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Within the framework of constrained statistical inference, we can test

informative hypotheses, in which, for example, regression coe�cients are

constrained to have a certain direction or be in a specific order. A large amount

of frequentist informative test statistics exist that each come with di�erent

versions, strengths and weaknesses. This paper gives an overview about these

statistics, including the Wald, the LRT, the Score, the F̄- and the D-statistic.

Simulation studies are presented that clarify their performance in terms of type

I and type II error rates under di�erent conditions. Based on the results, it

is recommended to use the Wald and F̄-test rather than the LRT and Score

test as the former need less computing time. Furthermore, it is favorable to

use the degrees of freedom corrected rather than the naive mean squared

error when calculating the test statistics as well as using the F̄- rather than

the χ̄2-distribution when calculating the p-values.

KEYWORDS

informative hypothesis testing, constrained statistical inference, informative test

statistics, type I error rates, naive mean squared error, corrected mean squared error,

F̄-distribution, χ̄2-distribution

Introduction

Imagine a researcher wants to examine a novel psychotherapy program. A

randomized experiment is set up with three treatment groups. One is a control group

(X = 0), one participates in an established, standard psychotherapy program (X = 1)

and one participates in the novel psychotherapy program (X = 2). No covariates

are considered. The researcher is interested in the group means of the dependent

variable Y , which denotes the score on a mental health questionnaire. Studies like

this are usually conducted to show the superiority of the novel treatment over the

standard treatment, as well as the superiority of the standard treatment over the control

group. Thus, the researcher assumes that µ2 > µ1 > µ0. However, following

classical null hypothesis testing procedures, we usually first test a hypothesis like

H0 :µ2 = µ1 = µ0 against Ha : not H0, that is, not all three means are equal.
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If we can reject H0 in favor of Ha, a second step often follows,

in which we execute pairwise comparisons to determine which

means are equal and which means are not equal. This implies

multiple testing, which brings along the risk of an inflated type

I error rate. The framework of constrained statistical inference

(Silvapulle and Sen, 2005; Hoijtink, 2012) allows us to test so-

called informative hypotheses, meaning that we can test the null

hypothesis H0 :µ2 = µ1 = µ0 against the ordered hypothesis

Ha :µ2 > µ1 > µ0 in a single step. Thus, in contrast to classical

null hypothesis testing, researchers have the advantages that

they can formulate their hypotheses of interest directly, instead

of making a detour via another hypothesis, while additionally

avoiding to increase the risk for inflated type I error rates.

Informative hypothesis testing can be conducted by means

of the Bayesian (see, e.g., Hoijtink et al., 2008; Hoijtink, 2012) as

well as the frequentist (see, e.g., Barlow et al., 1972; Robertson

et al., 1988; Silvapulle and Sen, 2005) approach, where the latter

is the focus of this paper. The Bayesian approach is implemented

in the R (R Core Team, 2020) package bain (Gu et al., 2020).

The frequentist approach is implemented in SAS/STAT R© by

means of the PLM procedure (for instructions, see Chapter

87 of SAS Institute Inc., 2015) as well as in several R packages

including restriktor (Vanbrabant, 2020) and ic.infer (Grömping,

2010). Recent work of Keck et al. (2021) also demonstrated how

to integrate informative hypothesis testing into the EffectLiteR

(Mayer and Dietzfelbinger, 2019) package.

Restriktor and ic.infer use a broad range of test statistics,

which are presented in Silvapulle and Sen (2005). However,

research in the field of constrained statistical inference often

uses the famous F̄-statistic (see, e.g., Kuiper and Hoijtink, 2010;

Vanbrabant et al., 2015) and neglects the distance statistic

(D-statistic). Furthermore, each test statistic comes in various

versions, for example depending on which estimate is used

for the mean squared error or the variance-covariance matrix,

and oftentimes, it is not obvious which software program uses

which test statistic. There are also different options regarding

the distributions that can be used to compute the p-values

(χ̄2, F̄). At the same time, small sample properties of informative

test statistics are mostly unknown. Finally, simulation studies

that examine the performance of informative test statistics are

lacking in the constrained statistical inference literature.

The aim of this paper is twofold. First, we want to give an

overview of a broad range of different informative test statistics,

including the Wald test, the likelihood-ratio test (LRT), the

Score test, the F̄- and the D-statistic as well as their different

versions. Second, we want to clarify how those test statistics

perform when sample and effect sizes, hypotheses and the

distribution used for calculating the p-values vary. Note that

we only consider the regression setting, where all variables

are observed. The paper is structured as follows: We start by

presenting the univariate linear regression model to explain

all necessary terminology that is used in the following section,

where we define the test statistics. These test statistics include

“regular” as well as informative test statistics to illustrate the

link between them. We also discuss different versions of these

test statistics. Subsequently, we report about simulation studies

that we conducted. We introduce the design of the studies, that

included a broad range of sample sizes as well as effect sizes, and

we outline type I and type II error rates. We conclude with a

short discussion. Supplementary materials are provided and will

be referenced throughout the paper.

Univariate linear regression model

The univariate linear regression model for an observation i

can be defined as:

yi = β0xi0 + β1xi1 + β2xi2 + ...+ βpxip + εi = x′i β + εi, (1)

where yi is the value of the response variable for observation i =

1, 2, ..., n, xi0 is 1 and xi1, ..., xip are the values of the p regressors

for observation i, which are assumed to be fixed (in terms of

repeated sampling). β0, ..., βp are the regression coefficients and

εi is a residual for observation i. In matrix notation, the model

can be written as y = Xβ+ε, whereX is called the designmatrix.

This regression model relies on several assumptions. First,

we assume that the expected value of εi is zero. That is, E(εi) = 0

for all i. In matrix notation, this is expressed as E(ε) = 0,

which implies that E(y) = Xβ, meaning that there is a linear

relationship between E(y) and the columns of X. Second, we

assume that xi is non-stochastic and X is of full column rank.

Third, we assume that the error term has a constant variance:

Var(εi) = σ 2
ε for all i. This implies that Var(yi) = σ 2

ε for all i.

Fourth, we assume that the covariance of any two error terms is

zero, that is Cov(εi, εj) = 0 for all (i, j), where i 6= j.

The model can be estimated by means of different

approaches such as ordinary least squares (OLS) or maximum

likelihood (ML). It can be shown that under the presented

assumptions, the OLS estimates of β are BLUE (best linear

unbiased estimators, see, e.g., Seber and Lee, 2012). Using an

example including four predictors, the following model is fitted:

yi = β0xi0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi, (2)

and β̂0, β̂1, β̂2, β̂3, and β̂4 are obtained via OLS estimation. We

may be interested in hypotheses concerning a single parameter

like H0 : β1 = 0 vs. Ha : β1 6= 0 or we might be interested

in hypotheses about nested model comparisons like H0 : β1 =

0 ∧ β2 = 0 vs. Ha : β1 6= 0 ∨ β2 6= 0 ∨ β3 6= 0 ∨ β4 6= 0.

We can compute various important quantities that are used

in hypothesis testing and that are characterized by a hat on

top of it. Note that the hat indicates that estimation of the

model parameters takes place in an unrestricted way, which will

change once we test informative hypotheses. First, an unbiased
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estimator for the mean squared error is:

σ̂ 2
ε = Ŝ2corrected =

R̂SS

n− k
, (3)

where k is the column rank ofX and R̂SS is the estimated residual

sum of squares
∑n

i=1 ê
2
i , where êi = yi − ŷi and ŷi are the

model predicted values of the response variable. Note that by

considering k, we yield a small-sample correction for the mean

squared error, as opposed to simply using:

Ŝ2naive =
R̂SS

n
, (4)

which corresponds to the maximum likelihood estimator of σ 2
ε .

The variance-covariance matrix of the estimated regression

coefficients β̂ is usually computed as:

VCOV(β̂) =
1

n
Î
−1
1 , (5)

where Î1 is the unit information matrix:

Î1 =
1

n Ŝ2
corrected

X′X. (6)

Note that if certain model assumptions are violated, for example

if the error term does not have a constant variance, robust

versions of the standard errors (Huber, 1967; White, 1980) and

the variance-covariance matrix (Zeileis, 2006) can be used.

We can also test hypotheses about linear or non-linear

combinations of regression parameters, like H0 : β1 + β2 =

0 ∧ β3 + β4 = 0 vs. Ha : β1 + β2 6= 0 ∨ β3 + β4 6=

0. Note that in this paper, we will focus only on hypotheses

containing linear combinations of regression coefficients. These

combinations are specified by means of the R-matrix and each

part of the hypothesis can be expressed as a row in R:

r′1 =
(
0 1 1 0 0

)
, (7)

r′2 =
(
0 0 0 1 1

)
, (8)

leading to the full constraint matrix:

R =

(
0 1 1 0 0

0 0 0 1 1

)
. (9)

Then the hypothesis of interest can be expressed as H0 :Rβ =

0 vs. Ha :Rβ 6= 0. Note that all kinds of hypotheses,

including the single parameter case and comparisons of nested

models, as discussed before, can be expressed by means of

the R-matrix.

In case our hypothesis of interest contains inequality

constraints, like Ha : β1 + β2 > 0 ∨ β3 + β4 > 0, R still

looks the same, but we need to fit a model where we enforce

the inequality constraints on the regression coefficients. This

can be done by means of quadratic programming, for example

using the subroutine solve.QP() of the R package quadprog

(Turlach and Weingessel, 2019). It implements the dual method

of Goldfarb and Idnani (1982, 1983). If we apply this method

in the linear regression context, it has the following form

(see “Data Sheet 1” in the Supplementary materials for further

explanations):

min(−y′Xβ +
1

2
β′X′Xβ) with the constraints Rβ ≥ β0.

(10)

Note that all quantities based on an inequality

constrained model are denoted by a tilde on top

of them. Assume that the unconstrained estimates

β̂
′

are (0.100 −0.130 0.100 −0.240 0.250), but

the inequality constrained estimates β̃
′

may be

(0.110 −0.110 0.120 −0.230 0.240), where the estimates

of β0, β3 and β4 may also change slightly, even though they

already satisfied the constraints in the unrestricted estimation.

The restricted estimation will also lead to different residuals

than the unrestricted estimation.

If our hypothesis of interest contains equality constraints, for

exampleHa : β1+β2 = 0∨β3+β4 = 0, the equality constrained

estimates β̄ can also be found via quadratic programming. Note

that here, Ha from informative hypothesis testing equals H0

from classical null hypothesis testing. Similarly, all estimated

quantities with a bar on top are both the quantities from the

equality constrained fit in informative hypothesis testing and

the quantities obtained based on H0 in classical null hypothesis

testing, which are in fact equality constrained estimates as well.

The corresponding mean squared error terms for the inequality

and equality constrained case are defined as follows:

S̃2corrected =
R̃SS

n− k
, (11)

S̃2naive =
R̃SS

n
, (12)

S̄2corrected =
RSS

n− (k− h)
, (13)

S̄2naive =
RSS

n
, (14)

where R̃SS is the residual sum of squares of the inequality

constrained fit
∑n

i=1 ẽ
2
i , where ẽi = yi − ỹi and ỹi are the model

predicted values of the response variable. Furthermore, RSS is

the residual sum of squares under the equality constrained fit∑n
i=1 ē

2
i , where ēi = yi−ȳi and ȳi are themodel predicted values

of the response variable. Finally, h is the row rank of R.
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Similarly, we can define the unit information matrices of the

inequality and equality constrained fits:

Ĩ1 =
1

n S̃2
corrected

X′X, (15)

Ī1 =
1

n S̄2
corrected

X′X. (16)

Note that X from the inequality constrained fit equals X from

the unconstrained fit. The estimates β̂, β̃ and β̄ as well as the

corresponding mean squared error terms and unit information

matrices are used in the test statistics that are presented in the

subsequent section.

Hypothesis testing

In order to give a broad overview about different test

statistics, we present regular test statistics used in classical null

hypothesis testing, as well as informative test statistics used

in informative hypothesis testing. Note that an overview table

containing all test statistics is provided at the end of each section.

All test statistics can be applied in the setting of linear regression.

“Data Sheet 2” in the Supplementary materials shows how these

test statistics are implemented in R code.

Classical null hypothesis testing

The test statistics from classical null hypothesis testing that

we will explain include theWald test, the LRT, the Score test, the

F-test as well as the t-test. The large sample test statistics, that

is the Wald test, the LRT and the Score test, can be defined as

follows Buse (1982):

Wald = n(Rβ̂)′(RÎ
−1
1 R′)−1(Rβ̂), (17)

LRT = −2 · [ℓ(β̄)− ℓ(β̂)], (18)

Score =
1

n
S(β̄)′ Ī

−1
1 S(β̄), (19)

where ℓ(β̄) is the log-likelihood evaluated at β̄, ℓ(β̂) is the log-

likelihood evaluated at β̂ and S(β̄) = ∂

∂ β̄
ℓ(β̄) is the score function

evaluated at β̄. All three test statistics follow asymptotically aχ2-

distribution under the null hypothesis with df = h, if the model

is correct.

Note that all three test statistics implicitly depend on S2

in the information matrices (see Equation 6) and in the log-

likelihoods. In the regression setting, since we always know what

the residual degrees of freedom are, we can use Ŝ2
corrected

instead

of Ŝ2naive to obtain the corrected instead of naive test statistic

versions. That way, we can use the F-distribution with df1 =

h, df2 = n − p to obtain the p-values, which is more precise in

small samples compared to the χ2-distribution.

Note that the LRT, the Wald and the Score test are

asymptotically equivalent. However, it has been shown that

the values of the Wald test are always slightly larger than the

values of the LRT, which in turn are always slightly larger than

the values of the Score test (Buse, 1982, p. 157). Thus, using

the same critical χ2 value, the tests may have different power

properties, which can be one aspect guiding the choice between

them. Another aspect may be the time it takes to compute the

three tests. For the Wald test, we need to fit the unconstrained

model, whereas for the Score test, we need to fit the equality

constrained model and for the LRT, we need to fit both the

unconstrained and equality constrained model. In many cases,

fitting the unconstrained model takes the least amount of time,

which is why the Wald test is chosen often. However, in some

cases, for example if the equality constrained model has a lot less

parameters than the unconstrained model, it may be faster to fit

the equality constrained model compared to the unconstrained

model.

The F-test can be calculated as Seber and Lee (2012, p. 100):

Fcorrected =

1
h
[RSS− R̂SS]

Ŝ2
corrected

. (20)

Another test statistic version results from using Ŝ2naive instead

of Ŝ2
corrected

, which we denote as Fnaive. Seber and Lee (2012, p.

100) show that Fcorrected can be re-written to contain the unit

information matrix:

F
info
corrected

=
n

h
(Rβ̂)′(RÎ

−1
1 R′)−1(Rβ̂), (21)

where the superscript “info” refers to the information matrix.

When Ŝ2naive instead of Ŝ2
corrected

is used in constructing the unit

information matrix, we call this test statistic F
info
naive. If the model

is specified correctly, Fcorrected follows an F-distribution with

df1 = h, df2 = n− k under the null hypothesis.

The one-sample t-test is defined as Allen(1997, p. 67):

t =
β̂ − β̄

SE
β̂

, (22)

where β̄ is the value of β under the null hypothesis and SE
β̂
is the

standard error of β̂. Under the null hypothesis, t is t-distributed

with df = n− k, if the model is correct. Note that if h = 1 the t-

and F-statistic are related in a certain way, which is t2 = F.

It is widely known that the one-sample t-test can be used

for testing both two-sided hypotheses like H0 : β = 0 against

Ha : β 6= 0 as well as one-sided hypotheses likeH0 : β = 0 against

Ha : β > 0 or Ha : β < 0. The test statistic stays the same in

both cases, but the p-value is computed differently. That is, when

testing a two-sided hypothesis, half of the significance level is

allocated to each side of the t-distribution, whereas when testing

a one-sided hypothesis, all of it is allocated to one side of the t-

distribution. That means that the cut-off levels, denoting from
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TABLE 1 Overview of all presented regular test statistics.

Regular test statistics Formula

LRTnaive/corrected −2 · [ℓ(β̄)− ℓ(β̂)]

Waldnaive/corrected n(Rβ̂)′(RÎ
−1

1 R′)−1(Rβ̂)

Scorenaive/corrected
1
n
S(β̄)′ Ī

−1

1 S(β̄)

Fnaive/corrected
1
h
[RSS−R̂SS]

Ŝ2
naive/corrected

t β̂−β̄

SE
β̂

which point on the t-statistic can be considered to be significant,

change. The two-sided p-value, which is the default output of

most statistical software, simply adds up the probabilities of

the negative and positive version of the observed t-value (tobs),

independently of whether it was in fact positive or negative:

ptwo−sided = 2 · P(t > |tobs|)

= P(t > tobs)+ P(t < −tobs). (23)

Since the t-distribution is symmetric, P(t > tobs) is the same as

P(t < −tobs). When we are interested in the one-sided p-value

and Ha : β > 0, the p-value is obtained as:

pone−sided = P(t > tobs), (24)

whereas if Ha : β < 0, the p-value is obtained as:

pone−sided = P(t < tobs). (25)

Note that in case the obtained t-value is a positive number and

we are interested in Ha : β > 0 or in case t is a negative number

and we are interested inHa : β < 0, the one-sided p-value can be

obtained by dividing the two-sided p-value by 2.

In summary, the t-statistic is a special case, since this statistic

from the classical null hypothesis testing framework can be used

for testing an informative hypothesis, as long as the hypothesis

only contains one parameter. If we are interested in more than

one parameter, we can no longer use the t-statistic, but have to

use an informative test statistic. Table 1 shows an overview about

all presented regular test statistics.

Informative hypothesis testing

Informative test statistics are often a modified version of

the regular test statistics. In case the model is correct, the large

sample informative test statistics, including the LRT, the Wald

test, the Score test and the D-statistic, asymptotically follow a

χ̄2-distribution under the null hypothesis, which is a mixture

of χ2-distributions. The small sample informative test statistic,

that is the F̄-statistic, follows an F̄-distribution under the null

hypothesis, if the model is correctly specified. The F̄-distribution

is a mixture of F-distributions. Note that similar to classical null

hypothesis testing, we can use the corrected instead of naive

mean squared error to obtain the large sample test statistics.

In that way, we can calculate the p-values by means of the

F̄-distribution instead of the χ̄2-distribution to obtain more

precise results in small sample sizes.

The LRTcorrected test statistic can be calculated as follows

Silvapulle and Sen (2005, p. 157):

LRTcorrected = −2 · [ℓ(β̄)− ℓ(β̃)], (26)

where ℓ(β̄) is the log-likelihood evaluated at β̄ and ℓ(β̃) is the log-

likelihood evaluated at β̃. ℓ(β̄) has been calculated using S̄2
corrected

and ℓ(β̃) has been calculated using S̃2
corrected

. If S̄2naive and S̃2naive
were used instead, we would obtain LRTnaive.

The Wald statistic can be found in Silvapulle and Sen (2005,

p. 154):

Wald
info
corrected

=
n

Ŝ2
corrected

(Rβ̃)′(RW−1R′)−1(Rβ̃), (27)

where W = 1
nX

′X. The Wald version where we use Ŝ2naive

instead of Ŝ2
corrected

is called Wald
info
naive. Both versions implicitly

contain Î1 (see Equation 6), which can also be replaced by Ĩ1.

Note thatWald
info
naive will give different results, especially in small

sample sizes, due to the missing correction. Assuming VCOV(β̂)

is defined as in Equation 5, we can re-write the Wald statistic as:

WaldVCOV = [Rβ̃]′[R VCOV(β̂) R′]−1[Rβ̃], (28)

which is identical toWald
info
corrected

. Note that we can also replace

VCOV(β̂) by a more robust sandwich-estimator, which is not

commonly done in the applied literature.

The D-statistic is calculated as follows (Silvapulle and Sen,

2005, p. 159):

Dcorrected =
2 · n

Ŝ2
corrected

[d(β̄)− d(β̃)], (29)

where d(β̄) and d(β̃) are the values of the following two

functions at their solutions (see “Data Sheet 3” in the

Supplementary materials for further information):

f (β) = (β̂ − β)′W(β̂ − β) under the constraint Rβ = 0,

(30)

f (β) = (β̂ − β)′W(β̂ − β) under the constraint Rβ ≥ 0.

(31)

When minimizing these functions, we treat β̂ and W as known

constants. Note that in the regression case, Dcorrected is identical

to Wald
info
corrected

and WaldVCOV , as long as Ŝ2
corrected

is used. In

contrast, if we switch to using Ŝ2naive, we obtain Dnaive, in which

case Dnaive = Wald
info
naive.
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The F̄-statistic can be found in (Silvapulle and Sen, 2005, p.

29):

F̄corrected =
RSS− R̃SS

Ŝ2
corrected

. (32)

According to Silvapulle and Sen (2005, p. 29), including the

constant 1
h
from the regular F-statistic in the F̄-statistic is not

necessary, as it does not affect the results. Again, when using

Ŝ2naive instead of Ŝ2
corrected

, we obtain F̄naive. We can re-write the

F̄-statistic similarly to how we re-wrote the F-statistic. Assuming

that we use Ŝ2
corrected

to compute the unit informationmatrix, we

obtain:

F̄
info
corrected

= n(Rβ̃)′(RÎ
−1
1 R′)−1(Rβ̃). (33)

Again, Î1 can be replaced by Ĩ1.

There are various versions of the Score statistic. ScoreU
corrected

can be found in Silvapulle and Sen (2005, p. 159):

ScoreUcorrected =
1

n · Ŝ2
corrected

U ′(RW−1R′)−1U , (34)

whereU = RW−1[S(β̃)−S(β̄)]. When using Ŝ2naive as compared

to Ŝ2
corrected

, we obtain ScoreUnaive. Another version of the Score

statistic, Score
null−info
corrected

, is defined as follows Silvapulle and

Silvapulle (1995, p. 342):

Score
null−info
corrected

=
1

n
[S(β̄)− S(β̃)]′ Ī

−1
1 [S(β̄)− S(β̃)], (35)

where Ī1 has been calculated by means of S̄2
corrected

(see

Equation 13). In contrast, if we use S̄2naive, we obtain

Score
null−info
naive .

Furthermore, Score
info
corrected

can be calculated as Silvapulle

and Sen (2005, p. 166):

Score
info
corrected

=
1

n
P′(RÎ

−1
1 R′)−1P, (36)

where P = RÎ
−1
1 [S(β̃)−S(β̄)] and Î1 is calculated using Ŝ

2
corrected

and can be replaced by either Ĩ1 or Ī1. If we use Ŝ2naive to

calculate Î1, we obtain Score
info
naive. Silvapulle and Sen (2005, p.

166) mention another way to express Score
info
corrected

:

Score
info,Robertson
corrected

=
1

n
[S(β̃)− S(β̄)]′ Î

−1
1 [S(β̃)− S(β̄)], (37)

where the superscript “Robertson” indicates that this is the

version defined by Robertson et al. (1988), Î1 is calculated using

Ŝ2
corrected

and can be replaced by either Ĩ1 or Ī1. Assuming

that VCOV(β̂) is defined as in Equation 5, Score
info
corrected

can be

re-written as:

ScoreVCOV = V ′[R VCOV(β̂) R′]−1V , (38)

TABLE 2 Overview of all presented informative test statistics.

Informative test statistics Formulas

LRTnaive/corrected −2 · [ℓ(β̄)− ℓ(β̃)]

Wald
info
naive

n

Ŝ2naive
(Rβ̃)′(RW−1R′)−1(Rβ̃)

Wald
info

corrected = WaldVCOV n

Ŝ2
corrected

(Rβ̃)′(RW−1R′)−1(Rβ̃)

= [Rβ̃]′[R VCOV(β̂) R′]−1[Rβ̃]

Dnaive/corrected
2·n

Ŝ2
naive/corrected

[d(β̄)− d(β̃)]

F̄naive
RSS−R̃SS

Ŝ2naive

F̄corrected = F̄
info

corrected
RSS−R̃SS

Ŝ2
corrected

= n(Rβ̃)′(RÎ
−1

1 R′)−1(Rβ̃)

ScoreUnaive/corrected
1

n·Ŝ2
naive/corrected

U ′(RW−1R′)−1U

Score
null−info

naive/corrected
1
n
[S(β̄)− S(β̃)]′ Ī

−1

1 [S(β̄)− S(β̃)]

Score
info
naive = Score

info,Robertson
naive

1
n
P′(RÎ

−1

1 R′)−1P

= 1
n
[S(β̃)− S(β̄)]′ Î

−1

1 [S(β̃)− S(β̄)]

Score
info

corrected = Score
info,Robertson

corrected

= ScoreVCOV

1
n
P′(RÎ

−1

1 R′)−1P

= 1
n
[S(β̃)− S(β̄)]′ Î

−1

1 [S(β̃)− S(β̄)]

= V ′[R VCOV(β̂) R′]−1V

where V = R VCOV(β̂) [S(β̃)−S(β̄)], again allowing for a more

robust sandwich-estimator of VCOV(β̂) to be inserted. Table 2

gives an overview about all the informative test statistics that

were presented.

P-values

There are two approaches for calculating the p-

value of informative test statistics (Silvapulle and Sen,

2005). In this paper, we use the approach where we

first calculate the weights of the respective mixture

distribution (χ̄2, F̄). Note that the sum of the weights

from 0 to q is one, where q is the rank of X under the

null hypothesis.

If the residuals of our data are normally distributed, we

can use the multivariate normal probability function as well

as the ic.weight() function of the R package ic.infer

(Grömping, 2010) to compute the weights. These calculations

are also implemented in the R package restriktor (Vanbrabant,

2020). Once we have computed the weights, the p-values of the

observed χ̄2-value (χ̄2
obs

) and of the observed F̄-value (F̄obs)

are obtained as follows Silvapulle and Sen (2005, pp. 86 and

99):

Pr(χ̄2 ≥ χ̄2
obs) =

q∑

i=0

wi(H0,Ha)Pr[(h− q+ i)χ2
h−q+i ≥ χ̄2

obs],

(39)

Pr(F̄ ≥ F̄obs) =

q∑

i=0

wi(H0,Ha)Pr[(h− q+ i)Fh−q+i,n−p ≥ F̄obs].

(40)
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TABLE 3 Type I error rates when using R1 and applying the test statistics as outlined in the referenced books.

Wald
info
corr.

n LRTcorr. LRTrestr. Wald
info
naive WaldVCOV ScoreUcorr. Score

null−info
corr. Score

null−info
restr.

Score
info
corr. F̄corr.

Fcorr. tone−s. ttwo−s.

Dcorr.
ScoreVCOV F̄restr.

10000 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.050 0.047 0.050

2000 0.054 0.054 0.054 0.054 0.057 0.054 0.054 0.054 0.054 0.060 0.054 0.060

1000 0.057 0.057 0.058 0.057 0.058 0.057 0.057 0.057 0.057 0.067 0.057 0.067

500 0.058 0.058 0.058 0.055 0.053 0.055 0.055 0.055 0.055 0.049 0.055 0.049

100 0.054 0.054 0.056 0.051 0.054 0.050 0.048 0.048 0.049 0.043 0.049 0.043

50 0.057 0.058 0.060 0.054 0.066 0.051 0.044 0.044 0.049 0.044 0.049 0.044

25 0.074 0.074 0.092 0.066 0.089 0.057 0.047 0.045 0.057 0.057 0.057 0.057

10 0.125 0.112 0.186 0.098 0.169 0.054 0.002 0.000 0.054 0.061 0.054 0.061

The test statistics are abbreviated as follows: LRTcorrected as LRTcorr. , LRTrestriktor as LRTrestr. , Wald
info

corrected
as Wald

info
corr. , Dcorrected as Dcorr. , Score

U
corrected

as ScoreUcorr. , Score
null−info

corrected
as

Score
null−info
corr. , Score

null−info

restriktor
as Score

null−info
restr. , Score

info

corrected
as Score

info
corr. , F̄corrected as F̄corr. , Fcorrected as Fcorr. , tone−sided as tone−s. and ttwo−sided as ttwo−s. . Bold values are above 0.06 and

underlined values are below 0.04.

TABLE 4 Type I error rates when using R2 and applying the test statistics as outlined in the referenced books.

Wald
info
corr.

n LRTcorr. LRTrestr. Wald
info
naive WaldVCOV ScoreUcorr. Score

null−info
corr. Score

null−info
restr.

Score
info
corr. F̄corr.

Fcorr.

Dcorr.
ScoreVCOV F̄restr.

10000 0.052 0.052 0.052 0.052 0.049 0.052 0.052 0.052 0.052 0.049

2000 0.048 0.048 0.050 0.048 0.052 0.048 0.048 0.048 0.048 0.046

1000 0.051 0.051 0.051 0.051 0.052 0.051 0.047 0.047 0.051 0.058

500 0.059 0.059 0.062 0.060 0.059 0.059 0.057 0.057 0.059 0.048

100 0.057 0.056 0.070 0.061 0.078 0.055 0.053 0.051 0.056 0.058

50 0.051 0.046 0.090 0.060 0.099 0.044 0.039 0.035 0.048 0.055

25 0.068 0.055 0.135 0.083 0.119 0.052 0.027 0.010 0.064 0.055

10 0.069 0.011 0.416 0.163 0.334 0.024 0.001 0.000 0.054 0.061

The test statistics are abbreviated as follows: LRTcorrected as LRTcorr. , LRTrestriktor as LRTrestr. , Wald
info

corrected
as Wald

info
corr. , Dcorrected as Dcorr. , Score

U
corrected

as ScoreUcorr. , Score
null−info

corrected
as

Score
null−info
corr. , Score

null−info

restriktor
as Score

null−info
restr. , Score

info

corrected
as Score

info
corr. , F̄corrected as F̄corr. , Fcorrected as Fcorr. . Bold values are above 0.06 and underlined values are below 0.04.

It can be expected that the p-values are very similar,

irrespective of whether they are calculated based on the χ̄2-

or F̄-distribution, as long as sample sizes are large. However,

for small sample sizes, the F̄-distribution should yield more

accurate results.

Simulation studies

We conducted several simulation studies to examine the

impact of different conditions on the performance of the

presented test statistics in terms of type I and type II error rates.

We were interested in the effects of sample and effect sizes,

the number of regression parameters considered in Ha as well

as the distribution used for calculating the p-values. Our main

motivation was to provide a reference framework for applied

researchers who wish to test informative hypotheses, helping

them to chose the optimal test statistic(s) in the present situation.

Design

We generated a design matrix X, including data for five

regression coefficients β ′ = (β1 β2 β3 β4 β5) and considered

effect sizes of f 2 = 0.02 (small), f 2 = 0.10 (medium) and f 2 =

0.35 (large) and sample sizes of 10, 25, 50, 100, 500, 1000, 2000,

and 10000. For examining the type I error rate, we generated

a random outcome Y , whereas for examining the type II error

rate, we fixed all βs to 0.1 and generated y with a random error

term that was specific for the effect size used. Since f 2 = R2

1−R2
,

where R2 is the determination coefficient, we can calculate the

error terms of y by plugging in the f 2-specific value of R2 in

S2y = [β Cor(X) β]×
1− R2

R2
, (41)

where Cor(X) is the correlation matrix of the design matrix X.

The number of replications was 1000.
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TABLE 5 Type I error rates when using R1, Ŝ
2
corrected (or

S̃2corrected, S̄
2
corrected) and the F̄-distribution for calculating the p-value.

n LRTcorr.
Wald

info
corr. ScoreUcorr.

Dcorr.

10000 0.047 0.047 0.047

2000 0.054 0.054 0.057

1000 0.057 0.057 0.058

500 0.055 0.055 0.053

100 0.052 0.049 0.052

50 0.055 0.049 0.065

25 0.067 0.057 0.080

10 0.084 0.054 0.126

The test statistics are abbreviated as follows: LRTcorrected as LRTcorr. , Wald
info

corrected
as

Wald
info
corr. , Dcorrected as Dcorr. and ScoreU

corrected
as ScoreUcorr. . Bold values are above 0.06 and

underlined values are below 0.04.

TABLE 6 Type I error rates when using R2, Ŝ
2
corrected (or

S̃2corrected, S̄
2
corrected) and the F̄-distribution for calculating the p-value.

n LRTcorr.
Wald

info
corr. ScoreUcorr.

Dcorr.

10000 0.052 0.052 0.049

2000 0.048 0.048 0.051

1000 0.050 0.051 0.051

500 0.059 0.059 0.058

100 0.055 0.056 0.072

50 0.043 0.048 0.085

25 0.042 0.064 0.097

10 0.006 0.054 0.161

The test statistics are abbreviated as follows: LRTcorrected as LRTcorr. , Wald
info

corrected
as

Wald
info
corr. , Dcorrected as Dcorr. and ScoreU

corrected
as ScoreUcorr. . Bold values are above 0.06 and

underlined values are below 0.04.

We considered two different kinds of R matrices, where the

first one was defined as follows:

R1 =
(
0 1 0 0 0 0

)
. (42)

This represents the hypothesis that only β1 is greater than zero:

Ha :β1 > 0. The second Rmatrix was defined as:

R2 =




0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



, (43)

stating that at least one of the regression coefficients, except the

intercept, are greater than zero: Ha :β1 > 0 ∨ β2 > 0 ∨ β3 >

0 ∨ β4 > 0 ∨ β5 > 0.

To compute the test statistics, we used Ŝ2naive and Ŝ2
corrected

as well as S̃2naive, S̃
2
corrected

, S̄2naive and S̄2
corrected

and to compute

the p-values, we used the χ̄2- as well as the F̄-distribution.

In addition to the manual calculation of the test statistics,

we also included the test statistics as reported by the R

package restriktor.

Type I results

Test statistics were first applied the way they are

presented in the referenced literature. That is, Wald
info
naive

makes use of Ŝ2naive, whereas all other test statistics make

use of Ŝ2
corrected

(or S̃2
corrected

, S̄2
corrected

). For calculating

the p-values, the χ̄2-distribution is used for LRTcorrected,

Wald
info
naive, Wald

info
corrected

, WaldVCOV , Dcorrected, Score
U
corrected

,

Score
null−info
corrected

, Score
info
corrected

and ScoreVCOV . The F̄-distribution

is used for calculating the p-values for the F̄-statistic, the F-

distribution is used for calculating the p-values for the F-statistic

and the t-distribution is used for calculating the p-values for

the t-statistic. Note that restriktor always uses Ŝ2
corrected

(or

S̃2
corrected

, S̄2
corrected

) for all available test statistics and always

calculates the p-value based on the F̄-distribution. Tables 3, 4

show the results.

We can observe that when using R1 (see Table 3), that

is when testing a hypothesis concerning only one regression

parameter, type I error rates are identical between F and

ttwo−sided as well as between F̄ and tone−sided, showing the

link between classical null hypothesis testing and informative

hypothesis testing. When using R2 (see Table 4), that is when

testing a hypothesis concerning multiple regression parameters,

problems with type I error rates seem to occur earlier as

compared to when using R1. More specifically, problematic

type I error rates occur as early as with n = 500 or n =

100 when using R2, but only start occurring with n = 50

or n = 25 when using R1. Apart from that, ScoreU
corrected

and Wald
info
naive show the highest type I error rates for both R

matrices, whereas F̄ and F̄restriktor show the most appropriate

type I error rates for both R matrices. This is because the F̄-

distribution is more precise in small sample sizes as compared

to the χ̄2-distribution.

When using the F̄-distribution instead of the χ̄2-distribution

when calculating the p-value for all test statistics, type I error

rates are closer to the nominal level when sample sizes get

smaller. This can be seen in Tables 5, 6 where a selection of test

statistics are shown.

Furthermore, it can be observed that when using

R1, type I error rates increase when using LRTcorrected
and ScoreU

corrected
and n = 10 in contrast to n = 25.

The same can only be observed for ScoreU
corrected

when using R2, but not for LRTcorrected, where the

type I error rate decreases quite substantially instead.
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FIGURE 1

Type II error rates when using R1 and applying the test statistics as outlined in the referenced books.

More results can be found in “Data Sheet 4” in the

Supplementary materials.

Type II results

Figures 1, 2 show the type II error rates when applying the

test statistics as in the referenced books.

Once more, we can observe that when using R1 (see

Figure 1), that is when testing a hypothesis concerning only one

regression parameter, type II error rates are identical between F

and ttwo−sided as well as between F̄ and tone−sided, showing the

link between classical null hypothesis testing and informative

hypothesis testing. When using R2 (see Figure 2), that is when

testing a hypothesis concerning multiple regression parameters,

problems with type II error rates seem to occur later (in terms

of sample size) as compared to when using R1. This was

the other way around regarding the type I error rate and it

demonstrates the nature of the relationship between type I and

type II error rates: If one goes down, the other one goes up

and vice versa.

The same mechanism can be observed when using the F̄-

distribution instead of the χ̄2-distribution when calculating

the p-value for all test statistics (Figures 3, 4): Type II

error rates are increased in small sample sizes, since type

I error rates had improved, that is, decreased. Again,

further results can be found in “Data Sheet 5” in the

Supplementary materials.

Discussion

In this paper, we gave an overview of a large number

of different informative test statistics, including their different

versions. Furthermore, we clarified how those test statistics

perform in terms of type I and type II error rates under different

conditions by means of simulation studies in the context of

linear regression. We considered varying sample and effect

sizes as well as two different constraint matrices, where one
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FIGURE 2

Type II error rates when using R2 and applying the test statistics as outlined in the referenced books.

specified a hypothesis about one parameter and the other one

specified a hypothesis about multiple parameters. Moreover, we

considered the naive and corrected mean squared errors of the

unconstrained, inequality and equality constrained models as

part of the test statistics as well as the χ̄2- and F̄-distribution

to calculate the p-values.

Based on our findings, the following recommendations

can be made. Considering the time it takes to compute

the informative test statistics, both the Wald and the F̄-

test versions are favorable, since they only need fitting

of the inequality constrained model to obtain β̃ and Ĩ1.

Even if we do not use Ĩ1 but use Î1 instead, the increase

in time is small in the context of linear regression. The

Score test and the LRT versions are less favorable, since

they require fitting both the inequality constrained as

well as the equality constrained model to obtain β̃ and

β̄, as well as the respective unit information matrices

or log-likelihoods.

The D-statistic versions only require fitting the

unconstrained model to obtain β̂. However, we then

additionally need to compute the two functions d(β̄)

and d(β̃), which is as time-consuming as fitting the

inequality constrained model. Thus, there is no advantage

of using the D-statistic versions over the Wald and

the F̄-test versions in the context of linear regression.

However, if the regression model was non-linear,

computing the two functions would be significantly less

computationally expensive than fitting the inequality

constrained model.

Moreover, we recommend using the corrected mean

squared error versions in the test statistics as well as using

the F̄-distribution for calculating the p-values, if sample

sizes are small. This seems to keep type I error rates closer

to the nominal level compared to using the naive mean

squared error versions and using the χ̄2-distribution for

calculating the p-value. An additional interesting finding

was that the relationship between LRT, Wald and Score

test values that has been found in the unconstrained

context also holds in the constrained context. That is,

Wald test values are always slightly larger than LRT
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FIGURE 3

Type II error rates when using R1, Ŝ
2
corrected (or S̃2corrected, S̄

2
corrected) and the F̄-distribution for calculating the p-value.

values, which in turn are always slightly larger than Score

test values.

The limitations of our simulation studies include the

following aspects. We treated all variables as manifest, even

though variables of interest in the social and behavioral

sciences are often latent in nature. Furthermore, we solely

generated normal data despite the fact that violations against

the normality assumption occur regularly. Moreover, we

used orthogonal predictors without interactions albeit this

is rarely the case in the social and behavioral sciences.

And lastly, we only included the regular versions of the

standard errors and the variance-covariance matrix. Future

research should thus repeat the simulation studies in the

context of Structural Equation Modeling (SEM) to take into

account latent variables. Furthermore, the impact of non-

normal data as well as correlated predictors with interactions

and using the robust versions of the standard errors and the

variance-covariance matrix should be examined. It may be

that under these conditions, type I and type II error rates

deviate from the results presented in this paper. Moreover, the

properties of informative test statistics, especially concerning

the D-statistic, should also be investigated in the context of

non-linear models.

Finally, research in the social and behavioral sciences is

often not only interested in inference concerning regression

coefficients, but also regarding effects of interest. These effects

may be average or conditional treatment effects, which are

defined as a linear or non-linear combination of regression

coefficients. The EffectLiteR approach (Mayer et al., 2016)

provides a framework and R package for the estimation

of average and conditional effects of a discrete treatment

variable on a continuous outcome variable, conditioning on

categorical and continuous covariates. Keck et al. (2021)

already demonstrated how to integrate informative hypothesis

testing into the EffectLiteR framework in the context of

linear regression. The present paper provides interested readers

who want to apply informative hypothesis testing concerning

regression coefficients or effects of interest with practical

information regarding test statistics as well as type I and type

II error rates.
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FIGURE 4

Type II error rates when using R2, Ŝ
2
corrected (or S̃2corrected, S̄

2
corrected) and the F̄-distribution for calculating the p-value.
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