AUTHOR=Balestrucci Priscilla , Wiebusch Dennis , Ernst Marc O. TITLE=ReActLab: A Custom Framework for Sensorimotor Experiments “in-the-wild” JOURNAL=Frontiers in Psychology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2022.906643 DOI=10.3389/fpsyg.2022.906643 ISSN=1664-1078 ABSTRACT=

Over the last few years online platforms for running psychology experiments beyond simple questionnaires and surveys have become increasingly popular. This trend has especially increased after many laboratory facilities had to temporarily avoid in-person data collection following COVID-19-related lockdown regulations. Yet, while offering a valid alternative to in-person experiments in many cases, platforms for online experiments are still not a viable solution for a large part of human-based behavioral research. Two situations in particular pose challenges: First, when the research question requires design features or participant interaction which exceed the customization capability provided by the online platform; and second, when variation among hardware characteristics between participants results in an inadmissible confounding factor. To mitigate the effects of these limitations, we developed ReActLab (Remote Action Laboratory), a framework for programming remote, browser-based experiments using freely available and open-source JavaScript libraries. Since the experiment is run entirely within the browser, our framework allows for portability to any operating system and many devices. In our case, we tested our approach by running experiments using only a specific model of Android tablet. Using ReActLab with this standardized hardware allowed us to optimize our experimental design for our research questions, as well as collect data outside of laboratory facilities without introducing setup variation among participants. In this paper, we describe our framework and show examples of two different experiments carried out with it: one consisting of a visuomotor adaptation task, the other of a visual localization task. Through comparison with results obtained from similar tasks in in-person laboratory settings, we discuss the advantages and limitations for developing browser-based experiments using our framework.