 2020). But the article did not make sure that the 
same mechanism exists also in the biological brain. They cited a 
number of references which belong to the studies in either 
neuroanatomy or neurophysiology, missing the dada in studies of 
neurobiology or oscillatory encoding. For example, the theory of 
oscillatory encoding claims that information communication 
between brain areas might be  implemented by the dynamic 
synchronization of different rhythmic activities among neural 
networks. GABA inter-neurons by their inhibition lock up 
pyramidal neurons coupling with a network oscillation, then 
Neurogliaform cells (NGFCs) dynamically decouple neuronal 
synchrony between brain areas (Sakalar et  al., 2022). It is 
interesting that action potentials of NGFCs decoupled pyramidal 
cell activity from cortical gamma oscillations but did not reduce 
their firing nor affect local oscillations. Thus, NGFCs regulate 
information transfer by temporarily disengaging the synchrony 
without decreasing the activity of communicating networks. Such 
attribute of NGFCs in biological brain seems to be  alike of 
backpropagation in ANNs or CNNs, it regulates error gradient in 
weight-space by implicit feedback fashion, but does not disturb 
feedforward information transfer of ANNs. The result in 

comparison of the functional fashion between cortical NGFCs 
and backpropagation in ANNs supports the idea that mechanism 
of implicit backpropagation exists in both biological brain 
and ANNs.

Despite the great progress in ANNs, DNNs, and CNNs, as well 
as their rapid spread throughout the world, their weaknesses 
sometimes spoiled their reputation by spontaneously generating 
adverse effects, leading to some strange results. Fortunately, this 
phenomenon has already been solved. In addition, the many 
neural units and large parameters required by a deep neural 
network created a somewhat complicated problem because they 
not only wasted energy but also prevented the application of 
DNNs to pragmatic problems. Spiking neural networks have an 
advantage in decreasing both the unit numbers and energy needed 
(Figure 1).

The third generation of ANNs: Spiking 
neural networks

1,2-G networks are composed of a deterministic system in 
which information transmission is determined by presynaptic and 
postsynaptic factors. Neurobiological achievements in three 
research fields, studies on the ion channel conductance of the 
neuronal membrane (Williams, 2004), studies on the probability 
of transmitter release from the presynaptic membrane (Tsodyks 
and Markram, 1997; Branco and Staras, 2009; Borst, 2010), and 
studies on spike timing-dependent plasticity (STDP; Song et al., 
2000; Nimchinsky et al., 2002; Zucker and Regehr, 2002; Caporale 
and Dan, 2008; Losonczy et al., 2008; Spruston, 2008; Jia et al., 
2010; Mark et al., 2017), produced a new conception of synaptic 
transmission and have attracted many experts to explore temporal 
coincidence (Montague and Sejnowski, 1994; Sejnowski, 1995; 
Markram et  al., 1997; Roelfsema et  al., 1997), noise sources 
(Maass, 1997; Roberts, 1999; Hopfield and Brody, 2004; Buesing 
and Maass, 2010; McDonnell and Ward, 2011), spiking neural 
networks (SNNs) and stochastic computing (Silver, 2010; 
Hamilton et al., 2014; Maass, 2014; Maass, 2015; Tavanaei and 
Maida, 2017) since the 1990s.

Such as showing in Figure  2, there are three categories of 
neuronal encoding: rate encoding, paired pulses ratio (PPR) 
encoding and spike-time encoding. Rate encoding has been adopted 
to present neuronal exciting level since 1930s, PPR encoding and 
spike-time encoding are discussed in the field of neurophysiology 
during 1990s. PPR encoding has been usually used to classify the 
neurons, Spike-time encoding employs the lengths of inter-spike 
intervals (Δt) to encode and transmit information (Sejnowski, 1995; 
Song et al., 2000; Nimchinsky et al., 2002; Zucker and Regehr, 2002; 
Caporale and Dan, 2008; Losonczy et al., 2008; Spruston, 2008; Jia 
et  al., 2010; Mark et  al., 2017). SNNs comprise neuromorphic 
devices in which information transmitted by more than three 
factors is constrained. Dendrites, as the third factor, are added to 
pre- and post-synaptic components, and any synaptic state is 
constrained by the locally surrounding patch of postsynaptic 
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membrane, which contains hundreds of synapses. The pulses with 
the shortest Δt are identified as getting qualify to play a role in 
information transmission.

Spike neural networks are closer to the biological brain than 
1,2-G networks are. SNNs do not need many units in the network 
architecture and save energy in contrast to DNNs. However, 

FIGURE 1

The linear dividing of OR function (left) and nonlinear partition of XOR function (right). XOR function is a propositional logic corresponding to OR 
function. As showing in the left plot, the results of OR function can be divided into two parts by a statistical dividing line, because the result is false 
(−) at the left side (blue point) of the dividing line, so long as two variable × 1 and × 2 are false (0,0); the results under the other 3 conditioning (0,1; 
1,0; 1,1) are true (+, red points) at the up side of the line. The right plot shows nonlinear partition surface of XOR function. The results of XOR 
function are inside a surface (red points) by a closed curve, as the conditioning variable is, respectively, true (+,+) or false (−,–); the other two 
results (blue points) are outside of the partition surface, during the conditioning variable is, respectively, as −1, 1 or 1, −1.

A B

FIGURE 2

Three categories of neuronal encoding A. Rate encoding by the firing frequency of a neuron, demonstrating approximately 150, 300, and 
450 Hz induced by different stimulus strength in plot a (modified from Eccles, 1953) B. Paired-Pulse Ratio encoding (PPR) and spike-time 
encoding are implemented, respectively, by the ratio of amplitude B to A or Δt of spike-timing in plot b [modified from Zucker and Regehr, 
2002 by permission].

https://doi.org/10.3389/fpsyg.2022.970214
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Shao and Shen 10.3389/fpsyg.2022.970214

Frontiers in Psychology 05 frontiersin.org

training SNNs remains a challenge because spike training requires 
discrete signals without differentiability, and the backpropagation 
algorithm cannot be directly used, as in DNNs. Recently, deep 
learning in SNNs has been reviewed in detail (Tavanaei and 
Maida, 2017), and a hybrid platform has been implemented by 
integrating DNNs with SNNs (Pei et al., 2019).

Theoretical weakness: From the energy 
function to the cost function

For brain-inspired ANNs, what is the dynamic source that 
drives state changes? Hopfield already answered this question with 
the energy function of the spin glass model, a solid-state physics 
model (Hopfield, 1982; Hopfield, 1984). Every unit of the system 
is a uniform attractor, and each unit’s orientation and position are 
statistically determined by the attractor’s surface energy and the 
interaction competition among attractors in the system state 
space. The energy is the dynamic source of the system and will 
trend toward global or local energy minimization. The system will 
reach the stationary state or convergent point when the energy 
function reaches its minimum. The spin-glass model is too far 
from the energy metabolism of the biological brain. Brain neurons 
are polymorphic, and their morphologic appearance and location 
in the brain are determined by phylogenetic evolution and 
ontogenetic processes rather than being uniform and stochastically 
allocated. Brain energy metabolism usually occurs at the basic 
metabolic level during an organism’s calm state, but it changes to 
global imbalance and the highest local level with cognitive activity. 
Therefore, the theoretical attractiveness of the energy function has 
decayed since the 1990s.

The concept of the cost function or loss function has recently 
been regarded as the dynamic basis of ANNs (Marblestone et al., 
2016; Scholte et al., 2018; Richards and Lillicrap, 2019), but the 
definition differs among different references, for example, “The 
idea of cost functions means that neurons in a brain area can 
somehow change their properties, e.g., the properties of their 
synapses, so that they get better at doing whatever the cost 
function defines as their role”; “A cost function maps a set of 
observable variables to a real value representing the ‘loss’ of the 
system”; “A cost function is defined as the composition of 
mathematical operations, e.g., mean squared error”; “A loss 
function provides a metric for the performance of an agent on 
some learning task. In a neural circuit, loss functions are functions 
of synaptic strength”; and “Cost is the partial derivative of the 
error with respect to the weight.”

All of these definitions and terms are from mathematics or 
ANN, with very few neuroscientific or psychological implications. 
How can the cost function be understood by neuroscientists and 
psychologists? The brain-inspired ANN is an interdisciplinary 
field, and the main theoretical conceptions should include 
neuroscientific and psychological implications, at least in terms of 
brain physiology. Cost, error, weight, partial derivative, 
mathematical operations, the credit assignment problem, etc.; how 
many of these come from system neuroscience, integrative 

neurophysiology or cognitive psychology? As a primitive and 
basic conception of ANNs is far from the implications of the 
biological or human brain, it is difficult to establish an 
interdisciplinary field. Let us review the corresponding 
conceptions in neuroscience and psychology.

There are different models of energy supply for different brain 
structure. Large amount of parallel neural fiber in cerebellar did 
not put on its myelin coat, its energy supply comes only from its 
cell body; but the neural fiber from cerebrum can get additional 
energy supply from myelin (neuroglia cell). BOLD signals 
represent hemoglobin-responsive changes in local brain blood 
microcircuits or neuroglia assemblies, because hemoglobin 
cannot directly reach any neuron. Each neuron in the neocortex 
has 3.72 glial cells, and each Purkinje cell (PC) in the cerebellum 
has only 0.23 glia cells (Azevedo et  al., 2009). In fact, energy 
supply in brain is, respectively, implemented by area, lamina, 
column. We suggest that the energy supply in ANNs needs to 
be improved, so that the energy consumption will be saved.

Information processing in the 
brain

Although the conception of information processing did not 
appear until the 1940s, brain anatomy and neurophysiology had 
already become important by the end of the 19th century. Through 
study of the anatomy of the nervous system, scientists had 
mastered the knowledge of sensory-motor pathways and the 
visceral autonomic nervous system as well as brain functional 
localization. The classical neurophysiological theory, in which the 
brain was regarded as a reflex organ, was founded at the beginning 
of the 20th century. By the mid-20th century, the brain was 
regarded as an information-processing organ since 
electrophysiological techniques provided scientific evidence of 
neuron firing and postsynaptic potentials (PSPs) in the 1930s–
1960s. The brain is now considered an organ in which both neural 
and genetic information are processed; that is, the brain’s long-
term memory is the result of a dialog between synapse and gene 
(Kandel, 2001). In recent years, transcriptomic expression has 
been used to classify the cell types of neuron distribution in the 
neocortex (Kim et al., 2017; Boldog et al., 2018). The concept of 
neural information processing is understood from four 
perspectives: the principle of the simultaneous existence of digital 
encoding and analog encoding, the principle of the simultaneous 
existence of multiple processing processes and multiple 
information streams, the principle of circular permutation and 
coupling between electrical transmission and biochemical 
transmission in the processing of neural information, and the 
principle of relevance between neural and genetic information 
(Shen, 2017). Therefore, neural information processing is more 
complicated than any communication information or industry 
information. Of course, the brain-simulated parameters must 
be simplified to build an ANN model, but the primitive unit, the 
network architecture, and the operational dynamics should 
approximate the biological brain.
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Two types of primitive unit vs. an uniform 
excitatory unit

A series of discoveries in studies of the spinal reflex at the 
beginning of the 20th century, such as spatial and temporal 
summation, convergence, divergence, fraction, synaptic 
retardation, final common path, and reciprocal innervation, 
accounted for the interaction between excitatory and inhibitory 
processes (Sherrington, 1906). In particular, the conditioned reflex 
theory emphasized internal inhibition as a function of the cerebral 
hemispheres (Pavlov, 1927). Inhibitory neurons were not found 
until electrophysiological techniques and electro-microscopy were 
used. A model of the soma and large dendritic fields of a cat’s 
spinal motor neurons was published, showing that any nerve cell 
is encrusted with hundreds of thousands of synapses, with a mean 
diameter of approximately 1.0 μm (Haggar and Barr, 1950). Even 
when six different synaptic appearances were demonstrated, 
synaptic features could not credibly be  used to discriminate 
whether a synapse is excitatory or inhibitory (Whittaker and Gray, 
1962). The features of inhibitory synapses were judged by 
inhibitory postsynaptic potentials (IPSPs), and many more 
feedforward inhibitions, such as presynaptic inhibition and 
collateral inhibition, were found in brain networks, including the 
cerebral cortex, cerebellar cortex, and hippocampus (Eccles et al., 
1954; Eccles, 1964).

Studies in brain chemical pathways in the 1960s–1970s found 
several categories of inhibitory neurons on the basis of their 
released transmitter molecules, such as gamma aminobutyric 
acid (GABA), glycine, and serotonin, and found that the 
inhibitory neurons in the neocortex are composed mainly of 
GABAergic neurons. The neurons in the neocortex can be divided 
into two categories: interneurons, which make local connections, 
and projection neurons, which extend axons to distant intra-
cortical, sub-cortical and sub-cerebral targets. Projection neurons 
are excitatory, synthesizing glutamatergic transmitters with a 
typical pyramidal morphology that transmit information 
between different regions of the neocortex and to other regions 
of the brain (Paredes et  al., 2016; Cadwell et  al., 2019). 
Molecular neurobiology using transcriptomic techniques 
investigates the stereotyped distributions of mainly inhibitory 
cells in the brain and classifies three classes of inhibitory neurons: 
parvalbumin-positive interneurons (PV+ neurons), somatostatin-
positive interneurons (SST+ neurons) and vasoactive intestinal 
polypeptide-positive interneurons (VIP+ neurons; Kim et  al., 
2017). Recently, the biological marker for GABAergic neurons in 
immunocytochemistry and molecular neurobiology has enabled 
direct classification into three categories: excitatory, inhibitory 
and non-neuronal cells, such as glial cells. By this method, a 
group of human interneurons with anatomical features in 
neocortical layer 1, with large ‘rosehip’-like axonal button and 
compact arborization (Boldog et al., 2018), was discriminated 
that had never been described in rodents.

Studies in GABAergic neurons found that the proportion of 
GABAergic neurons is approximately 15% of the population of all 

cortical areas in rats, whereas in the primates, the proportion 
reaches 20% in the visual cortex and 25% in the other cortex. The 
numbers of inhibitory interneurons have increased during 
phylogenetic evolution along with the appearance of unique 
interneuron subtypes in humans (Wonders and Anderson, 2006; 
Petanjek et al., 2008). In contrast to the prenatal development of 
excitatory neurons in the human cortex, interneuron production, 
at least in the frontal lobe, extends through 7 months after birth. 
GABA concentrations in the occipital cortex of adult subjects, as 
measured by magnetic resonance spectroscopy, are relatively stable 
over periods as long as 7 months(Near et al., 2014). In evolutionary 
history, the cortical projection neurons derive from the dorsal 
(pallial) telencephalon and migrate radially into the cortical mantle 
zone; the interneurons generated in the sub-pallium migrate 
tangentially across areal boundaries of the developing cerebral 
cortex into the overlying cortex (Mrzljak et al., 1992; Petanjek et al., 
2009). The inhibition shapes cortical activity, and inhibitory rather 
than excitatory connectivity maintains brain functions(Isaacson 
and Scanziani, 2011; Mongillo et al., 2018; Fossati et al., 2019). 
There are large numbers of interneuron types with different 
morphological, electrophysiological, and transcriptomic properties 
in the human neocortex (Wonders and Anderson, 2006; Petanjek 
et al., 2008; Kim et al., 2017; Boldog et al., 2018).

Artificial neural networks have oversimplified the inhibitory 
unit as a supplementary variant of the excitatory process or a 
dependent variant of the activation function. ANN experts claim 
that “inhibition need not be  relayed through a separate set of 
inhibitory units” (Kietzmann et  al., 2019). Actually, “in the 
absence of inhibition, any external input, weak or strong, would 
generate more or less the same one-way pattern, an avalanche of 
excitation involving the whole population” (Buzsaki, 2006).

ANNs might be comprised of different categories of units with 
different connecting strength with their target units by different 
weight shift range 0–1 or 0–(−1). As a result, there are two types 
of primitive unit: excitatory and inhibitory unit. Each categories 
of units will be  further divided into different types by their 
threshold activated in different encoding, for example, sensitivity 
to spike timing: the lower sensitivity(Δt < 10 ms) or the higher 
sensitivity(Δt < 6 ms). Also the unit types can be classified by pulse 
frequency to be evoked or by PPR standard.

Hierarchical small-world architecture 
with a circular vs. a uniform feedforward 
network

The structural basis of the brain and spinal reflex is the 
reflex arc that comprises afferent, efferent and neural centers. 
The dual neural processes—the excitatory and inhibitory 
processes—run in two directions in the reflex arc: along a 
centripetal pathway from the sensory organs, reaching the 
corresponding brain sensory center, and along a centrifugal 
pathway returning from the brain to the peripheral effectors. 
The small-world network comprises a few components, and 
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each component contains a few constituent parts. The 
biological reflex arc comprises three components, and each 
component contains 3–5 neurons, for example, a monkey’s 
food-fetch reflex pathway (Thorpe and Fabre-Thorpe, 2001). 
The centripetal pathway is an input or afferent component that 
comprises three neurons from the retina, lateral geniculate 
body to primary visual cortex (V1), producing visual sense 
about the stimuli; the bottom-up stream is a perceptual 
mechanism from V1 to the anterior inferior temporal gyrus, 
producing visual perception by the ventral visual pathway; the 
prefrontal cortex to the premotor area of the cortex formats the 
decision-making mechanism; and the centrifugal pathway is 
the efferent or output component of the motor cortex (MC) to 
the spinal cord and finger muscles. In short word, the food-
fetch reflex is not only implemented by 4 hierarchical networks 
with small-world architecture, but also there are many 
inhibitory modulating mechanisms: a self-feedback loop, the 
extrapyramidal system, the descending nonspecific reticular 
system and the cerebellum. The classical specific brain 
pathways are small-world architectures that have both the 
attributes of random rewiring and regular local organization; 
their synaptic path lengths are both the shortest for random 
networks and the longest for local networks (Watts and 
Strogatz, 1998; Buzsaki, 2006). Therefore, the efficiency of brain 
networks is excellent, with both high-speed information 
processing and saving of network sources.

On the contrary, DNNs are one-way feedforward networks 
and usually comprise an input layer, hidden layers, and an 
output layer in which the highest layer does not to 
be discriminated, and all units are uniform at the initial state 
or before the training period. The information stream moves 
in a feedforward or downward manner from the input layer to 
the output layer. Sometimes, the convolutional algorithm is 
implemented in all input sets, the hidden layer is comprised 
more than tens of layers, and whole connections among all 
units are implemented in layers.

Therefore, we suggest that the network architecture in ANNs 
need to be improved. As a commenter on an early version of this 
manuscript noted: “Current ANNs largely ignore anatomical 
organizations: topographic mapping, precise wiring between brain 
areas, layers, and cell types. This specific wiring bestows huge 
computational power with minimal request of energy 
consumption. For example, the wiring of the olfactory system is 
very different from that of the visual system. Similarly, the wiring 
of the sensory system differs drastically from that of the 
motor system.”

Biofeedback everywhere vs. only error 
backpropagation

The nervous system is a typical servo system with many 
biofeedback mechanisms that exist everywhere in brain networks 
but are not like error backpropagation in ANNs. Biofeedback can 

be found in reflex arcs, synapses, dendrites, axons, presynaptic 
membranes, biochemical transmission, etc. In the centrifugal 
pathway, recurrent inhibition in spinal networks is usually 
mediated by another inhibitory neuron, for example, Renshaw 
cells or their gamma loop between alpha and gamma motor 
neurons in the spinal reflex arc (Eccles, 1973, 1989). In the 
sensory-perceptual system, neural information is transformed 
along the centripetal pathway to the primary area of the sensory 
cortex, and the bottom-up information stream reaches the highest 
area of the perceptual cortex. In addition, there are many 
feedbacks or top-down streams from the highest perceptual or 
memory areas, and there are concurrent thalamus-cortical 
connections among the thalamus-cortical layer IV-cortical layer 
VI-thalamus (Kamigaki, 2019; Egger et  al., 2020). This 
phenomenon is not consistent with the cognitive model rule that 
a unit can be connected to a unit in a higher layer or to a unit in 
the same layer but not to a unit in a lower layer (Feldman and 
Ballard, 1982; Cummins and Cummins, 2000). Recently, some 
new facts have been reported, such as dual whole-cell recordings 
from pyramidal cells in layer V of the rat somatosensory cortex, 
revealing an important mechanism for controlling cortical 
inhibition and mediating slow recurrent inhibition by SST+ 
neurons (Deng et al., 2020). In sensory experience and perceptual 
learning, input from the higher-order thalamus increases the 
activity of VP+ neurons and VIP+ neurons and decreases the 
activity of SST+ neurons, resulting in the disinhibition of 
pyramidal cells in the sensory cortex and the LTP effect. 
Contextual feedback from the higher-order thalamus is helpful in 
processing first-order sensory information (Williams and 
Holtmaat, 2019).

In the mechanism of biochemical transmission of neural 
information, the re-take-up and auto-receptor protein in the 
presynaptic membrane receives or reabsorbs its released 
transmitter. Reverse messengers such as NO and CO molecules 
released by postsynaptic neurons can quickly suppress the 
transmitter release of presynaptic neurons.

Sum up in a word, we hope that the feedback or recurrent 
inhibition should be set in everywhere of the whole networks, 
instead of only error backpropagation.

The multiple learning mechanisms vs. a 
uniform weight switch

The fixed reflex arc in the biological brain was established by 
phylogenetic evolution and provides a basis of unconditioned 
reflex; temporary connections between neural centers are the basis 
of the conditioned reflex. How can the temporary connection 
be  established by training or experience? The unconditioned 
stimulus (US), for example, food, water or a sexual partner, 
induces a stronger excitatory process in the corresponding brain 
center; the conditioning stimulus (CS) at first is an unrelated 
neutral stimulus that usually induces a weaker excitatory process 
in the corresponding brain center. Temporary connection is the 
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result of the attraction of a stronger center to a weaker center 
(Pavlov, 1927). Therefore, the CS must be presented first, and the 
US must follow in an interval of less than a couple of seconds. The 
conditioned reflex has been called classical conditioning as the 
physiological basis of unsupervised learning, in which increased 
connectionist strength takes place mainly among the neurons in 
the cerebral cortex. For supervised learning, a goal or a standard 
as the supervisor must be set in advance. The response should 
be aimed at an exact goal with a quick reaction time or with the 
refined skill that demands the inhibited actions. The neural 
connection between the cerebrum and cerebellum is the neural 
basis of supervised learning. The short−/long-term plasticity of 
the synapse in the sensory-perceptual neocortex is the basis of 
perceptual learning.

The causal role of learning is the coincidence in the tempo-
spatial space between stimuli, inducing changes in synaptic 
plasticity. The temporal-difference learning algorithm has been 
tested, and an essential process in learning and memory is the 
transformation between spatiotemporal information in the brain 
(Fitzsimonds and Poo, 1998; Bil and Poo, 2001).

Two kinds of synapses were identified as the cellular 
mechanism of animal learning in the 1980s, while the biochemical 
mechanism of learning has been recognized as the molecular 
configuration of protein: NMDA-receptor protein and adenylate 
cyclase (Abrams and Kandel, 1988). Two kinds of synapses infer 
an activity-dependent synapse and a reinforcement synapse 
between pre- and post-synaptic components. The activity-
dependent synapse takes place between two presynaptic 
components, and the facilitated component then acts on the third 
postsynaptic neuron, providing the conditioned response (CR). 
The reinforcement/rewarding synapse brings about the excitatory 
process in postsynaptic neuron, while the CS and US signals are 
transferred on the postsynaptic neuron that is facilitated by the 
two presynaptic components.

Artificial neural networks does not change their 
methodological or simulating strategy for machine learning, 
although a part of researchers in ANNs field has accepted the 
hypothesis on three types of learning (Doya, 2000). There is 
difficult for them to processing the differences among different 
types of learning. We  suggest to regulate, respectively, the 
mode of energy supply for different learning network. The key 
neurons of supervised learning are Purkinje cells in cerebellar, 
each cell with a rich dendritic tree in a plane, and receive 
information from a lot of parallel nerve fibers uncovered 
myelin coat. The nerve fibers do not require additional energy 
supply from neuroglia cell (myelin coat). The electric source 
should be a stable lower power for supervised leaning circuit; 
on the contrary to the ANN circuit for the unsupervised 
learning. The electric source of the circuit should be a little 
higher power and can be quickly changed in a range, because 
pyramidal neuron in neocortex with a long axon and axonal 
tree in 3-diminssion space. Each pyramidal neuron has about 
4 glial cells who work as both a myelin and additional energy 
supplier during the process of transmitting neural pulses.

Uniquely executive control mechanism 
vs. programing action command

So fa, there are 3–4 theories on the executive control 
mechanism in psychology: the unity and diversity model (Miyake 
et al., 2000), functional network of prefrontal cortex (Miller and 
Cohen, 2001) and the distributed executive control (van den 
Heuvell and Sporns, 2013). The unity and diversity model is also 
called “three factor model of update, inhibition and shifting or 
cognitive flexibility,” because the executive control is defined as the 
cognitive behavior containing updating of working memory, 
inhibition of unnecessary actions and frequently changing 
situating demand.

The executive control behavior is required to have mid-grade 
of inter-correlation among three experimental indices, so that it 
presents both the independent and common property of the 
behavior (Miyake et al., 2000). According to updating of working 
memory, subject is demanded to say the picture name which is 
demonstrated in the last one of a sequence of 60 pictures, but the 
sequence will be stopped randomly from time to time. So, the 
subject has to update his or her working memory without stopping 
during the process of the sequence running. Inhibition infers to 
eliminate the interfere for the performance running or inhibits 
undesired responses. Stroop color words interfere paradigm is 
usually adopted. A “blue” word written by red color and a “red” 
word written by blue color are inconsistent interfere items, the 
subjects are demanded to press a button according semantic blue, 
inhibiting the response to blue color. Shifting or cognitive 
flexibility confers that the experimental task will be randomly 
changed. For example, 2 digits are successively displayed on a 
screen, then the computational demand is shown either plus 
or minus.

The experimental models may not completely present human 
social intelligence. For example, Chinese proverb “show 
resourcefulness in an emergency” or “turned on by danger” means 
that working memory can reproduce a creative idea, during 
dangerous situation.

The small-world architecture may not be available for the 
social intelligence of the prefrontal cortex, even though it is 
important for brain network of basically cognitive process. A 
single cell axon tree of pyramidal neuron has been shown with 
thick interlaces and even with 60 thousand branches (Buzsaki, 
2006; Boldog et  al., 2018). The prefrontal cortex is the core 
structure to collect different information from other brain areas 
and efficiently processing the complicate information as well as 
controlling the related behavior. A lot of evidence from monkey 
and patients with brain injury demonstrates that prefrontal cortex 
contains different switches to control proactive, retroactive 
behavior (Hikosaka and Isoda, 2010), many local microcircuits to 
play a role in cognitive flexibility or shifting, and salience network 
to regulate interchanging between default mode network and 
central executive network (Tang et al., 2012; Goulden et al., 2014; 
Satpute and Lindquist, 2019). The network hubs in the human 
brain has been reported by the distributed executive control 
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theory(van den Heuvell and Sporns, 2013), the network hubs are 
different from the other brain structures, there are the compact 
white matter in macroscopy and finely structured nerve fiber with 
high density spinous process in microscopy. It is the structure 
with the qualify to implement integrating information and 
controlling behavior. To date, the axon trees and their 
microcircuits as well as long-range output connectionist pathways 
in the prefrontal cortex has been believed to be the prerequisite 
of executive control ability. Especially, medial prefrontal cortex 
(mPFC) contains much more GABA-inhibitory neuron that 
collect a lot of information from the other neurons, such as Ach 
neuron in anterior brain, 5-serotonin neuron in thalamus, 
sensory cortex, and limbic-hippocampus system as well as 
memory system (Jayachandran et al., 2019; Nakajima et al., 2019; 
Ren et al., 2019; Sun et al., 2019; Weitz et al., 2019; Onorato et al., 
2020). There are uniquely two kinds of neuron in PFC and mPFC: 
GABA-ergic chandelier cells (ChaCs) and von Economo 
neurons(VENs). ChCs are the only interneuron subtype that 
selectively innervates the axon initial segment of pyramidal 
neurons in frontal cortex (Tai et al., 2019); there are the higher 
density of VENs in the elderly above 80 year old with higher 
intelligence (DeFilepe et  al., 2002; Evrard, 2018; Gefen 
et al., 2018).

The programing behavior sequences written by program 
editor cooperate robots, even though a guiding robot can 
performances the act of etiquette and answers question from 
customer. There are not creative idea or contingency approaches. 
That an auto drive bicycle runs on the street and avoids obstacles 
presents only human’s sensory-perception-motor ability but not 
general intelligence.

Intelligence is a 
neuro-computational system

Intelligence was regarded as the ability to compute discrete 
physical symbols when artificial intelligence was founded in 1956; 
PDP was regarded as neural computation when the second 
generation of ANNs was propagated in 1986. Here, intelligence 
might be a compound of multiple computing processes rather than 
any single computing process. Intelligence is a neuro-computational 
system, containing the following computations: deterministic 
computation, stochastic computation, chaotic computation, and 
the other computation can be implemented by the human brain.

Deterministic computation

Neuronal excitation is represented by the rate encoding of its 
discharge, while the postsynaptic potentials implement analog 
computation by amplitude modulation. The computation involved 
in combining digital and analog computing composes a deterministic 
system. The general intelligence is implemented by the classical 
specific nervous system, mainly through deterministic computation.

Population sparse encoding
The human brain comprises 1011 cells (approximately 160 

billion), and the cerebral cortex comprises 82% of the total brain 
mass; however, only 19% of all neurons are located in the cerebral 
cortex, which is mainly responsible for intelligence (Azevedo 
et al., 2009). Each brain function is implemented only by a part of 
the neurons; therefore, the human brain implements most 
intelligent activities by population sparse encoding.

Oscillatory encoding
Spontaneous oscillatory encoding is a prerequisite of normal 

brain function because it provides optimal arousal or vigilance 
under the mechanism of the nonspecific reticular system.

Infra-slow oscillation
The spontaneous fluctuation in brain BOLD signals with 

infra-slow oscillation <0.1 Hz concerns not only the default mode 
networks(DMN) but also the cerebellum and salience network 
(Raichle et al., 2001; Hikosaka and Isoda, 2010; Raichle, 2010, 
2015), which remain to be investigated further. ISA is a distinct 
neurophysiological process that reflects BOLD signals in fMRI, 
and its spatiotemporal trajectories are state dependent (wake 
versus anesthesia) and distinct from trajectories in delta (1–4 Hz) 
activity with the electrical property (Tang et al., 2012; Goulden 
et al., 2014; Satpute and Lindquist, 2019).

Stochastic computation

Spike time encoding
Even though the principal neurons in the classical specific 

nervous system have many dendritic branches and an obvious 
laminar distribution, their axon has only a few buttons, usually 
fewer than 15–20 (Branco and Staras, 2009; Borst, 2010; Silver, 
2010). The neurons seem to meet the spike time encoding by their 
dendrites as the third factor in synaptic transmission (Borst, 2010; 
Scholte et al., 2018).

Stochastic encoding
Apart from dendritic algorism as the third factor of synaptic 

transmission, there are more factors that make up pyramidal neurons 
as a completely stochastic computational component: dendritic tree, 
axonal tree, laminar distributing effect, interlaced microcircuit 
interaction, stochastic noise and short-term synaptic plasticity. The 
multiple factors form hundreds of micrometers of interneuron space 
to assemble microcircuits (Bil and Poo, 2001; Fossati et al., 2019).

Chaotic computation

Chaotic computation is the field of “the qualitative study of 
unstable aperiodic behavior in deterministic dynamical systems.” 
A chaos system has three essential properties: it must 
be  dramatically sensitive to initial conditions, with highly 
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disordered behavior, and obey some laws that completely describe 
its motion. There are three computational indices (Faure and 
Korn, 2001; Tsuda, 2015; Chao et  al., 2018; Sathiyadevi et  al., 
2019): Lyapunov exponent (λ), Kolmogorov-Sinai entropy (K), 
and strange attractors. λ is positive if the motion is chaotic; λ 
equals zero if the two trajectories are separate; λ is a constant 
amount if the trajectories are periodic. K equals zero if the system 
is periodic, whereas if it increases without interruption, the system 
is stochastic, or it increases to a constant value if the system is 
chaotic. Strange attractors are fractal objects, and their geometry 
is invariant against changes in scale or size.

Adaptive computation

Adaptive computation is a category of biological computation 
formatted in biological evolution. An individual changes him- or 
her-self to meet context-dependent multitask demands.

Adaptive encoding
The prefrontal cortex coordinates cognition, emotion, 

interpersonal communication, coping with situations, and other 
complicated mental activities. Adaptive encoding is an algorithmic 
principle that meets multiple demands for making decisions, 
planning, monitoring, error finding and revising in a wide range 
of tasks and successfully implements goal-directed behavior. The 
encoding feature is expressed mainly in context-dependent 
computation with chronometric and dynamic adaptation. Its 
algorithm is multivariate pattern analysis and multi-voxel pattern 
analysis via principal component analysis.

The emergent computation: A unique 
basis of human intelligence

Emergent computation is not completely new but has new 
implications. “Emergent collective computational abilities” 
appeared in a paper title in Hopfield (1982). In the article, the 
emergent computation refers to a functional model of creative 
intelligence in the human brain that has higher energy efficiency 
or uses less energy to obtain a stronger effect in nervous 
information processing.

Although dynamic coding (Stokes et  al., 2013), abstract 
quantitative rules (Eiselt and Nieder, 2013), context-dependent 
computation (Mante et  al., 2013), mixed selectivity (Rigotti 
et  al., 2013), content-specific codes (Uluç et  al., 2018) 
reconfiguration of responses (Jackson and Woolgar, 2018), 
situational processing (Lieberman et al., 2019), and so on have 
been reported, adaptive encoding cannot cover the crucial 
property of human social intelligence—creativity. Human beings 
not only adapt passively to situations but also actively create 
human society and themselves (Eccles, 1989; MacLean et al., 
2014; MacLean, 2016). Therefore, a new mathematical 
computation that represents actively unique creativity in natural 

and social environments has existed in the human brain for 
more than ten thousand years. It might represent the 
emergent computation.

The efficiency of brain energy cost interchange for the amount 
of information processing, the partial derivative of the amount of 
information with respect to energy cost, might be  a basic 
parameter of brain evolution and brain function. A new concept 
of emergent computing based on the efficiency of brain 
information processing is suggested as an approach to 
interdisciplinary theory.

The first principle of emergent computation is the active or 
initial desire that drives a human to create. The second is higher 
energy efficiency, meaning trade of more information by a lower 
energy cost. The third principle implicates the premise of creative 
intelligence, and the fourth principle encompasses the 
chronometric effect and spatiotemporal conversion effect. Because 
energy metabolism inside the human brain is a slow process 
(second scale), while nervous information changes or external 
environmental changes are usually rapid processes (millisecond 
scale), chronometric mechanisms and spatiotemporal conversion 
are necessary. The fifth principle is recruiting or reusing neurons 
or physical sources. It not only contains multiple encodings but 
also may enable more advanced computation that has not yet been 
identified by the best mathematical authorities. The algorithm of 
emergent computation might be based on answer of 10 questions 
as follows.

Suggestion and the questions to 
be  investigated further

As mentioned above, ANNs, DNNs and CNNs have already 
made much progresses accompanied by some bugs. Except big 
energy consumption and larger number of hardware parts, it is 
very difficult for DNNs to simulate the social intelligence of the 
human brain, even by increasing the number of hidden layers or 
designing complicated input sets. The bug might be in the basically 
theoretical conceptions about the primitive unit, network 
architecture and dynamic principle as well as the basic attributes 
of the human brain.

We have given suggestion to ANNs in the article text, the list 
of suggestion is as follows:

 1. the primitive neural node will be substituted by two types 
of unit: excitatory and inhibitory with different 
connectionist weight and threshold. For example, 
sensitivity to spike timing: the lower sensitivity (Δt < 10 ms) 
or the higher sensitivity (Δt < 6 ms).

 2. The feedback or recurrent inhibition should be  set in 
everywhere of the whole networks, ave. instead of only 
error backpropagation.

 3. topographic mapping, precise wiring between brain areas, 
layers, and cell types. This specific wiring bestows huge 
computational power with minimal request of energy 
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consumption. Small world network principle should 
be absorbed into ANN architecture.

 4. Energy supply in brain is, respectively, implemented by area, 
lamina, column. The energy supply in ANNs needs to 
be improved, so that the energy consumption will be saved. 
Energy supply modes are different in different learning 
types, for example between supervised learning with lower 
energy consumption mainly in cerebellar and unsupervised 
learning with higher energy consumption in cerebral cortex.

 5. the emergent computation as a basis of cognitive science 
substitutes “PDP-neuro-computation.” PDP is just one of 
neuro-computation.

Besides ANNs, the studies in brain simulation along 
biomedical line have already made much progress in recent 
decades. For example, the Blue Brain project simulated large-
scale networks of neocortical micro circuit based on biological 
brain data, including morphological and electrophysiological 
properties as well as cell types of bioactive molecule expression 
(Markram et al., 2015). A reconstructed virtual brain slice was 
made up. The meso-circuit was 230 mm thick, containing a total 
of 139,834 neurons. The virtual slice reproduced oscillatory 
bursts (1 Hz) and displayed a spectrum of activity states. In 
addition, the project provided a neocortical model with 
0.29 ± 0.01 mm3 containing 31,000 neurons, 55 layer-specific 
morphological neurons. But, the results are unsatisfactory, 
because there is only 1 Hz bioelectric activity in the simulated 
brain slice showing its alive state. The problem might be that how 
do the much neurons organize together? Apart from laminar and 
column-like architecture, it is necessary to consider the principle 
of small-world organization (Watt and Strogatz1998) that means 
a few neurons compose a microcircuit with a definite basically 
cognitive function, such as sensory-motor circuits. The questions 
are worth to inquire further into:

 1. Except three neuronal encodings: rate, PPR, and spike time 
encoding described in Figures 2, a specifically dendritic 
action potentials (dAPs) has been reported (Gidon et al., 
2020). The pyramidal neuron in II/III layer of neocortex 
has an ability of parting off XOR, because it can reproduce 
dendtric action potentials(dAPs). The dAPs mechanism is 
worth investigating further. How does such a neuron 
implement the computational ability to separate XOR 
function? The task should be finished by a deep neural 
network. So, it might be new neural encoding principle.

 2. Neurogliaform cells (NGFCs) dynamically decouple 
neuronal synchrony between brain areas (Sakalar et al., 
2022), but does neither decrease their own firing nor affect 
local oscillation. Is its function alike with backpropagation 
mechanism in BP learning. In the other words, Does 
NGFCs take a part in implicit information propagation in 
biological brain?

 3. What is the relationship between brain information and 
brain energy during intelligent activity?

 4. What is the relation of energy with computational power? 
Is there any difference in computational principle between 
the neocortex and cerebellum?

 5. How does neuroglia cell perform in cognitive function and 
neural energy supply?

 6. What is the meaning of mental capacity-limited or 
affordable processes for conscious cognitive function from 
the viewpoint of brain energy metabolism?

 7. Is there any unique computation in the human brain 
beyond modern computational mathematics or 
postmodern mathematics?

 8. Is there any other computing principle of the prefrontal 
cortex beyond adaptive encoding?

 9. Is there any other core computing resource of human brain 
for social intelligence in addition to the axon tree with 
long-range networks and local microcircuit-to-microcircuit 
communication in the prefrontal cortex?

 10. Is it possible to build a common theoretical basis of 
cognitive science to promote the interdisciplinary 
development of brain simulation?
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