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UNIVERSITY STUDENT LEARNING IN BLENDED COURSE

DESIGNS

Advances in Internet and computer-based technologies have increased the growth of alternative
learning spaces, creating entirely newways of conceptualizing and assessing the learning experience
of students (Wong, 2019). Research has repeatedly found positive impacts of various forms
of technology-enhanced learning, such as learning embedded in social networking sites, web-
conferencing, webinars, e-portfolio, digital games, mobile apps, and virtual and second worlds
(Jarvoll, 2018; Winkelmann et al., 2020). The higher education sector has also shown a rapid
development in the use of computer and web-based technologies, which has affected experiences of
learning of a significant proportion of university students worldwide. This change has resulted in
the widespread use of diverse online spaces developed for learning in the form of e-learning courses
and/or a combination of face-to-face and online delivery systems, known as blended course designs
(Shin et al., 2018). In a synergy of research foci and research methods of university student learning
in blended contexts, Bliuc et al. (2007) defines blended course designs as “systematic combination of
co-present (face-to-face) interactions and technologically-mediated interactions between students,
teachers and learning resources” (p. 234).

More recently, the coronavirus pandemic (COVID-19) emergency has required higher
education learning and teaching around the world to rapidly respond, in particular, redeploying
evenmore learning and teaching activities to virtual learning spaces to promote physical distancing.
As a result, more and more face-to-face courses have been delivered as blended courses (Mali and
Lim, 2021). Under such circumstances, it becomes vital importance to understand student learning
experience in blended course designs, its relation to various forms of learning outcomes, and the
key factors which may impact such experience. However, there are many challenges to study the
student experience in blended course designs as it is a complex phenomenon (Ma and Lee, 2021).
Compared with learning in a single mode (i.e., fully face-to-face courses or fully online courses),
in blended course designs, students are increasingly involved in decision-making in the learning
process, such as with whom to work in a classroom tutorial and with whom to discuss in online
forum, how many hours they learn online, whether to study in a physical library or log onto an
online database, whether to collaborate in a face-to-face laboratory or whether to collaborate in
virtual reality. These decisions require students to move back and forth between face-to-face and
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online contexts, and across physical and virtual learning
environments (Han and Ellis, 2020a). As a result, the complexity
of student experience in blended learning involves an interplay
of a wide range of factors, which include students’ cognition
(e.g., conceptions, approaches, and perceptions in learning)
(Trigwell and Prosser, 2020); their choices of social interactions
in learning (e.g., with whom to collaborate and the mode of the
collaborations) (Hadwin et al., 2018); and the material elements
across both physical and virtual learning spaces in face-to-
face and online learning components (e.g., students’ choices
of learning spaces and their interactions with online learning
activities) (Laurillard, 2013). As such, evaluation of university
student learning experience in blended course designs requires
research methods that move beyond approaches that do not
routinely investigate the combined contributions of learners and
the material things involved in learning to achieve academic
performance, (Wu et al., 2010; López-Pérez et al., 2011).

THEORY-DRIVEN APPROACHES

Traditionally, research into student learning experience
and academic performance in higher education has largely
adopted theory-driven approaches, which test hypotheses
derived from theories in educational psychology, learning
sciences, and pedagogy and curriculum research (Trigwell and
Prosser, 2020). Based on the accumulated empirical evidence
which may support or refute the hypotheses, theories and
models of learning have been constantly refined, modified,
and updated. The theoretical frameworks departing from
theory-driven perspectives predominantly assess various
aspects in student learning experience using self-reported
instruments and measurements, such as focus group, semi-
structured interviews, and Likert-scale questionnaires (Han
et al., 2022).

In a number of state-of-the-art articles, for instance,
the instruments in the major frameworks on the student
learning research in higher education have been reviewed
and summarized, including Student Approaches to Learning
Research, Self-regulated Learning Research, Information
Processing Research, and Student Engagement Research
(Lonka et al., 2004; Vermunt and Donche, 2017; Zusho,
2017). Uniformly, the primary means to collect data in these
frameworks are self-reported questionnaires, such as Study
Process Questionnaire (SPQ; Biggs et al., 2001), the Revised
Approaches to Studying Inventory (RASI; Entwistle and
McCune, 2004), and the Inventory Learning to Teach Process
(ILTP; Endedijk et al., 2016) and Motivated Strategies for
Learning Questionnaire (MSLQ; Pintrich, 2004); Inventory
of Learning Patterns (ILP; Donche and Van Petegem, 2008),
Course Experience Questionnaire (CEQ; Ramsden, 1991), and
the Inventory of Perceived Learning Environments Extended
(IPSEE; Könings et al., 2012).

However, the self-reported measures have been criticized
for being subjective and have been questioned about their
accuracy in describing students’ use of learning approaches
and strategies in real learning contexts (Zhou and Winne, 2012).

In addition, the self-reported measures and data also suffers
from their limited capacities to represent the complex (e.g.,
using multiple indicators) and dynamic (e.g., changes over
time) nature of student learning behaviors. To improve the
insights of contemporary university student experiences of
learning, suggestions have been put forward to expand the
current self-reporting methods by including other types of
measurements to study student learning (Vermunt and Donche,
2017). In this regard, learning analytics research is a promising
avenue. For instance, Richardson (2017) suggested “The rapidly
expanding field of learning analytics provides both researchers
and practitioners with the opportunity to monitor students’
strategic decisions in online environments in minute detail and
in real time (p. 359).”

DATA-DRIVEN APPROACHES

The recent development of educational technology has produced
prolific studies using learning analytics, which enables a capacity
to collect rich and detailed digital traces of students’ interactions
with a variety of online learning resources and activities. The type
of digital trace/log data, also known as the observational data,
have the advantage of offering descriptions of student learning
behaviors and strategies relatively more objectively and in a
more granular details than using self-reportedmethods (Siemens,
2013; Baker and Siemens, 2014). Departing from data-driven
approaches, learning analytics research has emerged as a growing
area and has gradually gained popularity in student learning in
higher education (Sclater et al., 2016). It employs advanced data
mining techniques and algorithms to process the observational
analytic data in relation to students’ demographic information,
which has been increasingly applied in various domains in
higher education sector, such as advising students’ career choice
(Bettinger and Baker, 2013); detecting at risk students to improve
retention (Krumm et al., 2014); providing personalized feedback
(Gibson et al., 2017); identifying patterns of learning tactics and
strategies (Chen et al., 2017); facilitating collaborative learning
(Kaendler et al., 2015); monitoring students’ affect in learning
(Ocumpaugh et al., 2014); and predicting their academic learning
outcomes (Romero et al., 2013). However, the data-driven
approaches are often fragmented from educational theories
and rely purely on empiricism, which limit the insights they
can offer for directing pedagogical innovations and reforms,
supporting learning design, fostering quality learning experience,
and improving academic performance (Buckingham Shum and
Crick, 2012).

Despite its wide applications, learning analytics research
have received criticism that the data-driven approaches it relies
on is fragmented from educational theory but overly focuses
on quantitative number (Rodríguez-Triana et al., 2015). The
patterns and models of student learning derived from such data-
centric perspectives without proper guidance from educational
theories are often result in erroneous interpretation, which have
limited insights for generating actionable knowledge in order to
locate learning barriers and to offer ideas for teaching practice
and curriculum design (Wong and Li, 2020; Han and Ellis, 2021).

Frontiers in Psychology | www.frontiersin.org 2 May 2022 | Volume 13 | Article 905592

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Han A Combined Approach

A COMBINED APPROACH

Recognizing the limitations of an overly data-centric approach
used in learning analytics research, researchers have proposed
to adopt a more holistic approach when designing research so
that student learning behaviors and patterns can be captured
in a comprehensive manner, and big data modeling and
interpretation can be guided via sound theories (Lockyer et al.,
2013; Rienties and Toetenel, 2016). This has resulted in an
increasing amount of research using a combined approach,
which employs both self-reported and observational instruments
to measure student learning experience in a complementary
manner (Gašević et al., 2015).

Reviewing the existing research using a combined approach
suggests that these studies have two different aims. One aim
is to examine how a combined approach may improve the
explanatory power of predicting student learning outcomes
by including both self-reported and observational measures
of aspects in the processes of student learning (Reimann
et al., 2014). Despite basing on different learning theories,
the majority of studies in this line of inquiry have reported
that combing the self-reported and observed measures of
student learning have significantly improved the variance
explained in the prediction of student academic achievement
than using either self-reporting or observational method
alone (Tempelaar et al., 2015; Han and Ellis, 2020b). For
example, using multiple regression analyses, Pardo et al. (2017)
found that students’ reported anxiety in learning and use
of self-regulated learning strategies could only explain 7% of
variance in students’ academic performance; whereas adding
the observed frequency of students’ online interactions into
the regression model could explained 32% of variance in
students’ academic performance, significantly increasing the total
variance explained by 25%. In another study which adopted
Student Approaches to Learning research framework, Ellis
et al. (2017) reported similar findings: while students’ self-
reported use of approaches to learning only predicted 9% of
the variance in their academic learning outcomes, including
students’ observed online learning events in the multiple
regression equation explained an extra of 25% in the students’
learning outcomes.

Another aim of the studies which combine the self-reported
and observational measures is to investigate the consistency
between the two methods in terms of describing student
experiences of learning (Reimann et al., 2014). Similarly,
research with this aim has also departed from different
learning perspectives and has diverse foci, such as using self-
reported questionnaires to assess students’ intrinsic motivation,
test anxiety, self-efficacy, engagement, effort expenditure,
achievement goal, learning orientations and motives on the one
hand. On the other hand, a diversity of observed indicators
of students’ online learning, including frequency of clicks,
completion of online learning tasks, duration of online learning
events, as well as time-stamped sequences of online learning
behaviors have been collected through digital traces to derive
students’ online learning tactics, strategies, and approaches

(Gašević et al., 2017; Pardo et al., 2017; Han et al., 2020; Sun and
Xie, 2020; Ober et al., 2021). However, inconclusive results have
been reported among studies with this aim. The non-alignment
between the descriptions and categorisations of student learning
experience by self-reports and observations have been found in a
number of studies.

For instance, Gašević et al. (2017) found that there was
no significant difference of self-reported using surface learning
strategies between students who were categorized as deep and
surface learners according to their observed online learning
strategies. In contrast, consistency between students’ self-
reported learning orientations (as measured by their approaches
to learning and perceptions of learning) and their online
participation was observed in Han et al. (2020). Students
who were categorized as having an “understanding” learning
orientation (i.e., the learning was oriented toward gaining
an in-depth understanding of the subject matter) were also
observed to participatemore online learning than those whowere
categorized as having a “reproducing” learning orientation (i.e.,
the learning was oriented toward reproducing facts and satisfying
course requirements).

These inconsistent results are possibly caused by (1) different
learning theories have been adopted by these studies (e.g., self-
regulated learning, Student Approaches to Learning, student
engagement); and (2) the diverse means of how students’
online learning is measured (e.g., frequency, duration, temporal
sequence, or a combination of multiple indicators). Until a firmer
conclusion can be made, many more studies are required to
examine the extent to which the self-reported and observational
measures of student learning experience align with each other.

The strengths of a combined approach lie in multiple ways.
First, it has an advantage of offering richer information in
the way of predicting student learning outcomes over using
a single approach, with each approach supplementing the
other. While the observational measures are able to provide
objective evidence as to what students actually do in their
learning (Fincham et al., 2018), they do not, however, have
capacity to reflect students’ intents and motives behind the
ways they learn as in the self-reported studies (Asikainen
and Gijbels, 2017; Gerritsen-van Leeuwenkamp et al., 2019).
Second, a combined approach can serve as a triangulation
to check the validity of the results derived from either
theory-driven or data-driven approaches. Third, the multiple
data collection and analysis methods used in the combined
approach also strengthen the analytical power of the analyses.
All the merits of combining theory-driven and data-driven
approaches point out its future applications to advance university
student learning research and its potential to tackle the
other complex issues of contemporary student experiences
of learning.
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