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Understanding artificial intelligence (AI) and belief formation have interesting bidirectional
synergies. From explaining the logical derivation of beliefs and their internal consistency,
to giving a quantitative account of mightiness, AI still has plenty of unexploited
metaphors that can illuminate belief formation. In addition, acknowledging that AI should
integrate itself with our belief processes (mainly, the capacity to reflect, rationalize, and
communicate that is allowed by semantic coding) makes it possible to focus on more
promising lines such as Interpretable Machine Learning.
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INTRODUCTION

The research program “Credition” has provided a solid framework to understand the phenomenon
of believing and belief formation.
“Credition, the processes of believing, are fundamental brain functions that enable a non-human
animal or human being to trust his/her inner probabilistic representation(s). Credition is based on
neural processes, including perception and valuation of objects and events in the physical and social
environment in secular as well as religious contexts. By predictive coding, credition guides one’s actions
and behaviors through reciprocating feedback involving learning (Angel et al., 2017).”

Artificial Intelligence (AI) can be understood as a sequence of algorithms (that is, the mechanical
application of some predefined steps) that is applied to a set of data and that generates
a probabilistic representation of these data with the aim of making predictions, inferring a
consequence or selecting the best possible option. AI can be understood as a machine that supports
the formation and valuation of beliefs in the human and can be understood metaphorically as a
belief-machine itself.

Artificial intelligence encompasses techniques such as clustering or pattern recognition.
However, this paper focuses primarily on Reinforcement Learning (RL), where intelligent agents
take actions in an environment to maximize a reward and punish mistakes. In RL, there are
steps that are metaphorically described as perception (collecting new data), decision (selecting
the optimal action), valuation (evaluating the outcome of a decision), or learning (the successive
improvements in valuation obtained through repeated cycles of decision and valuation). For
instance, a RL system could learn to play chess through cycles of selecting a move and valuing
the possible positions.

For this reason, it is extremely interesting to examine AI from the lens of the credition process:
understanding how AI works can give us insights to inform our hypothesis about the workings
of credition. In parallel, acknowledging that AI should support belief formation helps to design it
better and make this support as effective as possible.

Frontiers in Psychology | www.frontiersin.org 1 April 2022 | Volume 13 | Article 868903

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2022.868903
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2022.868903
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2022.868903&domain=pdf&date_stamp=2022-04-11
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.868903/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-868903 April 11, 2022 Time: 14:55 # 2

Lumbreras Belief Formation and Artificial Intelligence

SYNERGIES FROM UNDERSTANDING
ARTIFICIAL INTELLIGENCE TO
UNDERSTANDING BELIEF FORMATION

Figure 1, taken from Seitz et al. (in press), presents a schematic
representation of how a RL process can be understood in
the context of credition, displaying the different levels of
memory that are at play (Rolls, 2000). The inner probabilistic
representation (which we refer to as “belief”) is built around
the data received (perception) and is also used to value future
actions (valuation). This representation is used to select the
preferred course of action and predict its outcome. When
new data are collected about the outcome (the prediction
error), the probabilistic representation is updated through
a new valuation in the process of RL. It is important to
note that, according to this model, the credition process
happens in a spontaneous and automatic manner, below the
level of awareness.

For instance, one particularly interesting insight from the
Creditions model and RL is the interpretation of the balance
of exploration (which, in this context, we will understand the
examination of new decisions or beliefs not tested before) vs.
exploitation (the use of the existing belief system to make
a decision in an efficient manner). This balance, which is
key to the performance of RL algorithms, can be seen as an
essential feature of belief formation and update that depends
greatly on the psychological characteristics of each individual.
In addition, In RL, each new data point is integrated into the
probabilistic representation of the world. The specific manner in
which this is done can be represented as an error minimization
strategy. This model could be tested in experimental settings
to improve our current understanding of how beliefs are
formed and updated.

In addition, there also are interesting insights outside
RL that can help us improve our understanding of the
mechanisms of credition.

Illuminating Metaphors From Artificial
Intelligence Outside Reinforcement
Learning
Reinforcement learning does not capture all the complexities
of belief formation and update. Importantly, RL takes a blind
approach to the inner probabilistic representation and does not
necessarily impose any internal consistency to beliefs. However,
we do know that new beliefs are more easily accepted when
they are consistent with prior ones (Fryer et al., 2019) or that
cognitive dissonance is an unpleasant experience (Cooper, 2007).
We also know that some beliefs are derived logically from others.
This makes it beneficial to resort also to some AI tools that
have an emphasis in this logical consistency, or on the logical
derivation of consequences. These are inference engines and
Bayesian networks.

Inference Engines and the Logical
Derivation of Belief
Inference engines are tools that apply predefined logical rules to a
knowledge database (also previously defined) to derive new facts
from already known ones. We refer the reader to Colmerauer
(1990) for a good introduction to Prolog, one of the first and
most widely used inference engines which name is derived from
the expression “Propositional Logic,” which is the basis of its first
version (Prolog I), which was later upgraded to include first-order
logic (quantification) or fuzzy logic (Zadeh, 1988) (which allows
for intermediate states between true and false). Inference engines
work in a similar manner to generic theorem provers such as the
well-known Isabelle (Paulson, 1994).

Inference engines apply the logical rules first to the
facts contained in the knowledge database to derive an
initial set of consequences. This is performed by examining
every potential pair for a possible conclusion. Then, both
the initial facts and the newly obtained consequences are
combined again to generate a second round of consequences.

FIGURE 1 | Schematic representation of a RL process in the context of credition. Source: Seitz et al. (in press), reproduced with permission.
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This process is repeated iteratively until no more new facts
can be derived.

At some level, human beings also scan new knowledge for
possible consequences using inference rules (Rodriguez et al.,
2016). We could even understand that the more iterations of the
process need to be performed in order to find a consequence,
the more obscured it will be. It should be useful to incorporate
a metaphor of the inference engine to the creditions model
to understand how logical consequences are derived from new
beliefs at the step of the inner probabilistic construction.

Bayesian Networks and the Internal
Consistency of Belief
A Bayesian Network is a probabilistic graphical model that
represents a set of variables and their conditional dependencies
via a directed acyclic graph. This means that variables are
connected always with a direction (there is one cause and
one consequence, without any possible circularity). Bayesian
networks are a very interesting tool for understanding the
contributing factor for an event. For example, it can represent the
probabilistic relationships between diseases and their symptoms,
so we could calculate the specific probabilities that an observed
symptom is due to a given disease. We refer the reader to
Chen and Pollino (2012) for a good tutorial on this topic. We
know that beliefs are not held in isolation but could rather be
understood as a network (Friedkin et al., 2016). For this reason,
including the remarkable understanding of networks and their
relationships that AI has created with Bayesian Networks can be
extremely interesting.

Complexity Theory to Understand the
Global Properties of Belief Systems
A complex system is a system composed of many elements in
interaction. We can find complex systems in contexts as different
as the global climate, social organizations or the metabolism
within a cell (Mitchell, 2009). Very importantly, the algorithms
that support the developments of AI are also complex systems.

Complex systems have distinct properties which are shared
by belief systems, which include being goal-oriented, open to
receiving information from the exterior, spontaneous order (with
hierarchies and context appearing), adaptation, being difficult
to predict, experiencing non-linear phenomena (for instance,
it is much more difficult to change a belief than to form
it). I refer the reader to my paper (Lumbreras and Oviedo,
2020) for a more detailed account of these properties and
their implications.

Understanding Mightiness in a
Quantitative Manner
In addition to its object, a belief can be characterized by
its certainty, which can be very aptly represented by the
certainty level in fuzzy logic that is embedded in Bayesian
networks. Moreover, there is also a second qualifier: mightiness,
which refers to the intensity that is attributed to this
emotion. AI can also help us to understand this mightiness
at a quantitative level. There is a property of the variables

involved in a prediction model that is called importance. The
importance of a variable is a measure of how much this
variable affects the final decision. Arguably, we feel more
intensely the beliefs that more profoundly affect our own
identity and actions.

DISCUSSION: FROM UNDERSTANDING
BELIEF TO CREATING BETTER
ARTIFICIAL INTELLIGENCE

As explained in the section “Introduction,” the synergies between
understanding AI and understanding belief are bidirectional,
so there are positive outcomes that can be expected if we
introduce what we know about belief formation into the way we
design and use AI.

There are two main issues that plague the applications of AI:
overfitting and machine bias. We need to remember that AI
extracts patterns from the data that it receives for training, so it
deeply depends on these data.

In overfitting, the data provided to the machine is not enough
to be able to generalize. Much like a student that, instead of
understanding, learns examples by heart, the algorithm fails when
a new situation is considered.

In the same way, it is possible that the data we present to
the algorithm does not represent reality fairly. For instance, it
has been well documented that some algorithms disfavor African
Americans, for instance when calculating their probability of
recidivism in crime with the objective of deciding whether
to grant them parole (Hajian et al., 2016). This was due to
the database that was used for training containing a higher
proportion of African American recidivists.

The problem with overfitting and machine bias is that they
are not easy to detect. Most applications of AI are designed as
black boxes, so we only have access to their specific predictions
for every case but not to any reasoning behind them. Without
detailed analyses, for instance, it is not possible to determine
that the prediction is based on race, age, sex, or any other
discriminatory variable. This means that when black-box AI is
used in a high-stake decision (such as granting parole), this can
have disastrous consequences.

As I have presented, black-box AI only shares predictions,
and this can have disastrous consequences in high-
stake problems. However, there is an emerging field
within AI, Interpretable ML, which does allow for the
understanding of models and their dynamics. This makes
it possible avoid the problems derived from overfitting
and machine bias (Molnar, 2020). The basic idea behind
Interpretable ML is that, for many problems, it is possible
to create AI that is so simple that can be expressed in
rules understood by a human, and yet result in accurate
predictions. These models would be the opposite to black
boxes, they are transparent decision rules that can be
understood and discussed.

For instance, Rudin (2019) developed an alternative to the
parole algorithm that was based only on prior violent crimes and
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age. This shows that it is possible to create AI that better fits
the way we form beliefs and is a more efficient support for our
decision making.

CONCLUSION

Understanding AI and understanding belief formation have
interesting bidirectional synergies. From explaining the
logical derivation of beliefs and their internal consistency,
to giving a quantitative account of mightiness, AI still
has plenty of metaphors to illuminate belief. Potentially,
these can be used to simulate belief systems and arrive to
testable predictions.

In addition, acknowledging what our belief processes have
that AI lacks (mainly, the capacity to reflect, rationalize and

communicate that is allowed by semantic coding) makes it
possible for us to focus on creating AI that can better support
decisions such as Interpretable ML.
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