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Dynamic decision-making involves a series of interconnected interdependent

confluence of decisions to be made. Experiential training is preferred over

traditional methods to train individuals in dynamic decision-making. Imparting

experiential training in physical settings can be very expensive and unreliable.

In virtual reality (VR), synthetic environments play a significant role in providing

flexible and cost-effective training environments to enhance dynamic

decision-making. However, it is still unclear how VR can be used to impart

dynamic decision-making training to increase cognitive performance in

complex situations. Besides, different repetitive training methods like desirable

difficulty framework and heterogeneity of practice have been evaluated on

generic cognitive and motor tasks. However, an evaluation of how these

repetitive training methods facilitate dynamic decision-making in an individual

in a virtual complex environment setting is lacking in the literature. The

objective of this study is to evaluate the effect of different repetitive training

methods in immersive VR on dynamic decision-making in a complex search-

and-shoot environment. In a lab-based experiment, 66 healthy subjects are

divided equally and randomly into three between-subject training conditions:

heterogenous, difficult, and sham. On Day 1, all the participants, regardless

of the condition, executed an environment of a baseline difficulty level. From

Days 2 to 7, the participants alternatively executed the novice difficulty and

expert difficulty versions of the environment in the heterogenous condition.

In difficult conditions, the participants executed the expert difficulty version of

the environment from Days 2 to 7. In the sham condition, the participants

executed an unrelated VR environment from Days 2 to 7. On Day 8, the

participants executed the baseline difficulty version of the environment again

in all the conditions. Various performance and workload-based measures

were acquired. Results revealed that the participants in the heterogenous and

difficult conditions performed significantly better on Day 8 compared with

Day 1. The results inferred that a combination of immersive VR environment

with repetitive heterogenous training maximized performance and decreased
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cognitive workload at transfer. We expect to use these conclusions to

create effective training environments in VR for imparting training to military

personnel in dynamic decision-making scenarios.

KEYWORDS

decision-making, virtual reality, heterogenous training, difficult training, cognitive
workload, instance-based learning

Introduction

As defined by Gonzalez et al. (2005), dynamic decision-
making tasks encapsulate a sequence of interdependent
decisions made in an environment. The environment then
changes as a function of the series of decisions made,
independent of the series, or both ways (Edwards, 1962).
According to Jenkins et al. (2011), accurate and coherent
decision-making is imperative to ensure safety, accuracy, and
efficiency in complex and dynamic systems. Decision-making
activities are usually linked to an individual’s expertise in the
said domain and their repertoire of rule-based heuristics and ‘if-
then’ procedures (Jenkins et al., 2011). Some of these rule-based
heuristics and ‘if-then’ procedures might be exploited while
making decisions in dynamic tasks (Jenkins et al., 2011). But
decision-making usually involves dynamic environments that
rapidly change as a function of the feedback received from an
individual (Gonzalez et al., 2005). It is understood that through
proper training and skill acquisition, individuals can get more
accustomed to the environment and the causal relationships
that exist within the environment (Dreyfus, 2014). This, in turn,
would enable the individuals to adapt to uncertainty and develop
the adroitness and tactics for efficient decision-making in the
face of unexpected events (Klein and Hoffman, 1993).

Many training methods exist for delivering enhanced
performance in complex and dynamic systems. For instance,
Salas et al. (2006) classified the existing training methods
into information-based training methods, demonstration-
based training methods, and practice-based training methods.
According to Dreyfus and Dreyfus (1986), the information-
based and demonstration-based training methods impart
generalized training independent of context. For training
dynamic decision-making, more experiential and naturalistic
training might be required (Jenkins et al., 2011) so that
individuals learn to make decisions at a more knowledge-
based level. However, these naturalistic conditions’ design
and development might be expensive, time-consuming, and
dangerous in real-world settings (Stanton, 1996). Due to
the dynamism associated with naturalistic environments, it
becomes challenging for individuals to relate actions with
ramifications (Jenkins et al., 2011). This makes it very difficult

for individuals to develop rule-based heuristics and decision-
making skills for a specific operation (Jenkins et al., 2011). This
statement is particularly true in dynamic decision-making in the
military context, where the conditions are usually unforeseeable
and stressful (Stanton, 1996).

Research in recent years has proposed synthetic virtual
environments as a more viable and reliable replacement to
standard physical environments (Jenkins et al., 2011). These
virtual environments provide highly customizable, flexible, and
inexpensive training platforms for individuals to hone their
decision-making skills (Naikar and Saunders, 2003; Jenkins
et al., 2011). These virtual environments have traditionally
been designed to be projected on a non-immersive computer
screen (ter Haar, 2005), and more recently, in virtual reality
(VR)/augmented reality (AR) using a head-mounted display
(HMD) or on a cave automatic virtual environment (CAVE)
(Srivastava et al., 2019). Of these, virtual environments in
HMD VR have commonly been studied by researchers to
assess and enhance the cognitive performance of individuals
(Srivastava et al., 2019). In contrast to traditional non-immersive
computer screens, VR allows individuals to immerse themselves
in a virtual environment, move freely and seamlessly in the
virtual environment, and examine the constituents governing
the environment from all possible perspectives (ter Haar,
2005). As explained by Srivastava et al. (2019), HMD VR
enables the participant to completely disconnect from the real
physical environment around them by blocking eye contact
and providing self-motion feedback. This feedback allows the
individual to foster strategies they would employ in the real
world in the virtual environment (Srivastava et al., 2019). As
a result, this allows the individual to build a better mental
model of the environment, leading to efficient cognitive skill
acquisition (ter Haar, 2005).

Previous studies have illustrated the advantages of training
individuals in HMD VR compared with non-immersive virtual
environments in desktop screens in spatial learning and motor
tasks (Murcia-López and Steed, 2016; Parmar et al., 2016;
Srivastava et al., 2019). These studies have highlighted the
ability of HMD VR to effectively localize spatial information
in the environment yielding better learning rates and higher
accuracies. But these studies also pointed out the increased
cognitive workload rates in immersive HMD VR compared
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with non-immersive desktop screens (Parmar et al., 2016). For
example, Parmar et al. (2016) attributed the high cognitive
workload rates in immersive HMD VR to higher information-
processing requirements due to an influx of higher knowledge-
based heuristics in the environment. In hindsight, Parmar
et al. (2016) also pointed out that individuals might regulate
and even control the cognitive workload and enhance their
cognitive performance if they undertook repetitive training
in immersive VR. Also, Murcia-López and Steed (2016)
indicated that repetitive training in immersive VR might
lead to a better understanding of the information processing
intricacies required to successfully execute the objectives in
each environment, potentially leading to better workload
management and enhanced cognitive performance. However,
a detailed evaluation of how cognitive workload can be
decreased and dynamic decision-making performance can be
increased in complex environments through different repetitive
training frameworks is lacking and much needed in the
literature. Besides, very little research exists on how the
equilibrium between high cognitive processing demands and
cognitive performance can be achieved in a dynamic decision-
making environment.

Over the years, researchers have evaluated the efficacy of
different training conditions on generic cognitive and motor
tasks. These training conditions include the “desirable difficulty
framework” (Bjork, 1994), the “retrieval effort hypothesis” (Pyc
and Rawson, 2009), the “procedural reinstatement hypothesis”
(Lohse and Healy, 2012), the “cognitive antidote hypothesis”
(Chapman et al., 2016), and the “heterogeneity of practice
hypothesis” (Gonzalez and Madhavan, 2011). Popular theories
of decision-making could delineate the effectiveness of these
training conditions. For example, the instance-based learning
theory [IBLT] (Gonzalez and Dutt, 2011; Dutt and Gonzalez,
2012; Lejarraga et al., 2012), a theory of how individuals
make decisions from experience, has described decision-making
(especially in a dynamic context) very efficiently. According
to IBLT, decision-making is a five-step process: recognition of
the situation, judgment based on experience, choices among
options based upon judgments, execution of the chosen actions,
and the feedback to those experiences that leads to the chosen
actions (Gonzalez and Dutt, 2011; Lejarraga et al., 2012).
But most of the training conditions mentioned above have
only so far been tested on generic cognitive or motor tasks,
where the acquisition of mere rule-based heuristics would
suffice for successfully executing the task. Researchers, namely
Rao et al. (2018a,b, 2020a, 2022) have demonstrated that VR
training would maximize performance if individuals are first
trained in a difficult environment compared with an easy
environment in a dynamic decision-making context. But these
studies have only given a glimpse of what the combination
of immersive HMD VR and different training conditions have
to offer in enhancing dynamic decision-making and regulating
cognitive workload. A comprehensive evaluation of repetitive

training conditions and how these conditions could facilitate
enhanced cognitive performance in immersive VR is needed
in the literature.

The primary objective of this research is to test these
expectations in an experiment with human participants where
the type of training condition (heterogenous, difficult, and
sham) is varied between subjects. As per IBLT, we hypothesize
that the heterogenous training condition, owing to the succinct
variations in the environment, would enable the decision-maker
to store and retrieve salient instances (experiences) from the
environment compared with those stored in difficult training
conditions and the sham condition. To the best of the author’s
knowledge, this work’s contribution is novel because this would
be the first study to explore the influence of different training
conditions in a dynamic decision-making context on human
performance when given repeatedly.

In what follows, first, we provide an overview of the
research involving immersive HMD VR environments and their
huge potential of training individuals for enhanced cognitive
performance. We also investigate the different instances where
different training conditions have been used to improve
performance on several cognitive and psychological tasks. Next,
we describe an experiment to investigate training individuals’
performance and cognitive implications under three different
training conditions (heterogenous, difficult, and sham) in
immersive HMD VR. Finally, we give a detailed explanation of
the results obtained and discuss the implications of our results
in the real-world.

Background

A considerable amount of research has been conducted on
evaluating the benefits and setbacks of using a VR-based system
compared with traditional desktop-based systems. For instance,
Santos et al. (2008) evaluated the efficacy of HMD-based VR
systems compared with conventional desktop-based systems in
a navigation scenario. The results indicated that users performed
significantly better with the desktop setup compared with the
HMD-based VR system. However, the subjects reported that the
HMD-based VR system is more intuitive and natural.

Eventually, researchers indicated that with the growth
of technology, HMD-based VR systems could be a better
alternative for training personnel and emotional regulation. For
example, Chirico et al. (2016) evaluated the efficacy of HMD-
based VR systems as a mood induction tool for engendering
awe. The researchers discovered that since VR provided a
sense of “presence,” i.e., bestowing each individual with the
illusion of “being there,” it facilitated a more efficient assessment
of the emotional experience (Chirico et al., 2016). They also
reasoned that since VR also had the ability to provide both
monocular depth cues and binocular disparity, the participants
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could empathize with various theoretical aspects of the awe
programmed in the environment (Chirico et al., 2016).

Similarly, another study investigated the efficacy of HMD-
based VR systems in aiding information recall (Krokos et al.,
2019). Forty participants were divided equally and randomly
into two between-subject conditions: HMD with head-tracking
and traditional desktop systems with mouse-based interaction.
Results suggested that information recall in the HMD with the
head-tracking condition was significantly more accurate and
quicker than that in the traditional desktop system (Krokos
et al., 2019). The researchers reasoned that this was due to
the innate ability of the HMD-based VR system to provide
the participants with better spatial awareness, which in turn
influenced the participants’ vestibular and proprioceptive senses
(Krokos et al., 2019).

A few researchers have cast their aspersions and reservations
on the efficacy of HMD-based VR systems in regulating
workload and facilitating the natural extension of cognitive
capacities, especially capacities related to spatial navigation. For
instance, Srivastava et al. (2019) examined the effectiveness
of HMD-based VR displays with conventional desktop-based
systems on spatial learning. They found that the participants
spent more time and perceived lesser motion sickness in the
desktop-based system than that in the HMD-based VR system.
They reasoned that the high motion sickness nullified the high
visual fidelity of HMD-based VR and the cognitive workload
induced by the system (Srivastava et al., 2019). But these
researchers have restricted ambulatory locomotion in the HMD-
based VR system in the study, causing a severe dent in the
effectiveness of the HMD-based VR system in engaging the
participant’s proprioceptive abilities.

The usability and the propensity of VR systems to elicit
an emotional response from the participants have been well
documented by Pallavicini et al. (2019). In this research, 24
participants played the popular commercial game “Smash Hit”
both in immersive (VR) and non-immersive (desktop-based)
conditions. They acquired data related to the usability (through
the system usability score questionnaire), the presence (through
the Slater-Usoh-Steed presence questionnaire), and obtained
objective responses from the participants during gameplay from
physiological measures like heart rate and skin conductance
response (Pallavicini et al., 2019). The results revealed that
even though there is no significant difference between the VR
and the desktop-based conditions in usability and performance,
participants in the VR condition reported a higher sense of
presence, and higher perceived happiness and surprise. In
addition, Wang et al. (2018) evaluated the effect of HMD-based
VRs compared with conventional desktop-based interfaces on
the user’s sense of presence and self-efficacy in an educational
context. Results revealed that the participants reported a higher
sense of presence and recorded higher self-efficacy scores in
the HMD-based VR condition compared with the conventional
desktop-based condition (Wang et al., 2018).

The usability of VR [and as an extension, extended
reality (ER) systems in general] in an effective and efficient
emotional state detection has been well documented by
Antoniou et al. (2020). In this research, 11 participants across
diverse educational levels (spanning across undergraduate
neurosurgeons, postgraduate neurosurgeons, and specialist
neurosurgeons) wore an array of physiological sensors (for
heart rate, electrodermal response, and electroencephalography
recording) while executing two tasks in the Microsoft HoloLens
VR/MR platform. Results indicated that all the physiological
sensors are successfully able to detect discriminatory changes in
the emotional state in the two tasks across the different groups of
participants. Recently, state-of-the-art deep learning techniques
have also been applied for accurate emotion detection in
an immersive VR environment using electroencephalography
(Ding et al., 2020).

Over the years, substantial research has been conducted
on testing the efficacy of different repetitive training methods
in basic cognitive processes. For instance, Bjork (1994) has
proposed the ‘desirable difficulty framework’ for effective
learning, which stated that within any learning domain, the
difficult but successful processing of memory would lead to
a better transfer compared with difficult but unsuccessful
processing. Delving into the desirable difficulty framework, Pyc
and Rawson (2009) proposed the ‘retrieval effort hypothesis’
which further substantiated Bjork’s (1994) claims to discover
that difficult but successful retrievals lead to a better transfer
compared with easier but successful retrievals. To test the
retrieval effort hypothesis, they set up an experiment involving a
Swahili-English translation task with conditions where retrieval
during the practice trials is successful but disparately difficult.
Results indicated that the performance level in the test condition
increased as the difficulty of retrieval in the practice condition
increased (Pyc and Rawson, 2009).

In addition, Lohse and Healy (2012) argued that training
individuals in procedural information lead to better retention
of “if-then’ procedures and rule-based heuristics than training
individuals on declarative information. But they also found
out that declarative information led to more robust and
efficient information transfer than procedural information.
Also, Chapman et al. (2016) determined that the addition
of cognitively demanding stimuli to generic tasks leads to
an increase in the accuracy and efficiency of the primary
task being executed by the individual. Furthermore, Gonzalez
and Madhavan (2011) ascertained that diversity and variation
of stimuli during training lead to enhanced performance
during the transfer. To test this hypothesis, the participants
were trained in a luggage screening task in three different
conditions: high diversity (higher number of categories of
objects), low diversity (lower number of categories of objects),
and sham condition, where the participants were not given any
training (Gonzalez and Madhavan, 2011). After executing the
training condition, the participants executed a test condition
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where they were instructed to look for novel objects in
the screening task. Results indicated that the participants
in the high diversity condition recorded significantly higher
hit rates and faster response times in the test condition
compared with the low diversity and the sham condition
(Gonzalez and Madhavan, 2011).

However, the efficacy of these training methods has not been
proven in complex and dynamic environments. Complex and
dynamic environments usually demand a better encapsulation
of skills, knowledge, and rules as per Rasmussen (1983).
A comprehensive evaluation of different training methods in a
naturalistic, dynamic decision-making environment is lacking
and much needed in the literature. In this research work,
we intend to address this gap in the literature by conducting
an experiment to evaluate the efficacy of different repetitive
training frameworks (heterogeneity and difficulty) in immersive
VR in a complex search-and-shoot environment.

Materials and methods

Participants

Sixty-four participants (42 men and 22 women; mean
age = 22.9 years, SD = 1.79 years) at the Indian Institute of
Technology Mandi, Himachal Pradesh, India, the Department
of Biomedical Engineering, Institute of Nuclear Medicine
and Allied Sciences, and Defence Research and Development
Organization, Delhi, India took part in this study. The
experiment was approved by an institutional Ethical Committee
at the Indian Institute of Technology Mandi and the Institute
of Nuclear Medicine and Allied Sciences (IITM/DRDO-
LSRB/VD/301). Since the recruitment of subjects was done
through the STEM student pool available at two reputed
universities, we were certain that none of the subjects had
any military background. The recruitment for the study was
done through formal announcements during class/office hours
regarding the experiment. As a part of the demographics
data acquired, the participants self-reported that they seldom
played any games on any platform, i.e., less than 30 min of
gaming per month on mobile phones, desktops, PlayStation,
etc. In addition, the participants also self-reported that they had
not experienced virtual reality in any shape or form before.
We also included questions on the possibility of participants
having frequent migraine-induced headaches and nausea, so
the participants who reported the same would be excluded
before beginning the experiment. This was because some
researchers (de Tommaso et al., 2013; Vekhter et al., 2020)
had suggested excluding participants with nausea and migraine
because of possible exacerbation during the longitudinal VR
intervention. All the participants gave a written consent form
before they took part in the experiment. All the participants
were from Science, Technology, Engineering, or Mathematics

background. None of the participants reported any history of
mental/psychiatric/neurological disorders. All the participants
had normal or corrected-to-normal vision. Out of the 64
participants, 60 were right-handed. All the participants reported
that they had never experienced virtual reality before. All
the participants received a flat payment of INR 100 for their
participation in the study.

The dynamic decision-making
simulation

A search-and-shoot simulation was designed for android
head mounted display (HMD) VR using Unity3D version
5.5 (Wang et al., 2010). The 3D avatars of the enemies in
the simulation were created using Blender Animation version
2.79a (Flavell, 2011). As shown in Figure 1A, the simulation
comprised three army bases located at different sites in the
simulation (Rao et al., 2020a). Before the subjects began the
task, it was explained to the participants that the enemies in
the simulation had acquired these three army bases and the
main objective of the participant was to kill all the enemies in
the simulation and reacquire all the army bases in 10 min. The
participant’s health in the simulation was initialized to 100 and
this health would decrease based on the difficulty level of the
simulation (Rao et al., 2020a). The total number of enemies in
the simulation was 15. Three different levels of task difficulty
(novice, expert, and baseline) were created for the search-
and-shoot VR simulation. The difficulty levels were imbibed
by making several characteristic changes in the simulation
dynamics and incorporating behavior/AI-based changes on the
enemy avatars (Rao et al., 2020a). A detailed explanation of
the different levels of difficulty, incorporated in the simulation,
is given in section “Variation in task difficulty.” As shown
in Figure 1B, the 3D VR simulation was executed using an
android smartphone (Xiaomi Redmi Note 3) and a MyVR
HMD at a field-of-view of 100 degrees. The participant used a
DOMO Magickey Bluetooth controller to maneuver the player
avatar and shoot in the VR simulation. As shown in Figure 2,
the participant was erect while executing the simulation. The
experiment was conducted in an isolated laboratory.

Experiment design

Figure 2 shows the experimental design followed. As shown
in Figure 2, the subjects were equally and randomly divided
into three between-subject conditions: heterogenous, difficult,
and sham. The experiment was 8 days long. The subjects in
the heterogenous condition executed the VR environment in
baseline difficulty on Day 1. From Days 2 to 7, they alternatively
executed the novice difficulty and expert difficulty versions of
the environment, i.e., environment with novice difficulty on
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FIGURE 1

(A) Overhead map of the terrain-based search-and-shoot environment designed in Unity3D. The arrows indicate the locations of the army
bases sieged by the enemies. (B) The HMD VR interface, indicating the time remaining at the top, the participant’s health at the middle-right
corner, the number of army bases to be required from the enemies in the bottom-left corner and the number of bullets remaining at the
bottom-right corner of the interface. Reproduced with permission from Rao et al. (2020b).

FIGURE 2

Experiment Design of the study. Participants performed in a VR environment of Baseline difficulty on Day 1 and were equally and randomly
divided into three between-subjects conditions: Heterogenous, Difficult, and Sham. Each between-subjects condition was 6 days long (from
Days 2 to 7) and consisted of Novice, Expert, and Dummy VR environments. On Day 8, all participants were again asked to perform in a VR
environment of Baseline difficulty.

Day 2, environment with expert difficulty on Day 3, etc. On
Day 8, they executed the environment with baseline difficulty.
The baseline version of the VR environment executed by the
participants on Day 1 and Day 8 was an amalgamation of
the novice and expert versions of the environment. A detailed
description of the variations in the difficulty introduced in
the VR environment is given in section “Variation in task
difficulty.” The subjects in the difficult condition executed the
environment with baseline difficulty on Day 1. From Days 2 to
7, they executed the environment with expert difficulty and then
executed the environment with baseline difficulty on Day 8. The
subjects in the sham condition executed the environment with
baseline difficulty on Day 1. From Days 2 to 7, the participants
in the sham condition underwent VR training in a dummy
scenario irrelevant to the search-and-shoot environment. This
dummy environment was not related to the VR task executed by
the subjects in the heterogenous and difficult conditions in any

way. This dummy scenario was a VR simulation readily available
for Android, called VR thrills: Roller Coaster 360 (Cardboard
Game) (McIlroy et al., 2016). On Day 8, they again executed the
VR environment with baseline difficulty.

On the first day, all the participants were briefed about
the experiment, the VR environment, and the objectives
to be achieved in the VR environment. The participants
then filled out a consent form approving their voluntary
participation in the experiment. The participants then filled
out a demographic form consisting of questions pertaining
to their age, gender, educational background, dominant hand,
psychological/neurological history, possible nausea/oculomotor
sickness, and virtual reality experience, among others. Then,
all the participants executed a 10-min habituation session
in a dummy VR environment to get acclimatized to the
level of immersion, locomotion, and shooting inside an
immersive virtual environment. Various performance measures
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like percentage of enemies killed (calculated by dividing the
number of enemies killed by the participant/total number of
enemies, i.e., 15, then multiplying it by 100), total time taken
to complete the task, accuracy index (calculated by dividing
the number of bullets taken by the participant to kill the
enemies/number of bullets needed to kill the enemies, then
multiplying it by 100), and health index (calculated by initial
health – final health/time taken). The percentage of enemies
killed and the accuracy index were performance measures
that indicated higher attentional acuity and processing speed
(Boot et al., 2008). The time taken and the health index were
performance measures that reflected sustained vigilance and
resilience (Jenkins et al., 2011). The performance measures were
acquired after the task completion on all days. In addition,
participants also undertook a computerized version of the
NASA-task load index (TLX) (Hart, 2006). The NASA-TLX
is a widely used scale for measuring participants’ perceived
workload on a 10-point Likert scale (Hart, 2006), usually after
the execution of tasks requiring considerable workload exertion.
The NASA-TLX is divided into six sub-scales: mental demand,
physical demand, temporal demand, performance satisfaction,
frustration level, and effort. The participants filled out the
NASA-TLX after the execution of the environments on Day
1 and Day 8. We carried out one-way ANOVAs to evaluate
the main effect of the different types of training conditions
(heterogenous, difficult, and sham) on various performance and
cognitive measures. We also carried out one-way ANOVAs to
evaluate the main effect of the duration of training (i.e., Day
1 and Day 8) on various performance and cognitive measures.
In addition, we also carried out mixed ANOVAs to evaluate
the interaction effects across different training conditions
(heterogenous, difficult, and sham) and duration of training
(Day 1 and Day 8) on the performance and cognitive measures.
We also carried out a mixed factorial ANOVA to evaluate the
interaction effects across different types of training conditions
(heterogenous, difficult, and sham) and the entire duration
of training (from Days 1 to 8) on the various performance
measures. The Q-Q plots, i.e., the plot between expected and
normal quantiles showed that all the dependent variables taken
into consideration were normally distributed. The alpha level
was set at 0.05 and the power was set at 0.8. All the statistical
analysis in the article was done using IBM SPSS Statistics 20.
We have strictly adhered to the methods cited by Field (2009)
for executing all the statistical methods mentioned in the article.
For executing the mixed factorial ANOVA, methods mentioned
by Field (2009) (pg. no. 430–441) were strictly followed. For
executing the repeated measures ANOVA, methods mentioned
by Field (2009) (pg. no. 468–481) were strictly followed. The
experimental data were then checked by a statistician at the
University for accuracy. Overall, on account of IBLT (Gonzalez
and Dutt, 2011; Dutt and Gonzalez, 2012; Lejarraga et al., 2012),
heterogeneity of practice hypothesis (Gonzalez and Madhavan,
2011), desirable difficulty framework (Bjork, 1994), and retrieval
effort hypothesis (Pyc and Rawson, 2009), we expected the

participants to perform better when heterogenous and difficult
training was imparted compared with the sham condition. In
addition, on account of IBLT (Gonzalez and Dutt, 2011; Dutt
and Gonzalez, 2012; Lejarraga et al., 2012) and the heterogeneity
of practice hypothesis (Gonzalez and Madhavan, 2011), we
expected the participants to perform better on Day 8 when the
heterogenous training condition was imparted compared with
the sham condition.

Variation in task difficulty

The variation in the characteristic attributes of the
simulation and the enemy avatar concerning the type of task
difficulty is shown in Table 1. As shown in Table 1, the
ammunition available for the participants in all the difficulty
levels was constant at 500. The delay between successive
shots by the enemy was kept to the following: 30 frames in
the novice difficulty level and 15 frames in the expert and
baseline difficulty levels (Rao et al., 2020a). The rate of health
decrease of the enemy per shot was kept to the following:
10 in the novice and baseline difficulty levels and 8 in the
expert difficulty level. The rate of health decrease of the player
per shot was kept to the following: 1 in the novice difficulty
level and 2 in the expert and baseline difficulty levels (Rao
et al., 2020a). The field-of-view of the enemy was kept to
the following: 90◦ in the novice and the baseline difficulty
levels and 120◦ in the expert difficulty level (Rao et al.,
2020a). The total time available to complete the objectives
in the VR environment was kept to 10 min in all the
difficulty levels.

The physical mesh was divaricated into three sections: fully
covered areas (in light blue), partially open areas (in purple), and

TABLE 1 Variation in the physical attributes of the environment with
respect to the different difficulty levels.

Attribute Novice
difficulty

level

Expert
difficulty

level

Baseline
difficulty

level

Ammunition 500 500 500

Delay between
consecutive shots
by the enemy avatar

30 frames 15 frames 15 frames

Rate of decrease in
health of the enemy
avatar per shot

10 8 10

Rate of decrease in
health decrease of
the player avatar
per shot

1 2 2

FoV of the enemy
avatar

90◦ 120◦ 90◦

Total time to
complete the
simulation

10 min 10 min 10 min
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FIGURE 3

The percentage of enemies killed across different training conditions and days. The error bars show the 95% CI around point estimates.

open areas (in green). As shown in Figure 3, the areas covered
in light blue constitute areas with hiding spots for the enemy
avatars and the participant. The purple areas depicted the areas
with a medium number of hiding spots and the green areas
depicted the fully open areas with no hiding spots whatsoever
(Rao et al., 2020a).

We used finite state machines (FSMs) to ascertain the
actions associated with the behavior of the enemies in the
simulation (Rao et al., 2020a). The enemies were divided into
two coteries: three assault groups of enemies and three stealth
enemies. Each assault group consisted of four enemies where
one was the leader and the other three were followers. The
leader would decide the behavior/movement to be executed and
the followers would follow suit. The assault groups of enemies
were indifferent to the cost of the areas and were programmed
to move to four possible destinations – randomly, toward the
participant, toward an army base, or stay at the same location
(Rao et al., 2020a). The probabilities of the assault group and
the stealth group moving to all these destinations were varied
according to the difficulty levels (see Table 2). As shown in
Table 2, the probability of the assault group moving toward
the participant was kept to the following: 0.25 in the novice
difficulty level and 0.75 in the expert and baseline difficulty
levels. The probability of the assault group moving toward the
army base was kept to the following: 0.25 in the novice and
baseline difficulty levels and 0.75 in the expert difficulty level
(Rao et al., 2020a). The probability of the assault group moving
randomly was kept to the following: 0.75 in the novice and
baseline difficulty levels and 0.25 in the expert difficulty level.
The probability of the assault group remaining static was kept
to the following: 0.75 in the novice difficulty level and 0.25
in the expert and baseline difficulty levels. The stealth group,
which consisted of three enemy avatars, acted independently to
the assault enemies. The stealth group walked in areas of the

physical mesh with minimum cost. As shown in Table 2, the
probability of the stealth group moving toward an army base
was kept to the following: 0.3 in the novice difficulty level and
0.7 in the expert and baseline difficulty levels. The probability of
the stealth group moving randomly was kept to the following:
0.7 in the novice and the baseline difficulty levels and 0.3 in the
expert difficulty level (Rao et al., 2020a).

Results

Performance measures

Percentage of enemies killed
Figure 4A shows the percentage of enemies killed across

the different training conditions. As shown in Figure 4A, the
percentage of enemies killed was significantly different across
different training conditions [F (2, 126) = 25.57, p < 0.05,

TABLE 2 Variation in probabilities of movement with respect to
different difficulty levels.

Attribute Novice
difficulty

level

Expert
difficulty

level

Baseline
difficulty

level

Toward participant
(assault)

0.25 0.75 0.75

Toward army base
(assault)

0.25 0.75 0.25

Random (assault) 0.75 0.25 0.75

Static (assault) 0.75 0.25 0.25

Toward army base
(stealth)

0.30 0.70 0.70

Random (stealth) 0.70 0.30 0.70
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FIGURE 4

(A) Percentage of enemies killed across different training conditions. (B) Percentage of enemies killed across Day 1 and Day 8. (C) Percentage of
enemies killed across different training conditions and Day 1 and Day 8. The error bars show 95% CI around point estimates.

ηp
2 = 0.28]. The Bonferroni post hoc test revealed the percentage

of enemies killed was similar in the heterogenous and difficult
conditions; however, there was a significant difference between
the heterogenous and sham conditions and difficult and sham
conditions [Heterogenous: µ = 60.41% ∼ Difficult: µ = 57.68%

(p = 0.9), Heterogenous: µ = 60.41% > Sham: µ = 40.72%
(p < 0.05); Difficult: µ = 57.68% > Sham: µ = 40.72%
(p < 0.05)].

Figure 4B shows the percentage of enemies killed on Day 1
and Day 8 across all training conditions. As shown in Figure 5B,
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FIGURE 5

(A) The accuracy index (in percentage) across different training
conditions. (B) The accuracy index (in percentage) on Day 1 and
Day 8. (C) The accuracy index (in percentage) across different
training conditions on Day 1 and Day 8. The error bars show 95%
CI around point estimates.

across all conditions, the percentage of enemies killed was
significantly higher on Day 8 compared with Day 1 [Day 8:
µ = 69.34% > Day 1: µ = 36.52%; F (1, 126) = 89.84, p < 0.05,
ηp

2 = 0.59].
Furthermore, the interaction between the type of training

and the duration of training significantly influenced the
percentage of enemies killed [F (2, 126) = 23.16, p < 0.05,
ηp

2 = 0.26] (See Figure 4C). The Bonferroni post hoc test
revealed that there was no difference in the percentage
of enemies killed between different conditions on Day 1
[Heterogenous: µ = 35.72% ∼ Difficult: µ = 38.14% (p = 0.9),
Heterogenous: µ = 35.72% ∼ Sham: µ = 35.72% (p = 1);
Difficult: µ = 38.14% ∼ Sham: µ = 35.72% (p = 0.9)]. However,
the percentage of enemies killed was significantly higher in
heterogenous and difficult conditions compared with the sham
condition on Day 8 [Heterogenous: µ = 85.11% ∼ Difficult:
µ = 77.21% (p = 0.06), Heterogenous: µ = 85.11% > Sham:
µ = 45.70% (p < 0.05); Difficult: µ = 77.21% > Sham:

µ = 45.70% (p < 0.05)]. Overall, as per our expectations, both
the heterogenous and difficult training conditions yielded an
increase in the percentage of enemies killed on Day 8 compared
with the sham condition.

Next, we compared the percentage of enemies killed between
the heterogenous and difficult conditions throughout training
(from Days 1 to 8) via a mixed-factorial ANOVA. Figure 3
shows the percentage of enemies killed in the heterogenous
and difficult conditions throughout the training. Mauchly’s
test for the percentage of enemies killed indicated that the
assumption of sphericity was violated [χ2(27) = 83.89, p< 0.05].
Therefore, multivariate tests were reported with Greenhouse-
Geisser correction (ε = 0.64). Results showed that percentage of
enemies killed was significantly affected by the type of training
[F (4.48, 188.23) = 14.1, p < 0.05, ηp

2 = 0.77]. In addition, the
interaction between the type of training and the duration of
training on the percentage of enemies killed was also significant
[F (4.48, 188.23) = 3.56, p < 0.05, ηp

2 = 0.07]. As shown in
Figure 3, the percentage of enemies killed had a dip on Day 2 in
the difficult condition and a dip on Day 3 in the heterogenous
condition (across both conditions, the percentage of enemies
killed increased over days after the initial dip in performance).

Time taken
The time taken to complete the simulation was not

significantly different across different training conditions [F (2,
126) = 13.42, p < 0.05, ηp

2 = 0.18]. The Bonferroni post hoc
test revealed the time taken was similar in the heterogenous and
difficult conditions; however, there was a significant difference
between the heterogenous and sham conditions and difficult
and sham conditions [Heterogenous: µ = 253.63s ∼ Difficult:
µ = 251.59s (p = 0.9), Heterogenous: µ = 253.63s > Sham:
µ = 199.11s (p < 0.05); Difficult: µ = 251.59s > Sham:
µ = 199.11s (p < 0.05) as shown in Figure 6A].

Figure 6B shows the time taken on Day 1 and Day 8
across all training conditions. As shown in Figure 6B, across
all conditions, the time taken was significantly higher on Day 8
compared with Day 1 [Day 1: µ = 300.77s < Day 8: µ = 168.78s;
F (1, 126) = 183.54, p < 0.05, ηp

2 = 0.59].
Furthermore, the interaction between the type of training

and the duration of training significantly influenced the time
taken [F (2, 126) = 17.26, p < 0.05, ηp

2 = 0.21] (See Figure 6C).
The Bonferroni post hoc test revealed that there were no
difference in the time taken between the heterogenous and
difficult conditions on Day 1 [Heterogenous: µ = 163.31s
∼ Difficult: µ = 169.72s (p = 0.9)]. In addition, there
was no significant difference in the time taken between the
heterogenous and sham conditions and the difficult and sham
conditions on Day 1 [Heterogenous: µ = 163.31s < Sham:
µ = 173.31s (p = 0.9), Difficult: µ = 169.72s < Sham: µ = 173.31s
(p = 0.9)]. However, the time taken was significantly higher in
the heterogenous and difficult conditions compared with the
sham condition on Day 8 [Heterogenous: µ = 343.95s > Sham:
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FIGURE 6

(A) The time taken (in seconds) across different training conditions. (B) The time taken (in seconds) on Day 1 and Day 8. (C) The time taken (in
seconds) across different training conditions on Day 1 and Day 8. The error bars show 95% CI around point estimates.

µ = 224.9s (p < 0.05); Difficult: µ = 333.45s > Sham: µ = 224.9s
(p< 0.05)]. There was no significant difference in the time taken
between the heterogenous and difficult conditions on Day 8
[Heterogenous: µ = 343.95s ∼ Difficult: µ = 333.45s (p = 0.98)].
Overall, as per our expectations, both the heterogenous and
difficult conditions yielded an increase in the time taken on Day
8 compared with the sham condition.

Next, we compared the time taken between the
heterogenous and difficult conditions over the duration of
training (from Days 1 to 8) via a mixed-factorial ANOVA.
Mauchly’s test for the time taken indicated that the assumption
of sphericity was not violated [χ2(27) = 39.07, p = 0.06].
Therefore, multivariate tests were reported with sphericity
assumed. Results showed that the time taken was not
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significantly affected by the type of training [F (7, 294) = 0.58,
p = 0.76, ηp

2 = 0.01]. There was no interaction between the
type of training conditions and duration of training on the time
taken [F (7, 196) = 0.66, p = 0.75, ηp

2 = 0.01].

Accuracy index
Figure 5A shows the percentage accuracy index across

the different training conditions. As shown in Figure 5A, the
percentage accuracy index was significantly different across
different training conditions [F (2, 126) = 36.71, p < 0.05,
ηp

2 = 0.37]. The Bonferroni post hoc test revealed that the
percentage accuracy index was higher in the heterogenous
condition compared with the sham condition [Heterogenous:
µ = 54.36% ∼ Sham: µ = 43.9% (p < 0.05)]; however, the
percentage accuracy index was similar in the heterogenous and
difficult conditions and significantly different across difficult
and sham conditions [Heterogenous µ = 54.36% ∼ Difficult:
µ = 54.31% (p = 0.9), Difficult: µ = 54.31% > Sham: µ = 43.9%
(p < 0.05)].

Figure 5B shows the percentage accuracy index on Day 1
and Day 8 across all training conditions. As shown in Figure 5B,
the accuracy index was significantly higher on Day 8 compared
with Day 1 [Day 8: µ = 61.6% > Day 1: µ = 40.12%; F (1,
126) = 350.39, p < 0.05, ηp

2 = 0.74].
Furthermore, the interaction between the type of training

and the duration of training significantly influenced the
percentage accuracy index [F (2, 126) = 23.87, p < 0.05,
ηp

2 = 0.28] (see Figure 5C). The Bonferroni post hoc test
revealed that there was no difference in the percentage accuracy
index between different conditions on Day 1 [Heterogenous:
µ = 40.91% ∼ Difficult: µ = 40.68% (p = 0.9), Heterogenous:
µ = 40.91% ∼ Sham: µ = 38.77% (p = 0.85), Difficult: µ = 40.68%
∼ Sham: µ = 38.77% (p = 0.9)]. However, the percentage
accuracy index was significantly higher in the heterogenous and
difficult conditions compared with the sham condition on Day 8
[Heterogenous: µ = 67.81% > Sham: µ = 49.04% (p < 0.05),
Difficult: µ = 67.95% > Sham: µ = 49.04% (p < 0.05)]. The
percentage accuracy index in the heterogenous and difficult
conditions was similar [Heterogenous: µ = 67.81% ∼ Difficult:
µ = 67.95% (p = 0.9)]. Overall, as per our expectations, both
the heterogeneity and difficult conditions yielded an increase
in the percentage accuracy index on Day 8 compared with
the sham condition.

Next, we compared the percentage accuracy index between
the heterogenous and difficult conditions over the duration
of training (from Days 1 to 8) via a mixed-factorial
ANOVA. Figure 7 shows the percentage accuracy index in
the heterogenous and difficult conditions over the duration of
training. Mauchly’s test for the accuracy index indicated that
the assumption of sphericity was violated, [χ2(27) = 78.85,
p < 0.05]. Therefore, multivariate tests were reported with
Greenhouse-Geisser correction (ε = 0.675). Results showed that
the percentage accuracy index was significantly affected by the
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The accuracy index (in percentage) across different type of
training conditions and baseline/training days (Day 1 to Day 8).
The error bars show 95% CI around point estimates.
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The health index across different baseline days (Day 1 and Day
8). The error bars show 95% CI around point estimates.

type of training condition [F (4.72, 198.305) = 23.43, p < 0.05,
ηp

2 = 0.73]. However, the interaction between the type of
training and the duration of training on the percentage accuracy
index was not significant [F (4.72, 198.31) = 1.29, p < 0.05,
ηp

2 = 0.03]. In the heterogenous condition, the percentage
accuracy index recorded a dip on Day 2 and then increased
gradually till Day 8 (see Figure 7). In the difficult condition,
the percentage accuracy index increased gradually till Day 7 and
dipped a bit on Day 8.

Health index
The health index was not significantly different across

different training conditions [F (2, 126) = 0.94, p = 0.53,
ηp

2 = 0.04].
Figure 8 shows the health index on Day 1 and Day 8

across all training conditions. As shown in Figure 8, across all
conditions, the health index was significantly lower on Day 8
compared with Day 1 [Day 8: µ = 0.35 < Day 1: µ = 0.65; F (1,
126) = 92.87, p < 0.05, ηp

2 = 0.42].
Furthermore, the interaction between the type of training

and the duration of training did not significantly influence the
health index [F (2, 126) = 2.56, p = 0.27, ηp

2 = 0.01].
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FIGURE 9

(A) The self-reported mental demand across different training conditions. (B) The mental demand across different baseline days (Day 1 and Day
8). (C) The mental demand across different training conditions and baseline days (Day 1 and Day 8). The error bars show 95% CI around point
estimates.

Next, we compared the health index between the
heterogenous and difficult conditions throughout the training
(from Days 1 to 8) via a mixed-factorial ANOVA. Mauchly’s
test for the health index indicated that the assumption of
sphericity was violated, [χ2(27) = 84.32, p < 0.05]. Therefore,
multivariate tests were reported with Greenhouse-Geisser

correction (ε = 0.34). Results showed that the health index
was not significantly affected by the type of training [F (1.45,
183.44) = 1.34, p = 0.32, ηp

2 = 0.03]. There was no significant
interaction between the training conditions and the duration of
training on the health index [F (1.45, 198.31) = 1.56, p = 0.45,
ηp

2 = 0.02].
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Cognitive measures

Mental demand
Figure 9A shows the self-reported mental demand across

the different training conditions. As shown in Figure 9A, the
self-reported mental demand was significantly different across
different training conditions [F (2, 126) = 17.82, p < 0.05,
ηp

2 = 0.17]. The Bonferroni post hoc test revealed that the
self-reported mental demand was significantly higher in the
sham condition compared with the heterogenous condition
and the sham condition compared with the difficult condition
[Heterogenous: µ = 6.36 < Sham: µ = 7 (p < 0.05), Difficult:
µ = 6.29 < Sham: µ = 7 (p < 0.05)]. The self-reported
mental demand was similar across the heterogenous and difficult
conditions [Heterogenous: µ = 6.36 ∼ Difficult: µ = 6.29
(p = 0.99)].

Figure 9B shows the self-reported mental demand on Day 1
and Day 8 across all conditions. As shown in Figure 9B, across
all conditions, the mental demand was significantly lower on
Day 8 compared with Day 1 [Day 8: µ = 5.68 < Day 1: µ = 7.42;
F (1, 126) = 37.85, p < 0.05, ηp

2 = 0.36].
Furthermore, the interaction between the type of training

and the duration of training significantly influenced the self-
reported mental demand [F (2, 126) = 17.82, p < 0.05,
ηp

2 = 0.17] (see Figure 9C). The Bonferonni post hoc test
revealed that there was no difference in the self-reported mental
demand between different conditions on Day 1 [Heterogenous:
µ = 7.59 ∼ Difficult: µ = 7.54 (p = 0.9), Heterogenous:
µ = 7.59 ∼ Sham: µ = 7.13 (p = 0.56), Difficult: µ = 7.54
∼ Sham: µ = 7.13 (p = 0.61)]. However, the self-reported
mental demand was significantly lower in heterogenous, and
difficult conditions compared with the sham condition on Day 8
[Heterogenous: µ = 5.13 < Sham: µ = 6.86 (p < 0.05), Difficult:
µ = 5.04 < Sham: µ = 6.86 (p < 0.05)]. The self-reported
mental demand was similar across heterogenous and difficult
conditions on Day 8 [Heterogenous: µ = 5.13 ∼ Difficult:
µ = 5.04 (p = 0.9)]. Overall, as per our expectations, both the
heterogenous and difficult training conditions yielded a decrease
in the self-reported mental demand on Day 8 compared with
the sham condition.

Physical demand
Figure 10 shows the self-reported physical demand across

the different training conditions. As shown in Figure 10, the
self-reported physical demand was not significantly different
across different training conditions [F (2, 126) = 2.27, p = 0.12,
ηp

2 = 0.03]. The Bonferroni post hoc test revealed that the
physical demand was similar in the heterogenous condition
compared with the difficult condition [Heterogenous: µ = 3.59
∼ Difficult: µ = 3.36 (p = 0.92)]. In addition, the self-
reported physical demand was similar in the heterogenous
condition compared with the sham condition [Heterogenous:
µ = 3.59 > Sham: µ = 3.13 (p = 0.12)].
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FIGURE 10

The self-reported physical demand across different training
conditions. The error bars show 95% CI around point estimates.

The self-reported physical demand did not yield any
statistically significant difference across all training conditions
when Day 8 was compared with Day 1 [Day 8: µ = 3.31 ∼ Day
1: µ = 3.4; F (1, 126) = 2.09, p = 0.13, ηp

2 = 0.03].
Furthermore, the interaction between the training type and

the duration did not significantly influence the self-reported
physical demand [F (2, 126) = 4.01, p = 0.06, ηp

2 = 0.06].

Temporal demand
The self-reported temporal demand was not significantly

different across different training conditions [F (2, 126) = 1.18,
p = 0.31, ηp

2 = 0.02].
Across all conditions, the self-reported temporal demand

did not yield any statistical significance when Day 8 was
compared with Day 1 [F (1, 126) = 0.62, p = 0.92, ηp

2 = 0.05].
Furthermore, the interaction between the training type and

the duration did not significantly influence the self-reported
temporal demand [F (2, 126) = 1.45, p = 0.24, ηp

2 = 0.02].

Frustration level
The self-reported frustration level was not significantly

different across different training conditions [F (2, 126) = 2.05,
p = 0.13, ηp

2 = 0.03].
Across all conditions, the self-reported frustration level did

not yield any statistical significance when Day 8 was compared
with Day 1 [Day 8: µ = 4.4 ∼ Day 1: µ = 4.33; F (1, 126) = 0.12,
p = 0.73, ηp

2 = 0.001].
Furthermore, the interaction between the type of training

and the duration of training did not significantly influence
the self-reported frustration level [F (2, 126) = 2.05, p = 0.13,
ηp

2 = 0.032].

Performance satisfaction
Figure 11A shows the self-reported performance

satisfaction across the different training conditions. As shown
in Figure 12A, the self-reported performance satisfaction was
significantly different across different training conditions [F (2,
126) = 13.18, p < 0.05, ηp

2 = 0.24]. The Bonferroni post hoc
test revealed the self-reported performance satisfaction was
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FIGURE 11

(A) The self-reported performance satisfaction across different
training conditions. (B) The performance satisfaction across
different baseline days (Day 1 and Day 8). (C) The performance
satisfaction across different training conditions and baseline
days (Day 1 and Day 8). The error bars show 95% CI around
point estimates.

significantly higher in the heterogenous condition compared
with the sham condition and the difficult condition compared
with the sham condition [Heterogeneity: µ = 6.09 > Sham:
µ = 4.93 (p < 0.05), Difficult: µ = 5.81 > Sham: µ = 4.93
(p < 0.05)]. The Bonferroni post hoc test also revealed that the
self-reported performance satisfaction was similar across the
heterogenous and difficult training condition [Heterogeneity:
µ = 6.09 ∼ Difficult: µ = 5.81 (p = 0.48)].

Figure 11B shows the self-reported performance
satisfaction across all conditions on Day 1 and Day 8. As
shown in Figure 12B, across all conditions, the self-reported
performance satisfaction was significantly higher on Day 8
compared with Day 1 [Day 1: µ = 6.19 < Day 8: µ = 5.03; F (1,
126) = 55.16, p < 0.05, ηp

2 = 0.3].
Furthermore, the interaction between the type of training

and the duration of training significantly influenced the self-
reported performance satisfaction [F (2, 126) = 13.18, p < 0.05,
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FIGURE 12

(A) The self-reported effort across different training conditions.
(B) The effort across different baseline days (Day 1 and Day 8).
(C) The effort across different training conditions and baseline
days (Day 1 and Day 8). The error bars show 95% CI around
point estimates.

ηp
2 = 0.17] (see Figure 11C). The Bonferroni post hoc test

revealed that there was no significant difference in the self-
reported performance satisfaction between different training
conditions on Day 1 [Heterogenous: µ = 5.13 ∼ Difficult:
µ = 5.04 (p = 0.9), Heterogenous: µ = 5.13 ∼ Sham:
µ = 4.9 (p = 0.8), Difficult: µ = 5.04 ∼ Sham: µ = 4.9
(p = 0.9)]. However, the self-reported performance satisfaction
was significantly higher in the heterogenous and difficult
conditions compared with the sham condition on Day 8
[Heterogenous: µ = 7.04 > Sham: µ = 4.95 (p < 0.05), Difficult:
µ = 6.59 > Sham: µ = 4.95 (p < 0.05)]. Overall, as per
our expectations, both the heterogeneity and difficult training
conditions yielded an increase in the self-reported performance
satisfaction on Day 8 compared with the sham condition.
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Effort
Figure 12A shows the self-reported effort across the

different training conditions. As shown in Figure 12A, the
self-reported effort was significantly different across different
training conditions [F (2, 126) = 12.47, p < 0.05, ηp

2 = 0.16].
The Bonferroni post hoc test revealed that the self-reported
effort was significantly higher in the sham condition compared
with the heterogenous and difficult conditions [Heterogenous:
µ = 5.84 < Difficult: µ = 6.4 (p < 0.05), Heterogenous:
µ = 5.84 < Sham: µ = 6.9 (p < 0.05), Difficult: µ = 6.4 < Sham:
µ = 6.9 (p < 0.05)].

Figure 12B shows the self-reported effort across all
conditions on Day 1 and Day 8. As shown in Figure 12B, the
self-reported effort was significantly lower on Day 8 compared
with Day 1 [Day 1: µ = 7.19 > Day 8: µ = 5.57; F (1, 89) = 86.02,
p < 0.05, ηp

2 = 0.4].
Furthermore, the interaction between the type of training

and the duration of training significantly influenced the self-
reported effort [F (2, 126) = 12.08, p < 0.05, ηp

2 = 0.16]
(see Figure 12C). The Bonferroni post hoc test revealed that
there was no significant difference in the self-reported effort
between different conditions on Day 1 [Heterogenous: µ = 7.09
∼ Difficult: µ = 7.36 (p = 0.75), Heterogenous: µ = 7.09 ∼ Sham:
µ = 7.13 (p = 0.9), Difficult: µ = 7.36 ∼ Sham: µ = 7.13 (p = 0.6)].
However, the self-reported effort was significantly lower in the
heterogenous and difficult conditions compared with the sham
condition on Day 8 [Heterogenous: µ = 4.59 < Sham: µ = 6.68
(p < 0.05), Difficult: µ = 5.45 < Sham: µ = 6.68 (p < 0.05)].
The Bonferroni post hoc test also revealed that the self-reported
effort was significantly lower in the heterogenous condition
compared with the difficult condition on Day 8 [Heterogenous:
µ = 4.59 < Difficult: µ = 5.45 (p < 0.05)]. Overall, as per
our expectations, both the heterogenous and difficult training
conditions yielded a decrease in the self-reported effort on Day
8 compared with the condition.

Discussion and conclusion

This article investigated the efficacy of different repetitive
training frameworks, i.e., heterogenous training and difficult
training in immersive VR in a complex search-and-shoot
scenario. Participants were divided into three between-
subject conditions (heterogenous, difficult, and sham). All the
participants executed a baseline version of the search-and-shoot
environment on Day 1. The participants in the heterogenous
condition alternatively undertook VR training in the novice
and difficult versions of the search-and-shoot environment
from Days 2 to 7. The participants in the difficult condition
undertook VR training only in the difficult version of the search-
and-shoot environment from Days 2 to 7. The participants
in the sham condition underwent VR training in a dummy
scenario irrelevant to the search-and-shoot environment. On

Day 8, all the participants executed the baseline version of
the VR search-and-shoot environment again. The complexity
in the environment was varied by changing some basic
physical characteristics of the enemy avatars appearing in
the environment and by changing their AI. We took several
performances and cognitive measures into consideration for our
analysis and subsequent interpretation of results.

The advantages of using VR as the display medium
for assessing and enhancing cognitive performance are well
documented by Rao et al. (2018a, 2020a). In this study, VR
allowed the possibility for the participant to immerse themselves
in the virtual world, which eventually helped them to build
a better mental model of the immediate environment. The
advantage of VR as the display medium is evident in the
significantly better performance obtained and significantly less
mental demand reported by the participants to successfully
execute the task. The immersion, the presence, i.e., the “sense
of being there” (ter Haar, 2005) leads to a significantly more
realistic engagement with the environment and its characters.
This, coupled with the resolution offered by VR facilitated the
creation of successful instances in the participant’s memory,
leading to better information processing and performance.
However, the extent of realism required in VR has been
debated by some researchers (Gisbergen et al., 2019). Gisbergen
et al. (2019) bought forth two contradictory theories on the
extent of realism. One is Gestalt theory (Pertaub et al., 2002),
which claims that high realism increases the experience and
natural behavior. The other theory is called the Uncanny
Valley (Slater and Steed, 2000), which states that too much
realism and resemblance to the real world brings about a
very strong drop in believability and comfort and may be
rejected by human participants as a defense mechanism.
In our present work, we have not incorporated a measure
for quantifying the extent of realism. The design elements
integrated into the VR task positively influenced or hindered
the participant’s overall performance. In future, we intend
to evaluate how the extent of realism and the integration
of various design elements in a VR task affect the dynamic
decision-making performance. In addition, we also intend
to evaluate the neural dynamics [through neurophysiological
measures like Electroencephalography (EEG) and functional
near-infrared spectroscopy (fNIRS)] underlying VR training.
This will enable us to understand and interpret how VR
engages the proprioceptive senses and influences decision-
making in the brain.

We found the percentage number of enemies killed
significantly higher in both heterogenous and difficult
conditions on Day 8 compared with the sham condition.
These results were consistent with the instance-based learning
theory (IBLT) as proposed by Gonzalez and Dutt (2011),
and the retrieval effort hypothesis proposed by Pyc and
Rawson (2009). As per IBLT (Gonzalez and Dutt, 2011), the
participants in the heterogenous condition were able to store
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multiple instances of information regarding the behavior of the
enemies in the environment during repetitive training. These
numerous variable instances helped the participants quickly
retrieve, process, and make quick and efficient decisions on
the corresponding association between maneuvering through
the environment and simultaneously shooting the enemies
in quick time (Gonzalez and Dutt, 2011). As per the retrieval
effort hypothesis (Pyc and Rawson, 2009), during training
from Days 2 to 7, the participants in the difficult condition
were able to make several difficult but successful retrievals of
“if-then” procedures required to successfully negotiate through
a search-and-shoot environment (Pyc and Rawson, 2009).
Paired with immersive VR’s natural tendency to provide a sense
of “presence,” participants could engage their proprioceptive
senses to respond to the demands in the complex environment
better (ter Haar, 2005). In addition, mixed factorial ANOVA
revealed that participants in the heterogenous condition
had a slight dip in the percentage number of enemies killed
on Day 2, and participants in the difficult condition had a
slight dip in the percentage number of enemies killed on
Day 3. After these days, the percentage number of enemies
killed in both the conditions kept on increasing till Day 8.
This result could be explained through the skill, rules, and
knowledge (SRK) taxonomy proposed by Rasmussen (1983).
According to the SRK taxonomy, subjects in novel complex
environments initially adopt knowledge-based behavior, which
through repetitive training could eventually acquire rule-based
behavior and subsequently skill-based behavior. According to
Rasmussen (1983), the acquisition of knowledge-based behavior
is very effortful and slow. During repetitive training in both
the heterogeneous and difficult conditions, the participants
slowly gathered information that led to the creation of rule-
based heuristics in their brains, which eventually transformed
into intuitive skill-based behavior by the end of the training
period. Henceforth, on Day 8, the participants were able to
adopt the SRK taxonomy in the baseline search-and-shoot
environment, leading to enhanced performance as shown in
the results. A similar pattern of results was observed for the
accuracy index as well.

The results for the total time taken were quite interesting.
The results from the mixed factorial ANOVA revealed
that participants in both the heterogenous and the difficult
conditions took significantly less time to complete/be
terminated from the environment than the sham condition
on Day 1. However, on Day 8, the participants in both
the heterogenous and the difficult conditions recorded a
significantly higher total time than the sham condition. One
of the reasons could be that on Day 8, participants in both
the heterogenous and difficult conditions were able to kill a
greater number of enemies, which meant that they were able to
traverse through different army bases in the environment and
were able to survive in the environment much longer compared
with the sham condition. Similar to the percentage number
of enemies killed and the accuracy index and the total time

taken also did not reveal any significant difference between the
participants in the heterogenous and difficult conditions. The
health index (which was indicative of the amount of health
reduced per second) did not reveal any significant difference
between participants in all three conditions.

The participants in the heterogenous and difficult conditions
reported significantly lower mental demand on Day 8 compared
with the sham condition. This result was consistent with
IBLT proposed by Gonzalez and Dutt (2011), which argued
that repetitive storage of successful, variable instances of ‘if-
then’ procedures in the memory could significantly reduce
the information processing requirements of a participant at
transfer. This result was also consistent with Rasmussen’s (1983)
SRK taxonomy, which implied that skill-based behavior was
comprised of expected actions and directly connected with the
search-and-shoot environment. Henceforth, participants in the
heterogenous and difficult conditions were able to employ skill-
based behavior on Day 8, due to the repetitive training obtained
from Days 2 to 7, which eventually reduced their propensity to
adopt knowledge-based behavior, which inherently had higher
information processing requirements.

Other self-reported cognitive variables (like temporal
demand, physical demand, and frustration level) did not reveal
any significant difference between the different conditions. One
reason for this insignificance might be due to the inherent
nature of the task; there was no extraordinary physical exertion
required to complete the objectives in the search-and-shoot
environment. In addition, the time taken to execute the entire
experimental protocol was quite limited, which eventually led to
the participants not feeling frustrated.

Participants in the heterogenous and the difficult conditions
also reported higher performance satisfaction than the sham
condition on Day 8. This result implied that the participants
in the heterogenous and difficult conditions were quite satisfied
with the way they performed on Day 8 on the back of the
respective repetitive training they undertook from Days 2 to
7. These results were consistent with the significantly higher
performance measures recorded for both the heterogenous and
difficult conditions on Day 8 than the sham condition. In
addition, participants in both the heterogenous and difficult
conditions reported significantly lesser effort required to achieve
the level of performance seen on Day 8 compared with the sham
condition. These results were also consistent with Gonzalez and
Dutt’s (2011) IBLT and the successful acquisition of skill-based
behavior through repetitive training as proposed by Rasmussen
(1983). Interestingly, participants in the heterogenous condition
reported significantly lesser effort required to execute the
objectives in the search-and-shoot environment compared with
the difficult condition on Day 8. One reason might be due to
the acquisition of variable instances and procedures experienced
during the training from Days 2 to 7 in the heterogenous
condition. Since the baseline version of the environment
executed by the participants on Day 1 and Day 8 was an
amalgamation of the novice and difficult versions, participants
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in the heterogenous condition were able to efficiently allocate
the memory for different instances encountered in both the
conditions, subsequently leading to lesser effort required to
retrieve those instances to make complex decisions on Day 8.

This article addresses the impact of different repetitive
training frameworks on dynamic decision-making. As discussed
before, most of the research in this domain has been
directed toward generic motor tasks, language acquisition
tasks, or simple memory tasks. All these tasks require the
utilization of only basic cognitive processes. On the other hand,
dynamic decision-making requires the effective encapsulation
of different cognitive and sub-cognitive processes. One of the
primary contributions of this article has been the successful
evaluation of the efficacy of both heterogenous and difficult
conditions in training personnel in novel and complex decision-
making environments. These training frameworks can be
adapted to train military personnel, industrial personnel, and
medical personnel in immersive VR in complex environments.
Even though this article has comprehensively evaluated
the efficacy of two different repetitive training frameworks,
other training frameworks like procedural reinstatement and
cognitive antidote could also be evaluated for their efficiency
in the transfer of cognitive skills in future. In addition, short-
term and long-term transfer can also be assessed concerning all
the aforementioned repetitive training frameworks to measure
their propensity for long-term acquired skill retention. In
addition, advanced feedback mechanisms, like brain-computer
interfaces, haptic/olfactory feedback, and advanced AI could
be incorporated into the immersive VR environments for
providing more gratifying and realistic experiences significantly
for training personnel.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed
and approved by Institute Ethical Committee, Indian Institute
of Technology Mandi. The patients/participants provided their
written informed consent to participate in this study.

Author contributions

AR contributed toward designing the simulation, the
experiment and carried out the data collection, and analyses of
the work. SC aided in the data collection for the experiment.
VD was the principal investigator who developed the idea of
the experiment and served as a constant guiding light for this
work. All authors contributed to the article and approved the
submitted version.

Funding

This research work was partially supported by a grant
from the Life Sciences Research Board, Defence Research
and Development Organization (DRDO) titled “Human
performance enhancement via tDCS in VR and performance
forecasting via machine learning methods” (IITM/DRDO-
LSRB/VD/301) to VD.

Acknowledgments

We are thankful to the Indian Institute of Technology Mandi
for providing the resources for this project.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

References

Antoniou, P. E., Arfaras, G., Pandria, N., Athanasiou, A., Ntakakis, G.,
Babatsikos, E., et al. (2020). Biosensor real-time affective analytics in virtual and
mixed reality medical education serious games: Cohort study. JMIR Serious Games
8:e17823. doi: 10.2196/17823

Bjork, R. A. (1994). “Memory and metamemory considerations in the
training of human beings,” in Metacognition: Knowing about knowing, eds

J. Metcalfe and A. P. Shimamura (Cambridge, MA: The MIT Press),
185–205.

Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., and Gratton,
G. (2008). The effects of video game playing on attention, memory, and
executive control. Acta Psychol. 129, 387–398. doi: 10.1016/j.actpsy.2008.09.
005

Frontiers in Psychology 18 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.872061
https://doi.org/10.2196/17823
https://doi.org/10.1016/j.actpsy.2008.09.005
https://doi.org/10.1016/j.actpsy.2008.09.005
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/


fpsyg-13-872061 November 14, 2022 Time: 11:31 # 19

Rao et al. 10.3389/fpsyg.2022.872061

Chapman, M. J., Healy, A. F., and Kole, J. A. (2016). Memory load as a cognitive
antidote to performance decrements in data entry. Memory 24, 1182–1196. doi:
10.1080/09658211.2015.1086380

Chirico, A., Lucidi, F., De Laurentiis, M., Milanese, C., Napoli, A., and Giordano,
A. (2016). Virtual reality in health system: Beyond entertainment. a mini review
on the efficacy of VR during cancer treatment. J. Cell. Phys. 231, 275–287. doi:
10.1002/jcp.25117

de Tommaso, M., Ricci, K., Laneve, L., Savino, N., Antonaci, V., and Livrea,
P. (2013). Virtual visual effect of hospital waiting room on pain modulation in
healthy subjects and patients with chronic migraine. Pain Res. Treat. 2013:515730.
doi: 10.1155/2013/515730

Ding, Y., Robinson, N., Zeng, Q., Chen, D., Wai, A. A. P., Lee, T. S., et al.
(2020). “Tsception: A deep learning framework for emotion detection using EEG,”
in 2020 International Joint Conference on Neural Networks (IJCNN). (Piscataway,
NJ: IEEE), 1–7. doi: 10.1109/IJCNN48605.2020.9206750

Dreyfus, H. L. (2014). Intuitive, deliberative, and calculative models of expert
performance. Nat. Decis. Mak. 32, 37–48.

Dreyfus, H. L., and Dreyfus, S. E. (1986). “From socrates to expert systems: The
limits of calculative rationality,” in Philosophy and technology II. Boston studies
in the philosophy of science, Vol. 90, eds C. Mitcham and A. Huning (Dordrecht:
Springer), 111–130. doi: 10.1007/978-94-009-4512-8_9

Dutt, V., and Gonzalez, C. (2012). Making instance-based learning theory usable
and understandable: The instance-based learning tool. Comput. Hum. Behav. 28,
1227–1240. doi: 10.1016/j.chb.2012.02.006

Edwards, W. (1962). Dynamic Decision Theory and Probabilistic
Information Processing. Hum. Factors 4, 59–73. doi: 10.1177/00187208620040
0201

Field, A. (2009). Discovering statistics using SPSS. Thousand Oaks: Sage.

Flavell, L. (2011). Beginning blender: Open-source 3D modeling, animation, and
game design. New York, NY: Apress. doi: 10.1007/978-1-4302-3127-1_3

Gisbergen, M. V., Kovacs, M., Campos, F., Heeft, M. V. D., and Vugts, V.
(2019). “What we don’t know. the effect of realism in virtual reality on experience
and behaviour,” in Augmented Reality and Virtual Reality. Progress in IS, eds M.
Tom Dieck and T. Jung (Cham: Springer), 45–57. doi: 10.1007/978-3-030-062
46-0_4

Gonzalez, C., and Dutt, V. (2011). Instance-based learning: Integrating
sampling and repeated decisions from experience. Psychol. Rev. 118:523. doi:
10.1037/a0024558

Gonzalez, C., and Madhavan, P. (2011). Diversity during training enhances
detection of novel stimuli. J. Cogn. Psychol. 23, 342–350. doi: 10.1080/20445911.
2011.507187

Gonzalez, C., Vanyukov, P., and Martin, M. K. (2005). The use of microworlds to
study dynamic decision making. Comput. Hum. Behav. 21, 273–286. doi: 10.1016/
j.chb.2004.02.014

Hart, S. G. (2006). “NASA-task load index (NASA-TLX); 20 years
later,” in Proceedings of the human factors and ergonomics society annual
meeting. (Thousand Oaks: Sage), 904–908. doi: 10.1177/15419312060500
0909

Jenkins, D. P., Stanton, N. A., Salmon, P. M., and Walker, G. H. (2011). A
formative approach to developing synthetic environment fidelity requirements for
decision-making training. Appl. Ergon. 42, 757–769. doi: 10.1016/j.apergo.2010.12.
003

Klein, G. A., and Hoffman, R. R. (1993). “Seeing the invisible: Perceptual-
cognitive aspects of expertise,” in Cognitive Science Foundations of Instruction,
ed. M. Rabinowitz (New York, NY: Routledge), 203–226. doi: 10.4324/
9781315044712-9

Krokos, E., Plaisant, C., and Varshney, A. (2019). Virtual memory
palaces: Immersion aids recall. Vir. Real. 23, 1–15. doi: 10.1007/s10055-018-
0346-3

Lejarraga, T., Dutt, V., and Gonzalez, C. (2012). Instance-based learning: A
general model of repeated binary choice. J. Behav. Decis. Mak. 25, 143–153. doi:
10.1002/bdm.722

Lohse, K. R., and Healy, A. F. (2012). Journal of Applied Research
in Memory and Cognition Exploring the contributions of declarative and
procedural information to training: A test of the procedural reinstatement
principle . J. Appl. Res. Mem. Cogn. 1, 65–72. doi: 10.1016/j.jarmac.2012.02.
002

McIlroy, S., Ali, N., and Hassan, A. E. (2016). Fresh apps: An empirical study
of frequently-updated mobile apps in the Google play store. Emp. Soft. Engg. 21,
1346–1370. doi: 10.1007/s10664-015-9388-2

Murcia-López, M., and Steed, A. (2016). The effect of environmental features,
self- avatar, and immersion on object location memory in virtual environments.
Front. ICT 3:24. doi: 10.3389/fict.2016.00024

Naikar, N., and Saunders, A. (2003). Crossing the boundaries of safe operation:
A technical training approach to error management. Cogn. Technol. Work 5,
171–180. doi: 10.1007/s10111-003-0125-z

Pallavicini, F., Pepe, A., and Minissi, M. E. (2019). Gaming in Virtual Reality:
What Changes in Terms of Usability. Emotional Response and Sense of Presence
Compared to Non-Immersive Video Games?. Simul. Gaming 50, 136–159. doi:
10.1177/1046878119831420

Parmar, D., Bertrand, J., Babu, S. V., Madathil, K., Zelaya, M., Wang, T., et al.
(2016). A comparative evaluation of viewing metaphors on psychophysical skills
education in an interactive virtual environment. Virt. Real. 20, 141–157. doi:
10.1007/s10055-016-0287-7

Pertaub, D. P., Slater, M., and Barker, C. (2002). An experiment on public
speaking anxiety in response to three different types of virtual audience. Presence
11, 68–78. doi: 10.1162/105474602317343668

Pyc, M. A., and Rawson, K. A. (2009). Testing the retrieval effort hypothesis:
Does greater difficulty correctly recalling information lead to higher levels of
memory?. J. Mem. Lang. 60, 437–447. doi: 10.1016/j.jml.2009.01.004

Rao, A. K., Chahal, J. S., Chandra, S., and Dutt, V. (2020a). “Virtual-Reality
Training under varying degrees of task difficulty in a complex search-and-shoot
scenario,” in Intelligent Human Computer Interaction. IHCI 2019. Lecture Notes in
Computer Science, Vol. 11886, eds U. Tiwary and S. Chaudhury (Cham: Springer).
doi: 10.1007/978-3-030-44689-5_22

Rao, A. K., Chandra, S., and Dutt, V. (2020b). “Desktop and virtual-reality
training under varying degrees of task difficulty in a complex search-and-shoot
scenario,” in Proceedings of the HCI international 2020 – Late breaking papers:
Virtual and augmented reality. HCII 2020. Lecture notes in computer science,
Vol. 12428, eds C. Stephanidis, J. Y. C. Chen, G. Fragomeni (Cham: Springer).
doi: 10.1007/978-3-030-59990-4_31

Rao, A. K., Daniel, R. V., Pandey, V., Chandra, S., and Dutt, V. (2022). “Impact
of different field-of-views on visuospatial memory and cognitive workload in a
complex virtual environment,” in Advances in Augmented Reality and Virtual
Reality. Studies in Computational Intelligence, vol 998, eds J. K. Verma and S. Paul
(Singapore: Springer), 11–28. doi: 10.1007/978-981-16-7220-0_2

Rao, A. K., Pramod, B. S., Chandra, S., and Dutt, V. (2018a). “Influence of
indirect vision and virtual reality training under varying manned/unmanned
interfaces in a complex search-and-shoot simulation,” in International Conference
on Applied Human Factors and Ergonomics (AHFE 2018). (Orlando FL), 225–235.
doi: 10.1007/978-3-319-94223-0_21

Rao, A. K., Sathyarthi, C., Dhankar, U., Chandra, S., and Dutt, V. (2018b).
“Indirect visual displays: Influence of field-of-views and target-distractor base-
rates on decision-making in a search-and-shoot task,” in 2018 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). (Miyazaki: IEEE), 4326–
4332. doi: 10.1109/SMC.2018.00731

Rasmussen, J. (1983). Skill, rules, and knowledge: Signals, signs, and symbols,
and other distinctions in human performance models. IEEE Trans. Syts. Man
Cybern. 13, 257–266. doi: 10.1109/TSMC.1983.6313160

Salas, E., Wilson, K. A., Burke, C. S., Florida, C., Wightman, D. C., and Rucker,
F. (2006). Does Crew Resource Management Training Work? An Update, an
Extension, and Some Critical Needs. Hum. Factors 48, 392–412. doi: 10.1518/
001872006777724444

Santos, B. S., Dias, P., Silva, S., Capucho, L., Salgado, N., Lino, F., et al. (2008).
“Usability evaluation in virtual reality: A user study comparing three different
setups,” in Poster at the EGVE symposium, 21–24.

Slater, M., and Steed, A. (2000). A virtual presence counter. Presence 9, 413–434.
doi: 10.1162/105474600566925

Srivastava, P., Rimzhim, A., Vijay, P., Singh, S., and Chandra, S. (2019). Desktop
VR Is Better Than Non-ambulatory HMD VR for Spatial Learning. Front. Robot.
AI 6:50. doi: 10.3389/frobt.2019.00050

Stanton, N. A. (1996). “Simulators: A review of research and practice,” inHuman
Factors in Nuclear Safety, ed. N. Stanton (Oxfordshire: Taylor & Francis), 117–140.
doi: 10.1201/9780203481974.ch7

ter Haar, R. (2005). “Virtual Reality in the Military: Present and Future,” in
Twente Student Conference on IT. (Enschede).

Vekhter, D., Robbins, M. S., Minen, M., and Buse, D. C. (2020). Efficacy and
feasibility of behavioral treatments for migraine, headache, and pain in the acute
care setting. Curr. Pain Headache Rep. 24, 1–9. doi: 10.1007/s11916-020-00899-z

Wang, P., Wu, P., Wang, J., Chi, H. L., and Wang, X. (2018). A critical
review of the use of virtual reality in construction engineering education and
training. Int. J. Environ. Res. Public. Health 15:1204. doi: 10.3390/ijerph1506
1204

Wang, S., Mao, Z., Zeng, C., Gong, H., Li, S., and Chen, B. (2010). “A new
method of virtual reality based on Unity3D,” in 2010 18th International Conference
on Geoinformatics. (Beijing: IEEE), 1–5. doi: 10.1109/GEOINFORMATICS.2010.
5567608

Frontiers in Psychology 19 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.872061
https://doi.org/10.1080/09658211.2015.1086380
https://doi.org/10.1080/09658211.2015.1086380
https://doi.org/10.1002/jcp.25117
https://doi.org/10.1002/jcp.25117
https://doi.org/10.1155/2013/515730
https://doi.org/10.1109/IJCNN48605.2020.9206750
https://doi.org/10.1007/978-94-009-4512-8_9
https://doi.org/10.1016/j.chb.2012.02.006
https://doi.org/10.1177/001872086200400201
https://doi.org/10.1177/001872086200400201
https://doi.org/10.1007/978-1-4302-3127-1_3
https://doi.org/10.1007/978-3-030-06246-0_4
https://doi.org/10.1007/978-3-030-06246-0_4
https://doi.org/10.1037/a0024558
https://doi.org/10.1037/a0024558
https://doi.org/10.1080/20445911.2011.507187
https://doi.org/10.1080/20445911.2011.507187
https://doi.org/10.1016/j.chb.2004.02.014
https://doi.org/10.1016/j.chb.2004.02.014
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1016/j.apergo.2010.12.003
https://doi.org/10.1016/j.apergo.2010.12.003
https://doi.org/10.4324/9781315044712-9
https://doi.org/10.4324/9781315044712-9
https://doi.org/10.1007/s10055-018-0346-3
https://doi.org/10.1007/s10055-018-0346-3
https://doi.org/10.1002/bdm.722
https://doi.org/10.1002/bdm.722
https://doi.org/10.1016/j.jarmac.2012.02.002
https://doi.org/10.1016/j.jarmac.2012.02.002
https://doi.org/10.1007/s10664-015-9388-2
https://doi.org/10.3389/fict.2016.00024
https://doi.org/10.1007/s10111-003-0125-z
https://doi.org/10.1177/1046878119831420
https://doi.org/10.1177/1046878119831420
https://doi.org/10.1007/s10055-016-0287-7
https://doi.org/10.1007/s10055-016-0287-7
https://doi.org/10.1162/105474602317343668
https://doi.org/10.1016/j.jml.2009.01.004
https://doi.org/10.1007/978-3-030-44689-5_22
https://doi.org/10.1007/978-3-030-59990-4_31
https://doi.org/10.1007/978-981-16-7220-0_2
https://doi.org/10.1007/978-3-319-94223-0_21
https://doi.org/10.1109/SMC.2018.00731
https://doi.org/10.1109/TSMC.1983.6313160
https://doi.org/10.1518/001872006777724444
https://doi.org/10.1518/001872006777724444
https://doi.org/10.1162/105474600566925
https://doi.org/10.3389/frobt.2019.00050
https://doi.org/10.1201/9780203481974.ch7
https://doi.org/10.1007/s11916-020-00899-z
https://doi.org/10.3390/ijerph15061204
https://doi.org/10.3390/ijerph15061204
https://doi.org/10.1109/GEOINFORMATICS.2010.5567608
https://doi.org/10.1109/GEOINFORMATICS.2010.5567608
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/

	Learning from feedback: Evaluation of dynamic decision-making in virtual reality under various repetitive training frameworks
	Introduction
	Background
	Materials and methods
	Participants
	The dynamic decision-making simulation
	Experiment design
	Variation in task difficulty

	Results
	Performance measures
	Percentage of enemies killed
	Time taken
	Accuracy index
	Health index

	Cognitive measures
	Mental demand
	Physical demand
	Temporal demand
	Frustration level
	Performance satisfaction
	Effort


	Discussion and conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


