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Touch represents one of our most important senses throughout life and 

particularly in the context of our social and emotional experiences. In this 

review, we draw on research on touch processing from both animal models 

and humans. Firstly, we  briefly describe the cutaneous touch receptors 

and neural processing of both affective and discriminative touch. We  then 

outline how our sense of touch develops and summarize increasing evidence 

demonstrating how essential early tactile stimulation is for the development 

of brain and behavior, with a particular focus on effects of tactile stimulation 

in infant animals and pediatric massage and Kangaroo care in human infants. 

Next, the potential mechanisms whereby early tactile stimulation influences 

both brain and behavioral development are discussed, focusing on its ability to 

promote neural plasticity changes and brain interhemispheric communication, 

development of social behavior and bonding, and reward sensitivity through 

modulation of growth factor, oxytocin, and opioid signaling. Finally, 

we consider the implications of evidence for atypical responses to touch in 

neurodevelopmental disorders such as autism spectrum disorder and discuss 

existing evidence and future priorities for establishing potential beneficial 

effects of interventions using massage or pharmacological treatments 

targeting oxytocin or other neurochemical systems.
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Introduction

We are exquisitely sensitive to touch and being touched by or touching others in 
consensual contexts is highly pleasurable and of importance for the formation and 
maintenance of social and romantic bonds (Dunbar, 2010; Kreuder et al., 2017). Our ability 
to discriminate between self- and other-administered touch may also play a crucial role in 
developing our sense of self (Cioffi et  al., 2014; Braun et  al., 2018). However, in 
neurodevelopmental disorders, such as autism spectrum disorder (ASD), primarily 
characterized by problems with social communication and interaction and repetitive and 
restrictive behavior, receiving touch is often perceived and experienced as unpleasant or 
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aversive and individuals can have hyper- or hypo-sensitivity to 
other sensory stimulation (Kanner, 1943; Lord et al., 2018). The 
current review aims to synthesize what we  know about how 
affective tactile stimuli are detected and processed, the 
mechanisms whereby they can act to influence brain and 
behavioral development and how these may provide important 
future therapeutic opportunities in neurodevelopmental disorders. 
The review therefore firstly focuses on describing the way touch is 
perceived and processed and then considers its potential role in 
shaping brain and behavioral development, with a particular 
emphasis on the beneficial effects of pediatric massage and 
Kangaroo care in humans. The roles of specific neurochemical 
systems responsive to tactile stimulation in mediating key neural 
plasticity changes and social and cognitive development are then 
discussed, with particular emphasis on a pivotal role for the 
neuropeptide oxytocin. Finally, we discuss possible therapeutic 
effects of touch-based interventions for neurodevelopmental 
disorders such as ASD, Down syndrome, and cerebral palsy.

Touch receptors and neural 
processing

Our sense of touch follows from stimulation of low-threshold 
afferent cutaneous fibers which convey distinct sensory/perceptual 
qualities via projections to different stimulus-specific neurons 
(McGlone et al., 2014; Croy et al., 2022). Touch can engage both fast 
conducting thick myelinated A-β afferents sub-serving touch 
discrimination in terms of pressure, vibration, and texture and thin 
unmyelinated slow-conducting ones including C-touch afferent 
fibers (CT-fibers) sub-serving affective aspects of touch 
(Björnsdotter et al., 2010; McGlone et al., 2012, 2014; Takahashi 
et al., 2015). CT-fibers are primarily present in hairy, as opposed to 
glabrous (palm and plantar foot regions) skin, respond selectively 
to slow, gentle, caress-like mechanical stroking (Ackerley et  al., 
2014; McGlone et  al., 2014), and are associated with perceived 
pleasantness of social affective touch (Essick et al., 2010; Pawling 
et  al., 2017). Activated CT-fibers can also reduce the effects of 
painful stimuli (Liljencrantz et al., 2013; Gursul et al., 2018).

CT-fibers may have evolved to sub-serve a homeostatic, 
protective, and emotional role (Croy et al., 2022; Morrison, 2022) 
and project via the dorsal horn and spino-thalamic tract primarily 
to the posterior insula cortex, whereas A-β fiber projections 
primarily target the somatosensory cortices (Olausson et al., 2002; 
McGlone et al., 2014; Croy et al., 2022). The posterior insular 
cortex plays a critical integrative role between somatosensory 
inputs from the skin and visceral processes as well as from 
nociceptors encoding pain (Morrison, 2022). Stimulation of 
CT-afferents influences the parasympathetic nervous system to 
reduce heart rate and increase heart-rate variability as well as 
reduce pain responses. CT-fiber afferent projections can 
subsequently activate brain reward regions such as the 
orbitofrontal cortex as well as the anterior cingulate and anterior 
insula and the superior temporal sulcus which are indispensable 

for social and affective processing (Olausson et al., 2010; Gordon 
et al., 2013; Björnsdotter et al., 2014; Croy et al., 2016; Morrison, 
2016; Li et al., 2019). Not only do these regions respond to actual 
experience of touch but also when it is observed or imagined, with 
many being part of the brain “mirror” neuron system (Meltzoff 
et al., 2017; Chivukula et al., 2021).

Touch processing has both bottom-up and top-down 
components, with the latter contributing to modulation of 
responses to interpersonal touch. Thus, the same pattern of slow 
stroking of the skin can be perceived as more or less pleasant 
dependent upon who is delivering the touch (Scheele et al., 2014). 
Even young infants can show different parasympathetic responses 
to the same CT-fiber optimal touch by a stranger as opposed to 
their mother (Aguirre et al., 2019). These top-down processes 
involve frontal networks processing social salience, such as the 
cingulate and insula cortices which influence the ability of 
CT-fiber directed touch to activate brain reward systems (Scheele 
et al., 2014), and may also reflect cognitive contributions resulting 
from cross-hemispheric processing of touch stimuli. Thus, 
reinforcement learning about the salience of individuals who do 
the touching for social and calming purposes plays an important 
role in determining social touch preferences and forming 
social bonds.

Brain and behavioral development 
and the influence of tactile 
stimulation

The somatosensory system is the first sensory system to 
develop prenatally, starting around 7–8 weeks of pregnancy, and 
is fully developed apart from some brain regions, such as the 
insula (Slater et  al., 2006; Jönsson et al., 2018) and superior 
temporal sulcus (Miguel et  al., 2019) involved in social 
cognition, by 32 weeks. Babies have a fine covering of soft 
“Lanugo” hair which grows from 17 to 26 weeks of gestation and 
may promote sensitivity to affective touch through activation of 
CT-fibers (Domagala et  al., 2017). Possibly, the rhythmic 
stimulation of the CT-fiber system due to amniotic fluid 
movement promotes optimal calming effects on infants in utero 
and explains their preference for rhythmic rocking motion after 
birth (Bystrova, 2009). Abdominal stroking by the mother 
during pregnancy may also help promote bonding (Marx and 
Nagy, 2015). In terms of maturation of the processing of 
CT-fiber touch in the brain, this occurs particularly during the 
third trimester with parasympathetic effects on reducing heart 
rate reported in newborns (Van Puyvelde et  al., 2019) and 
preterm infants (Manzotti et al., 2019) and stroking associated 
pain relief (Gursul et  al., 2018). Touch-evoked responses in 
brain regions involved in regulating social cognition may 
primarily occur after birth, with the posterior insula becoming 
engaged around 2–3 months of age (Slater et al., 2006; Jönsson 
et  al., 2018) and the superior temporal sulcus at around 
12 months (Miguel et al., 2019).
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Cutaneous projections from different parts of the body to the 
brain are somatotopically organized in the contralateral 
somatosensory cortex (i.e., left side of the body sends projections 
to right side of the brain and vice versa) even in preterm infants 
(Allievi et al., 2016). Functional connectivity between the two 
hemispheres also first develops prenatally (from 24 to 39 weeks of 
pregnancy, Thomason et al., 2013) and there is evidence for both 
contralateral and ipsilateral somatosensory cortex responses to 
touching of the body in newborn infants (Kusaka et al., 2011). It 
has been argued that discriminative and affective touch stimuli 
become increasingly bilaterally represented during development 
even at the earliest levels of processing (i.e., the somatosensory 
and insula cortices), and this is as a consequence of 
interhemispheric (transcallosal) connections rather than separate 
contralateral and ipsilateral ones (Genna et al., 2018; Tamé et al., 
2019). Bilateral representation of touch may also have different 
developmental time-courses for different regions of the body, with 
regions such as the lips, but not hand or foot, showing it in 
2-month-old infants (Meltzoff et al., 2017). A consequence of this 
bilateral representation of touch is that unilateral damage in the 
brain following stroke can result in loss of tactile sensitivity on 
both sides of the body (Dupin et al., 2014; Tamé et al., 2019). This 
suggests that the touch processing system in the brain plays a 
potentially important role in the integration and synchronization 
of communication between the brain hemispheres contributing to 
development of haptic, motor, and cognitive functions. Indeed, 
neurodevelopmental disorders such as ASD and schizophrenia 
with impaired cognitive and motor function are characterized by 
reduced interhemispheric connectivity (see Yao et al., 2021).

Evidence for importance of touch 
for brain and behavioral 
development in premature infants

Premature infants exhibit delayed developmental milestones 
in areas such as motor skills, cognition, and language (Guerra 
et al., 2014) and can have subsequent sensorimotor integration 
problems (Pinheiro et al., 2014). In animal models, massage of 
preterm infants accelerates maturation of both cortical 
electroencephalography and visual acuity (Guzzetta et al., 2009). 
In humans, pediatric massage is extensively used in neonatal 
intensive care units (NICUs) and has consistently been shown to 
produce beneficial effects in premature infants, most notably for 
promoting growth and health and earlier discharge from NICUs 
(see Field, 2002, 2019; Badr et al., 2015; Niemi, 2017; Liao et al., 
2021). Additionally, studies have reported positive results of 
massage on immune system (Karamian et al., 2022) as well as on 
cognitive and visual function and visuomotor integration 
(Guzzetta et al., 2009; Fontana et al., 2020; Campbell and Jacobs, 
2021) and on the strength of mother–infant bonding (Shoghi 
et al., 2018). Currently, many different forms of pediatric massage 
have been used across cultures. In general, these tend to be whole-
body stroking, medium pressure massages administered daily or 

several times a week for 15 min and either with or without oil (see 
Badr et al., 2015; Field, 2019; Chaturvedi et al., 2021).

Other research on preterm human infants has reported 
beneficial effects of skin-to-skin contact and touching during so 
called: “Kangaroo care.” Kangaroo care involves a naked infant 
carried regularly in an upright prone position against the bare 
chest of a parent for 1–3 h at a time. As with pediatric massage, it 
provides extensive tactile stimulation for both infant and mother 
and there is similar evidence that it can improve growth, responses 
to stress and pain, immune responses, and development of 
cognitive and sensorimotor function, as well as having 
advantageous effects on mutual bonding between parent and 
infant and parental mood (Feldman et al., 2001; Jefferies, 2012).

Research on brain and behavioral 
effects of early post-natal touch 
in full-term infants

Extensive research in rats has established that tactile 
stimulation of neonates either from mothers, in the form of licking 
and grooming (Meaney, 2001, 2010), or even administered 
artificially (Hellstrom et al., 2012), produces lasting effects on their 
subsequent social and anxiety and cognitive behaviors which can 
be passed on to the next generation. An epigenetic mechanism 
was identified for this effect influencing glucocorticoid expression 
in the hippocampus as well as on the oxytocin system which plays 
a major role in both social and maternal behavior and on anxiety 
as well as cognitive function (Meaney, 2010; Kundakovic and 
Champagne, 2015). Recent research in mice has shown that short 
periods of stroking the back region of pups has profound effects 
on the responses and development of the brain oxytocin system as 
well as on social behavior and sensitivity to reward (Yu et al., 
2022). Together, these animal model studies have particularly 
implicated touch-evoked effects on the brain oxytocin system as 
being important for mediating developmental changes (see below 
for further discussion).

In monkey infants additional handling by humans in the early 
post-natal period increases exploratory, social, and cognitive 
development (Simpson et al., 2019). In full-term human infants, a 
number of studies have reported beneficial effects of pediatric 
massage on fine and gross motor skills, social and personal 
behavior, bonding and adaptive behavior, and psychomotor 
development, although studies to date are in need of more 
extensive replication (Wahyutami et al., 2010; Bennett et al., 2013; 
Perez et al., 2015). A recent study on full-term infants has reported 
that only a few minutes of gentle stroking by either parent has 
positive effects on cardio-respiratory function in full-term infants 
(Van Puyvelde et al., 2019). Furthermore, another study reported 
that skin-to-skin contact during Kangaroo care in full-term 
infants promoted greater social development over a 9-year period 
in a longitudinal study including 90 mother–child dyads (Bigelow 
and Power, 2020). Further indirect evidence for the significance of 
receiving affective touch during early life comes from some early 
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studies on individuals raised in institutionalized environments 
who exhibit cognitive and visuomotor integration impairments 
(Frank et al., 1996; Cermak and Groza, 1998). Furthermore, if 
such individuals receive an additional 20 min of tactile stimulation 
per day for 10 weeks as infants, they have higher subsequent scores 
on cognitive and behavioral developmental assessments 
(Casler, 1965).

The influence of touch on growth 
factor, oxytocin, and opioid 
signaling

While tactile stimuli can potentially affect a wide range of 
neurochemical systems to influence brain and social development, 
the greatest focus has been on ones which are involved in neural 
plasticity and growth (growth factors), reward processing, and 
social behavior (opioids and oxytocin; see also Carozza and 
Leong, 2021).

In animal model studies, touch stimuli administered to infant 
rodents increase brain concentrations of insulin growth factor-1 
(IGF-1) associated with functional maturation effects on visual 
processing and this could be prevented by administering an IGF-1 
antagonist (Guzzetta et al., 2009). Touch stimuli in the form of 
maternal licking in rodents also influence nerve growth factor 
signaling (Hellstrom et al., 2012), and in human infants, massage 
increases peripheral concentrations of both insulin and IGF-1 
which are associated with general body growth (Field et al., 2008; 
Field, 2019). Such increases in growth factor release within the 
brain will also promote important neural plasticity changes 
underlying brain and behavioral development.

The most extensively researched neurochemical system which 
responds to social touch and massage is that of the neuropeptide 
oxytocin produced by neurons in the supraoptic (SON) and 
paraventricular (PVN) nuclei of the hypothalamus and with 
receptors expressed widely in the brain (Quintana et al., 2019). 
Large magnocellular neurons from the SON and the PVN project 
to the posterior pituitary, releasing oxytocin into the circulation 
to act on its receptors in a number of peripheral organs including 
the adrenal gland, breast, cardiovascular and gastrointestinal 
systems, uterus, ovaries, testes where it primarily acts to influence 
their functions by contracting smooth muscle. These organs also 
have cells which can secrete oxytocin, including endothelial cells 
and keratinocytes in the epidermal layer of the skin (Deing et al., 
2013). There is widespread expression of the oxytocin receptor in 
the brain (Jurek and Neumann, 2018; Quintana et al., 2019) and 
oxytocin can be released within the brain from cell dendrites and 
axonal projections from magnocellular neurons, or from smaller 
parvocellular neurons which do not influence release from the 
posterior pituitary. These regions include frontal, cingulate, and 
insula cortices, basal ganglia, limbic system (amygdala, 
hippocampus, and septum), midbrain, brainstem, and spinal cord 
(see Liao et al., 2020), suggesting that oxytocin neurons can have 
widespread influence on behavioral, physiological, and 

neuroendocrine functions. Some parvocellular PVN neurons 
additionally project to the anterior pituitary where they can 
influence release of stress hormones such as adrenocorticotrophic 
hormone (see Grinevich and Stoop, 2018; Jurek and Neumann, 
2018; Uvnäs-Moberg and Petersson, 2022 for reviews of the 
oxytocin system).

Tactile stimulation during social interactions, skin-to-skin 
contact, or massage is considered an important mediator of 
oxytocin release. Activation of CT-fiber cutaneous fibers is 
considered to be of the most importance although other C-fibers 
and myelinated A-β fibers could also be involved (Uvnäs-Moberg 
et al., 2015; Walker et al., 2017; Takahashi, 2021; Uvnäs-Moberg 
and Petersson, 2022). Oxytocin release can play a key role in 
modulating social interactions, bonding and affective processing 
(Kendrick et  al., 2017) as well as influencing a range of 
physiological and endocrine functions, particularly in terms of 
reducing stress and pain through PVN projections to the 
brainstem and modulation of the hypothalamo-pituitary–
adrenal stress axis (see Bharadwaj et  al., 2021; Carozza and 
Leong, 2021; Takahashi, 2021; Uvnäs-Moberg and Petersson, 
2022). The PVN oxytocin neurons receive projections from the 
insula cortex (McGlone et al., 2014) and it is likely that this is the 
main pathway by which activation of CT-fibers during affective 
touch initially influences the brain oxytocin system. A recent 
animal study has shown that a population of PVN oxytocin 
neurons responds to social and non-social tactile stimulation 
primarily targeting CT-fibers and co-ordinates interactions with 
the more extensive magnocellular system, resulting in brain-
wide activation of the oxytocin projection system and oxytocin 
release (see Tang et  al., 2020). Indeed, tactile stimulation is 
consistently reported to increase peripheral oxytocin release in 
animal models (Stock and Uvnäs-Moberg, 1988; Uvnäs-Moberg 
and Petersson, 2010; Mitsui et al., 2011; Schneiderman et al., 
2012; Crockford et al., 2013; Uvnäs-Moberg et al., 2015; Vittner 
et al., 2018). Furthermore, the effects of tactile stimulation on 
enhancing the social and behavioral development of rodents are 
also directly associated with facilitation of oxytocin signaling in 
the brain (Yu et al., 2022).

In humans, both post-partum mothers and their infants have 
increased peripheral oxytocin concentrations during skin-to-skin 
contact, such as would occur during Kangaroo care (Matthiesen 
et al., 2001; Uvnäs-Moberg and Petersson, 2010; Uvnäs-Moberg 
et  al., 2015) and this may serve to reduce stress and facilitate 
mutual bonding between mother and infant (Uvnäs-Moberg and 
Petersson, 2010). “Warm touch” between couples and affectionate 
touch during early stage of romantic relationships also increases 
peripheral oxytocin concentrations (Light et  al., 2005; Holt-
Lunstad et al., 2008; Schneiderman et al., 2012). Slow, moderate 
pressure massage in adult humans facilitates peripheral oxytocin 
release (Morhenn et al., 2012; Li et al., 2019), and foot massage 
administered by hand, but not by machine, increases activity in 
key brain regions involved in pleasurable (orbitofrontal cortex) 
and social cognition (superior temporal sulcus) aspects of affective 
touch, although not in the somatosensory cortex (Li et al., 2019).
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A number of studies have investigated the effects of intranasal 
administration of oxytocin on brain and behavioral responses to 
affective touch or massage. Thus, intranasal oxytocin can increase 
both the perceived pleasantness of touch administered via 
different materials and activation of the orbitofrontal cortex 
independent of touch valence (Chen et  al., 2020a). Intranasal 
oxytocin also augments perceived pleasantness of hand- but not 
machine-administered massage as well as increasing responses in 
the majority of regions in the social brain, including those 
involved in attention, social cognition, reward, and emotional 
responses. Interestingly, effects on neural responses occur with 
both real and imagined massage further emphasizing evidence 
that the affective touch system responds in a similar way to 
experienced and observed touch (Chen et al., 2020b). In respect 
of the potential importance of early tactile stimulation on the 
development of optimal communication between the two brain 
hemispheres, intranasal oxytocin also strengthens effective 
interhemispheric connectivity between many regions of the social 
brain (Jiang et al., 2021). Finally, intranasal oxytocin has been 
reported to have pain-relieving effects (Bharadwaj et al., 2021) and 
thus potentially some of the well-established nociceptive effects of 
tactile stimulation may be  mediated via modulation of both 
central and peripheral oxytocin release.

An important aspect of the influence of oxytocin on 
rewarding effects of tactile processing is through its established 
interactions with both dopaminergic and opioid systems also 
intimately involved with both social bonds and brain reward 
systems. The opioid system in particular is important for 
formation of social bonds (Machin and Dunbar, 2011) and 
social touch modulates μ-receptor activity in the insular cortex 
and frontal and striatal reward systems (Nummenmaa et al., 
2016). As already discussed, the insular cortex plays a key role 
in responding to CT-fiber-mediated tactile stimuli and may be a 
key region where interactions between oxytocin, opioid, and 
dopaminergic neurochemical systems occur and subsequently 
influence social attention and reward systems (Loth and 
Donaldson, 2021).

In terms of person-specific effects on affective touch, 
intranasal oxytocin can increase perceived pleasantness of social 
touch applied to the leg of male subjects as well as greater 
activation of the orbitofrontal cortex and insula, but only when 
subjects thought touch was administered by a female (Scheele 
et al., 2014). Similarly, oxytocin increased likeability of touch in 
subjects when they thought they had been touched by their 
partner but not by an unfamiliar person of the opposite sex 
(Kreuder et al., 2017). Thus, there is both evidence for oxytocin 
administration producing general effects on perceived pleasure of 
CT-fiber targeted touch and on brain attention and reward 
processing networks but also linking them specifically to the 
identity of preferred individuals administering the touch. Overall, 
therefore, oxytocin may potentially influence both top-down and 
bottom-up aspects of touch processing and play an important role 
in modulating neural circuitry involved in both attentional and 
rewarding aspects of touch.

Both oxytocin (Puglia et al., 2018; Perkeybile et al., 2019) and 
opioid (Vucetic et  al., 2011; Browne et  al., 2020) receptor 
expression undergo either upregulation or downregulation via 
epigenetic modification and experience of tactile stimulation may 
influence this. Oxytocin also promotes neural plasticity changes 
in sensory, attention, and social processing brain regions (Froemke 
and Young, 2021). There are therefore several mechanisms 
whereby early experience of tactile stimuli may act to either 
facilitate or impair the optimal integration effects of tactile stimuli 
on brain and social development and reward via modulation of 
both oxytocin and opioid systems, as well as via enhancing growth 
factor signaling (see Figure 1).

Touch and neurodevelopmental 
disorders

Hypo- or hyper-sensitivity to sensory stimuli is common in 
ASD and is now one of the features incorporated into DSM-V. Up 
to 90% of individuals with ASD have atypical responses to touch 
(see Espenhahn et al., 2022) with soft touch often perceived as 
aversive/painful in hyper-sensitive individuals or without any 
significance in hypo-sensitive ones. There is debate as to whether 
these two extremes have similar or different underlying 
mechanisms, since while they can be  associated with either 
increased or decreased responses in CT-fibers and the 
somatosensory cortex, they have similar patterns of reduced 
responses in brain regions involved in social cognition and 
motivation, such as the superior temporal sulcus and orbitofrontal 
cortex (Kaiser et al., 2016). Indeed, both the degrees of hyper- or 
hypo-sensitivity to touch are associated with severity of social 
dysfunction (see Mikkelsen et  al., 2018; Thye et  al., 2018). 
Although ASD is contributed largely by genetic factors, premature 
birth is one of the main experiential ones which can increase its 
prevalence by up to 4-times (Crump et al., 2021). Furthermore, 
children with ASD have consistently been shown to have reduced 
peripheral concentrations of oxytocin (John and Jaeggi, 2021; 
Moerkerke et al., 2021). Additionally, several studies have reported 
increased epigenetic methylation of the oxytocin receptor, with 
resultant reduced mRNA expression associated with the severity 
of symptoms and altered functional connectivity in brain regions 
involved in the control of theory of mind, social attention, and 
reward processing (Gregory et al., 2009; Puglia et al., 2018; Andari 
et al., 2020).

The observations summarized above suggest that a touch-
based therapy, and/or one designed to enhance oxytocin signaling, 
could have beneficial effects on reducing ASD symptoms and 
additionally atypical sensory responses, by influencing brain and 
social development. To date, only one small study has reported 
that massage can increase peripheral concentrations of oxytocin 
in autistic boys (Tsuji et al., 2015), similar to typically developing 
individuals (Li et al., 2019). A number of small-scale studies have 
reported some positive effects of massage-based interventions on 
ASD symptoms and cognitive function, and in reducing atypical 
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FIGURE 1

Influence of affective touch on brain development. Schematic illustrates effects of either parental touch (Kangaroo touch) or pediatric massage on 
cutaneous fibers for affective (CT-fibers) or discriminative touch (Aβ) and projections to the brain via the dorsal route ganglia and spinal cord. 
Affective touch in particular promotes brain development and cognitive and social behavior via stimulation of growth factors, and oxytocin, opioid, 
and dopamine release and signaling and epigenetic modification. These neurochemical systems help to mediate developmental changes via 
neural plasticity and integration of brain circuitry sub-serving sensory (visual cortex, somatosensory cortex—SSC), salience (insula cortex), reward 
(orbitofrontal cortex, OFC and nucleus accumbens, NAcc), and social cognition (superior temporal cortex, STS) processing. Responses of the STS 
to touch are not fully developed until around 12 months of age.
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sensory responses, although there is a need for these to 
be  confirmed by large-scale randomized controlled trials (see 
Weitlauf et al., 2017). Notably, two studies by the same group have 
reported promising effects in 3–6 year-old autistic children using 
a number of sensorimotor environmental enrichments, including 
massage, on improved symptoms, social and cognitive 
development, and sensitivity to sensory stimuli (Woo and Leon, 
2013; Woo et al., 2015). There are currently no brain imaging 
studies investigating effects of such massage interventions on 
altered neural development, interhemispheric connectivity, and 
responses to touch in ASD and this must be a priority for future 
studies. The potential for a massage intervention in premature 
infants to reduce the proportion of “at risk” infants from 
subsequently developing ASD has also yet to be  assessed. In 
relation to the effects of oxytocin-based treatment interventions 
in young children several recent clinical trials have reported that 
chronic intranasal oxytocin treatment can improve social 
symptoms (Yatawara et  al., 2016; Parker et  al., 2017; Le et  al., 
2022), although dose frequency and combining treatment with 
positive social interactions may be important (Le et al., 2022). To 
date, no oxytocin intervention trials in ASD have assessed whether 
it alters either neural or behavioral responses to tactile stimuli and 
future studies will need to address this. In terms of other 
developmental disorders, pediatric massage has been reported to 
facilitate psychomotor development in infants with Down 
syndrome or cerebral palsy (Silva et al., 2012; Purpura et al., 2014; 
Pinero-Pinto et  al., 2020), although again further large-scale 
controlled trials are needed to confirm this.

Overall, there is increasing evidence for the importance of 
tactile stimuli via affective CT-fiber cutaneous receptors for typical 
development of both brain and behavior and that many of its 
effects are likely mediated via facilitation of growth factor, 
oxytocin, and opioid systems. However, more animal model and 
human-based research is required to fully establish optimal 

stimuli, the mechanisms involved, and the potential for 
development of therapeutic interventions in neurodevelopmental  
disorders.
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