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In the current paper, we propose a latent interdependence approach to modeling
psychometric data in social networks. The idea of latent interdependence is adopted
from social relations models (SRMs), which formulate a mutual-rating process by both
dyad members’ characteristics. Under the framework of the latent interdependence
approach, we introduce two psychometric models: The first model includes the main
effects of both rating-sender and rating-receiver, and the second model includes a
latent distance effect to assess the influence from the dissimilarity between the latent
characteristics of both sides. The latent distance effect is quantified by the Euclidean
distance between both sides’ trait scores. Both models use Bayesian estimation via
Markov chain Monte Carlo. How accurately model parameters were estimated was
evaluated in a simulation study. Parameter recovery results showed that all parameters
were accurately recovered under most of the conditions investigated. As expected,
the accuracy of model estimation was significantly improved as network size grew.
Also, through analyzing empirical data, we showed how to use the estimates of model
parameters to predict the latent weight of connections among group members and
rebuild either a univariate or multivariate network at a latent trait level. Finally, we discuss
issues regarding model comparison and offer suggestions for future studies.

Keywords: psychometric models, relationship measurement, social networks, latent inter-dependence models,
Bayesian estimation

INTRODUCTION

Social and behavioral scientists use the word relation to portray the way in which individuals
or other social entities (e.g., organizations or countries) are connected. Conceptually, a relation
reveals the relevance of one entity to another, and its fundamental unit is a dyadic interaction.
Relations are sometimes simply defined as connections or links between dyad members, and at
other times by various relational constructs (e.g., collaboration and attachment). In the latter
condition, researchers assess these constructs by observing dyad members’ responses to a set of
well-designed items, inferring each member’s construct scores via observed psychometric relational
data. Within these measurement settings, relations are practically treated as individuals’ personal
traits, defined as a person’s attitude toward or willingness and actions to develop a certain type of
interpersonal interaction with others.

Modeling and analyzing relational data are the goals of two major statistical analysis paradigms:
dyadic data analysis (DDA) and social network analysis (SNA). The focus of DDA (e.g., the social
relations model, Kenny and La Voie, 1984; Kashy and Kenny, 1990; Nestler, 2018; Nestler et al.,
2020) is on quantifying non-independence through a partitioning of the variance observed in dyadic
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data (Kenny et al., 2006). SNA, in contrast, attempts to explain
the distributions of observed ties (or weighted ties) among
social entities using a series of models (e.g., the p∗ models, the
exponential random graphs models, and the latent space models,
Wasserman and Pattison, 1996; Pattison and Wasserman, 1999;
Hoff et al., 2002; Snijders et al., 2006; Sewell and Chen,
2015). Despite having been considered as routine methodological
choices by social and behavioral researchers in studying relations,
both approaches are limited in modeling psychometric data
representing relational constructs (e.g., interpersonal trust) with
potentially complex latent structures due to the insufficiency of
psychometric models within their formulations (Snijders, 2009).

In recent years, the efforts to combine network analysis and
psychometrics could be seen in attempts to apply the idea of
network modeling in psychometrics (e.g., Schmittmann et al.,
2013; Epskamp et al., 2017; Jin and Jeon, 2019; Jeon et al., 2021).
For instance, Epskamp et al. (2017) introduced a framework
to incorporate network modeling into structural equation
modeling. The framework features latent network modeling and
residual network modeling, in which the covariance structures of
both latent variables and residuals are explained as the results
of the interplay of each pair of latent or residual components.
These efforts advanced the development and application of
psychological networks (e.g., Cramer et al., 2010), in which nodes
are variables. Also, in analyzing item response data, Jin and
Jeon (2019) proposed a joint network modeling approach to
detect the local dependence among items and among test-takers.
By adapting a latent space approach (Hoff et al., 2002), they
constructed multi-layer item networks and multi-layer person
networks from item response data, which are modeled as a
function of the latent positions of items or persons. Although
researchers combined network and psychometric modeling, these
approaches did not focus on modeling psychometric relational
data within networks, as in the present study.

Recent work by Nestler and colleagues (e.g., Nestler, 2018;
Nestler et al., 2020) under the framework of the social relations
model (SRM) have made significant advances in modeling
psychometric relational data. Specifically, they extended the
classic SRM from single-item to multivariate settings and
proposed social relations structural equation models (SR-SEM)
for data coming from “multiple” round-robin designs (i.e., that
require mutual ratings on multiple items). In SR-SEM, person-
level SRM effects (or true SRM effects) function as latent factors
in explaining item-level SRM effects. They represent a person’s
general tendency to perceive others in a certain way (the true
actor/perceiver effect), their general tendency to be perceived
by others in a certain way (the true partner/target effect), and
the true uniqueness of a given dyad’s mutual ratings. From a
psychometric standpoint, SR-SEM produces estimates for each
person’s two traits (i.e., their general tendencies to perceive
others and to be perceived by others in a certain way) and for
each dyad’s uniqueness. However, it does not directly provide
estimates for the relational construct that the items are meant
to measure. As aforementioned, when defined as a personal
trait, a relational construct describes one’s attitude toward or
willingness and actions to develop or maintain a certain type of
interpersonal interaction with others. For instance, consider a

scenario in which a researcher created a few items (e.g., “I can rely
on my partner.”) to measure a relational construct interpersonal
trust and administered them to a group of individuals. Using
the SR-SEM, the researcher could estimate everyone’s general
tendency to be trusted and that to trust others, and every dyad’s
relational uniqueness. However, it should be noted that these two
tendencies (i.e., one’s trustfulness and trustworthiness) from SR-
SEM are not the relational construct of interpersonal trust itself,
which, as a personal trait, is defined as one’s attitude to engaging
in a mutual trust with others. Those who score higher on this
trait feel more positive about mutual trust and show a stronger
tendency to develop or maintain a mutual trust with others.

Moreover, in modeling dyadic data, traditional approaches
(e.g., SRM and SNA) give less attention to the characteristics of
an item. However, in a round-robin design, for example, dyadic
data may be generated from both person-focused items (e.g., “I
like my partner.”) and dyad-focused items (e.g., “My partner and
I [or We] like each other”). In fact, it is common to see both
types of items from the same instrument [e.g., McAllister’s (1995)
Interpersonal Trust Measure; Horvath and Greenberg’s (1989)
Working Alliance Inventory]. For interpersonal relationship
researchers, understanding what these differences mean in terms
of measuring a relational construct is of practical importance for
the relationship assessment.

The goal of this paper is to present and evaluate a set of new
psychometric models—latent interdependence models (LIDM)—
that describe continuous dyadic relational data within a social
network. The models aim to score each person’ traits directly
along each latent dimension of a relational construct while
evaluating the properties of the items that measure each trait.
We introduce two models under the framework of LIDM, in
which the first model is nested within the second one. We
establish the link between group members’ responses to an item
and their latent relational traits based on an understanding
that the responses come from a mutual-rating process and
therefore reflect the characteristics of both members in a dyad. To
formulate this fundamental process, in Model 1, we explain the
dyadic responses using the main effects of both dyad members’
latent traits. Model 2 then builds on Model 1 to formulate the
influence from the dissimilarity between dyad members as a
penalty by including a testable model component for the distance
between dyad members’ latent traits.

The influence of dyad members’ characteristics and the
dissimilarity between dyad members on their responses to a given
item is also conditional on the item’s properties—namely, its
sensitivity to a change of trait scores and to a change in the
distance between dyad members’ scores. In what follows, we
define these properties as the item-specific rating-sender effect
(i.e., the effect of rating-sender’s latent traits on all responses
to a given item), the item-specific rating-receiver effect (i.e.,
the effect of rating-receiver’s trait on all responses to a given
item), and the item-specific latent distance effect (i.e., the
effect of the dissimilarity between latent traits on all responses
to a given item).

The view that dyadic data come from a mutual-rating process
and are therefore interdependent was initially formulated in the
social relation model (SRM, e.g., Kenny and La Voie, 1984;
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Kashy and Kenny, 1990), which has been used to analyze social
network data from a round-robin design (Back and Kenny,
2010). The SRM takes an approach similar to that of analysis of
variance, assuming observed variances come from three sources
(a.k.a. “three SRM effects”): the rating sender’s general rating
tendency (the actor effect), the rating receiver’s general rating-
reception tendency (the partner effect), and the uniqueness of a
given sender-receiver dyad (the relational effect). In the LIDM
proposed in the present study, the notion of interdependence
is formulated by including the latent traits of both the rating
sender and the rating receiver as explanatory components for
dyad members’ responses to an item.

Another presumed mechanism underlying mutual-rating
processes was described by Hoff et al. (2002) based on the
view that the closer two group members’ latent positions are
in a social space, the more likely it is that a tie exists between
them. Accordingly, they presented latent space models (LSM),
where social space is a hypothetical concept, defined as “a
space of unobserved latent characteristics that represent potential
transitive tendencies in network relations” (p. 1091), and latent
positions are abstract points in the hypothetical space that
indicate group members’ relative positions. Under the framework
of LIDM, we assume the rule suggested by LSM also function
under the mutual-rating process, by which we build Model 2
(with between-trait interaction) on Model 1 (with main effects
of traits only). In Model 2, we assume the relative spatial
positions of rating senders and rating receivers along latent
dimensions account for a unique proportion of variance of
both sides’ responses; we term their contributions as latent
distance effects. As such, Model 1—with latent distance effects
constrained to be zero—is nested within Model 2. The latent
distance is operationally defined as the dissimilarity between two
members’ latent traits.

The remainder of this paper is organized as follows. We first
introduce a scenario in which the proposed LIDM would apply.
We then describe the development of the two proposed models
in more detail, as well as the Bayesian estimation using Markov
chain Monte Carlo (MCMC) algorithm with which to estimate
their parameters. We then present a simulation study to evaluate
how accurately each proposed model can be estimated. We then
show via an illustrative example of real data how to use each
model variant. We conclude with recommendations for model
selection and future research on LIDM development.

THE LATENT INTERDEPENDENCE
MODELS

To illustrate the scenario to which the LIDM are intended to
apply, we present a portion of the interpersonal trust survey data
in Table 1, which were collected as part of a course evaluation
protocol. Respondents were 15 graduate students (11 females and
4 males) from a master’s program in Applied Psychology who
attended a group therapy course at a comprehensive university
in central China. The trust survey was adapted from McAllister’s
(1995) Interpersonal Trust Measure (ITM). Three items were
selected from the ITM’s affect-based trust (ABT) subscale and

TABLE 1 | An illustrative portion of the interpersonal trust survey data.

Dyads Direction ABT_1 ABT_2 ABT_3 CBT_1 CBT_2 CBT_3

(1,2) 1→2 3 4 2 4 2 4

2→1 5 3 4 3 3 5

(1,3) 1→3 3 3 4 4 3 3

3→1 5 4 3 1 2 2

(1,4) 1→4 3 4 3 2 3 4

4→1 2 3 2 3 5 1

(2,3) 1→5 3 4 2 4 3 3

5→1 3 5 4 4 5 4

(2,4) 2→4 6 3 4 1 3 3

4→2 3 4 3 3 4 3

(3,4) 3→4 4 4 6 3 4 5

4→3 3 4 3 3 4 4

ABT, affect-based trust; CBT, cognition-based trust.

were administered to students at the second to last meeting.
A sample ABT item is “We have a sharing relationship. We
can both freely share our ideas, feelings, and hopes.” The other
three items were selected from its cognition-based trust (CBT)
subscale and were completed by students at the last meeting.
A sample CBT item is “I can rely on this person not to
make my job more difficult by careless work.” Students rated
their agreement with each statement on a 7-point Likert scale
ranging from 1 (Strongly disagree) to 7 (Strongly agree) about
each individual classmate in the class. Students’ responses were
treated as continuous variables. In Table 1, the first two columns
describe the structure of a network, and the remainder of the
columns holds the psychometric responses indicating the two
latent dimensions of interpersonal trust. In the following sections,
we first introduce the format of a network and the format of
psychometric data in a network.

Social Networks
For a social network that consists of n members, the number of
dyads in the network is

( n
2
)
. Let yA,B denote the relations between

group members, A, B = 1,. . ., n, A 6= B. Conventionally, the social
network data are represented by an n× n sociomatrix Y ,

Y =


0 y1,2

y2,1 0
y1,3 y1,n
y2,3 y2,n

y3,1
...

yn,1

y3,2
...

yn,2

0 y3,n
...

yn,3

. . .
...

. . . 0

 ,

where yA,B can be any type of observed variable, and yA,B = 0 by
convention for A = B. The social network data can also be thought
of as a graph in which the nodes are group members and the edge
set is

{
(A,B) : yA,B 6= 0

}
. Of relevance for the present study,

yA,B can also be latent variables representing the magnitude of
member’ perceived connections with others along a given latent
dimension of a relational construct. In this present case, yA,B
needs to be inferred through observed psychometric relational
data in social networks, as described next.
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Psychometric Relational Data in Social
Networks
Let d = 1,2,. . .,

( n
2
)

be the dth dyad of the network, l = 1,2,. . ., L be
the lth subscale, and i = 1, 2,. . ., I be the ith item in the subscale.
Then, the responses from the lth subscale for the dth dyad of
members A and B, are contained in an I × 2 dyadic matrix U .
The first column of U contains the responses of A, and the second
column contains the responses of B. Considering a situation in
which all subscales have an equal number of items, the dyadic
responses of both members to all items can be expressed as a
T × 2 matrix, V, T = I × L.

U =


yl

1AB yl
1BA

yl
2AB

yl
3AB
...

yl
IAB

yl
2BA

yl
3BA
...

yl
IBA

 V =



y1
1AB y1

1BA
y1

2AB
y1

3AB
...

y1
IAB
...
...

yL
1AB

yL
2AB

yL
3AB
...

yL
IAB

y1
2BA

y1
3BA
...

y1
IBA
...
...

yL
1BA

yL
2BA

yL
3BA
...

yL
IBA



,

where yl
iAB and yl

iBA are member A’s responses relating to member
B and B’s responses relating to A, respectively, to the ith item
that measures the lth latent dimension. Let v1 and v2 be the two
column vectors of V . We assume both vectors follow the same
multivariate Gaussian density:

v1 and v2 ∼ N(µy,6T),

where 6T is a T× T variance–covariance matrix.

Model Development
To present the latent interdependence models (LIDM), we first
describe two general models to formulate the interdependence
process within a network. We then introduce two latent
interdependence models (named as Model 1 and Model 2) as the
constrained form of these two general models. Both the general
models and their constrained forms (i.e., LIDM) assume that
group members’ responses are conditionally independent given
their latent trait scores, the dyads they are embedded in, and the
items they respond to. In building the general models and LIDM,
we consider situations in which each item only measures one
latent trait, and we denote θl

A and θl
B as group member A’s and

B’s latent trait scores on the lth latent dimension, respectively.
For instance, in the interpersonal trust example, θA and θB
could represent any pair of students’ trait scores on either ABT
or CBT dimension.

To formulate the interdependence process, in the first general
model, two dyad members’ observed responses are predicted

using a linear function, in which a member’s response to an item
depends on both members’ scores on the latent trait measured
by the item, the shared effect of two members from the dyad they
both belong to, as well as the item effect due to all group members
repeatedly responding to and being rated on the same item in a
round-robin setting. That is,

yl
iAB = β0 + βl

1iABθl
A + βl

2iABθl
B + αl

iAB + πl
i + εl

iAB (1)

yl
iBA = β0 + βl

1iBAθl
B + βl

2iBAθl
A + αl

iAB + πl
i + εl

iBA, (2)

where β0 is the grand mean of all responses by all group members,
βl

1iAB (βl
1iBA) and βl

2iAB(β
l
2iBA) are the dyad-specific effects of one

dyad member’s and the other’s latent trait, respectively, αl
iAB is

the dyad-specific effect shared by both members on the given
item, πl

i is the item effect encapsulating two components for the
effect from the ith item on all rating senders and that on all rating
receivers, respectively, and εl

iAB and εl
iBA are the residuals for each

pair of ratings.
The model is presented in a dyadic format, in which Function

(1) explains dyad member A’s observed rating (yl
iAB) to member

B, and Function (2) explains the process that generates B’s
observed rating (yl

iBA) to A. Note that a member’s latent trait,
θl

A for instance, has different effects on the observed responses
in Function (1) and (2), for in a mutual-rating process a member
needs to play two different roles—as both a rating sender and a
rating receiver. For example, in Function (1), where member A
plays the rating sender, θl

A contributes to A’s observed response
through a rating-sender effect. In contrast, in Function (2), where
A plays a rating receiver, θl

A contributes to B’s response through
a rating-receiver effect. For this reason, to estimate θl

A, observed
responses from both A and B are needed.

The rationale behind this formulation is that a relation
reveals relevance of one to another, and therefore items
designed to measure a relational construct in any dyadic
(e.g., a round robin design) or network settings should be
reflective of a dyadic combination, rather than the characteristics
of an individual alone. In the interpersonal trust example,
students’ responses to the item “We have a sharing relationship”
[extracted from McAllister’s (1995) Interpersonal Trust Measure]
designed to measure affect-based trust, should be reflective
of both one’s own trait as the rating sender and that of the
rating receiver.

The second general model formulates the interdependence
process to include the dissimilarity between dyad members’
characteristics as a penalty, such that a dyad member’s response
to an item is a function of both members’ latent trait scores, the
Euclidean distance between their latent trait scores, and the item
effect:

yl
iAB = β0 + βl

1iABθl
A + βl

2iABθl
B + βl

3iABEd + πl
i + εl

iAB

(3)

yl
iBA = β0 + βl

1iBAθl
B + βl

2iBAθl
A + βl

3iBAEd + πl
i + εl

iBA

(4)
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where Ed is the Euclidean distance between two members of
the dth dyad and βl

3iAB (βl
3iBA) is the dyad specific effect of the

distance metric related to different members. For θl
A and θl

B ∈

RN ,

Ed = (

L∑
l = 1

(θl
A − θl

B)
2
)

1/2

, (5)

and Ed = |θA − θB| for L = 1. A correlation between sender
effects (e.g., βl

1iAB) and receiver effects (e.g.,βl
2iBA) associated with

the same trait is allowed across dyads, suggesting that the role
a rating sender’s trait plays in their ratings to receivers may
correlate with the role the same trait plays in the receivers’
ratings to the sender.

The latent interdependence models (LIDM) are constrained
versions of more general models. To describe these constraints,
we first define βl

1iAB and βl
1iBA as sender effects and βl

2iAB and
βl

2iBA as receiver effects. We then constrain these receiver effects
to be positive and the variance of the receiver effects to be one
to identify the covariance matrix for the sender- and receiver-
effects. Also, we constrain the value of βl

3iAB to be negative with
an assumption that the distance metric always has a negative
contribution to the response, as also stated in Hoff et al.’s (2002,
p. 1091) latent space models. Further, we assume that, within a
dyad, βl

1iAB = βl
1iBA, βl

2iAB = βl
2iBA, βl

3iAB = βl
3iBA, and εl

iAB = εl
iBA.

Finally, sender effects, receiver effects, distance metric effects, and
the variance of the residuals are assumed to be invariant across
dyads and only to vary across items. Following these imposed
restrictions, a correlation between item-specific sender effects
and item-specific receiver effects associated with the same trait
is allowed across items for LIDM.

As Model 1, the first constrained form of the LIDM can be
written as:

yl
iAB = β0 + βl

1iABθl
A + βl

2iABθl
B + ξ l

i (6)

yl
iBA = β0 + βl

1iBAθl
B + βl

2iBAθl
A + ξ l

i (7)

where ξ l
i = αl

iAB + πl
i εl

i is the item-specific residual term. We
present Model 2 as the second constrained form of the LIDM,
which can be written as:

yl
iAB = β0 + βl

1iABθl
A + βl

2iABθl
B + βl

DiEd + ξ l
i (8)

yl
iBA = β0 + βl

1iBAθl
B + βl

2iBAθl
A + βl

DiEd + ξ l
i (9)

where ξ l
i = πl

i + εl
i, and βl

Di is the item-specific effect of the
distance metric.

Let S represent the person providing the rating (the Sender)
and R represent the person being rated (the Receiver). We define
yl

iSR as an observed response of any rating sender to an item from
the lth subscale for any rating receiver. Accordingly, θl

S and θl
R,

respectively, represent a rating sender’s and a rating receiver’s
trait, and βl

Si and βl
Ri, respectively, denote an item-specific sender

effect and an item-specific receiver effect. Then, the dyadic format
of Model 1 and Model 2 can be, respectively, simplified as:

yl
iSR = β0 + βl

Siθ
l
S + βl

Riθ
l
R + ξ l

i (10)

yl
iSR = β0 + βl

Siθ
l
S + βl

Riθ
l
R + βl

DiEd + ξ l
i . (11)

The item-specific parameters, βl
Si, βl

Ri, and βl
Di, describe the

characteristics of a given item—namely, its ability to differentiate
rating senders’ traits, rating receivers’ traits, and sender–receiver
trait dissimilarities.

Equations (10) and (11) specify the relationships between
the observed item responses and the latent traits, and therefore
they are regarded as the measurement model portion of the
LIDM. Another key component is the structural model, which
specifies the relationships among all latent traits within a
dyad. Let 2SR be an L × 2 matrix, containing the latent
trait scores for a dyad. Then, the structural model can be
expressed as:

2SR = µSR + 4SR (12)

where µSR is an L × 2 matrix containing the means for all
latent traits, and 4SR is an L × 2 matrix containing the random
errors of all latent traits. Let 4 be either of column vectors
of 4SR, such that 4 follows a multivariate normal distribution
N (0, 6θ ).

Under the LIDM, the probability of observing the relational
data for a social network with n members generated from Model
1 can be written as:

P (Y | β0,BS,BR,2)

=

n∏
S = 1

n∏
R = 1

L∏
l = 1

I∏
i = 1

P(v1
∣∣∣β0, β

l
Si, β

l
Ri, θ

l
S, θ

l
R

)

×

n∏
S = 1

n∏
R = 1

L∏
l = 1

I∏
i = 1

P(v2
∣∣∣β0, β

l
Si, β

l
Ri, θ

l
S, θ

l
R

)
, (13)

where BS and BR are T × 1 matrices, T = I × L, containing
all item-specific sender effects and receiver effects, respectively.
Also, 2 is a W × 1 matrix, such that W = n × L,
containing the latent trait scores for all group members. The
probability of observing relational data for a social network
with n members generated from Model 2 can be written
as:

P (Y | β0,BS,BR,BD,2)

=

n∏
S = 1

n∏
R = 1

L∏
l = 1

I∏
i = 1

P(v1
∣∣∣β0, β

l
Si, β

l
Ri, β

l
Di, θ

l
S, θ

l
R

)

×

n∏
S = 1

n∏
R = 1

L∏
l = 1

I∏
i = 1

P(v2
∣∣∣β0, β

l
Si, β

l
Ri, β

l
Di, θ

l
S, θ

l
R

)
, (14)

where BD is a T × 1 matrix containing the distance effects
associated with all items.

According to the LIDM, the prior example of interpersonal
trust data can be modeled as follows. Under Model 1, the
response of student A to an ABT item regarding student
B, is determined by B’s ABT trait score and A’s own
ABT trait score. Similarly, under Model 2, A’s response to
an ABT item is determined by their own and B’s ABT
scores, as well as their relative position (i.e., the distance)
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in a latent space defined by two given dimensions—the
ABT trait and the CBT trait. The closer two students
are in this latent “trust” space, the more likely they can
be regarded as similar in considering their “trust” traits.
Students of the same “trust” type may share some common
values and/or other important common characteristics. In
the LIDM, as a testable hypothesis in explaining one’s
response to any items, it is possible these similarities may
have a unique contribution to the responses (beyond that
accounted for by both students’ traits being measured by any
given “trust” item). The same pattern would hold for the
students’ responses to the CBT items. The models produce
the posterior distributions of all students’ ABT and CBT
latent trait scores, as well as the covariance between these
two latent traits; these distributions can be summarized with
means (i.e., the estimates via expected a posteriori [EAP]
estimation) or medians. Also, the weights of all directed
connections among students along the ABT and CBT dimensions
can be derived based on the estimates of the latent traits
and their related effects and interpreted using the original
metric of the survey.

Parameter Estimation
To estimate the LIDM, we have taken a Bayesian approach, in
which the objective is to find the desired estimate using the
posterior probability distribution of a given parameter. As for the
prior distributions of model parameters, we assume:

β0 ∼ N(µ0, σ0),

ξ l
i ∼ N(0, σl

i),

Bl
SRi = (βl

Si, β
l
Ri) ∼ N (µb, 6b)with βl

Si ∈ (−∞, + ∞)

and βl
Ri ∈ (0, + ∞) ,

βl∗
Di ∼ Lognormal(µD, σD),

2S and 2R ∼ N(µθ, 6θ),

where βl∗
Di = −βl

Di, and Bl
SRi is a vector of the sender

effect and receiver effect associated with the same item,
which follows a truncated multivariate normal distribution
in which the dimension of receiver effect is bounded
above 0. Then, the full posterior distribution of the
parameters in Model 1 and Model 2, respectively, can be
defined as:

P (β0,BS,BR,2SR, σ | Y) ∝ P (Y | β0,BS,BR,2SR, σ) ∗

P
(
βl

0

)
∗

n∏
S = 1

n∏
R = 1

L∏
l = 1

[P
(
θl

S

)
∗P
(
θl

R

)
]∗

L∏
l = 1

I∏
i = 1

[P
(

Bl
SRi

)
∗P
(
σl

i

)
], (15)

and

(16)

P (β0,BS,BR,BD,2SR, σ | Y)

∝ P (Y | β0,BS,BR,BD,2SR, σ) ∗

P
(
βl

0

)
∗

n∏
S = 1

n∏
R = 1

L∏
l = 1

[P
(
θl

S

)
∗P
(
θl

R

)
]∗

L∏
l = 1

I∏
i = 1

[P
(

Bl
SRi

)
∗P
(
βl

Di

)
∗P
(
σl

i

)
]. (17)

The likelihood function in the Functions (15) and (16) can be
expanded as in Equations (13) and (14).

We used a Markov chain Monte Carlo (MCMC) to
sample multivariate random quantities from a full posterior
distribution. In this study, sampling from the posterior
distributions of parameters of interest was implemented
by the computer program JAGS (Just Another Gibbs
Sampler, Plummer, 2003) via a slice sampling algorithm
(Neal, 2003). The point estimates of model parameters
have been summarized by the EAP estimates of posterior
distributions.

A SIMULATION STUDY

Design
The primary goal of this simulation study reported next
was to evaluate how accurately the parameters of two
proposed LIDM can be recovered. To do so, psychometric
relational data were simulated under Model 1 and Model
2 and the parameters of each model were estimated with
its own data. The accuracy of parameter recovery was
evaluated by root-mean-squared errors (RMSE), normalized
root-mean-squared error (NRMSE), bias, and coefficient
of determination (R2), which are, respectively, calculated
as follows:

RMSE =

√∑n
i = 1 (̂ϕi − ϕi)

2

n
, (18)

NRMSE =

√∑n
i = 1 (̂ϕi − ϕi)

2

n
/σϕ, (19)

Bias =
∑n

i = 1 (̂ϕi − ϕi)

n
, (20)

and

R2
= 1−

∑n
i = 1 (̂ϕi − ϕi)

2∑n
i = 1 (ϕi − ϕ)2

, (21)

where n denotes the number of simulated data sets, ϕi and
ϕ̂i denote (respectively) the true value of a given parameter
ϕ and its estimated value in each simulation and estimation
trial, and ϕ denotes the mean of the true value of ϕ across
n simulations. In Function (18), σϕ represents the standard
deviation of ϕ̂ i.

The second goal of this study was to evaluate the impact
of network size on the efficacy of model estimation. To that
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end, the performance of each model was evaluated with varying
network sizes in terms of its accuracy in recovering its own
model parameters with the change of network size. Lastly, we
examined the accuracy of parameter recovery when each model
was estimated with data generated under the other model—this
was done to evaluate the robustness of parameter estimates to a
particular mis-specified model under the framework of LIDM.

To evaluate the impact of network size on the efficacy of model
estimation, five network sizes (n = 5, 10, 20, 30, and 100) were
investigated. These network sizes were chosen to reflect a research
context in which eight items were administered to measure a two-
dimensional relational construct. In such a scenario, each group
member rated all others on all eight items.

Data Generation and Evaluation
Using a simulated network size of 5, 10, 20, 30, or 100, dyadic
response data were generated based on the parameterizations
of the two proposed models from eight items; each of the
two latent dimensions was measured by four items and
each item only measured one dimension. Table 2 shows
the model parameterizations and the probability distributions
used to generate each model’s parameters. The probability

distributions were chosen based on the properties of each
parameter, but it was expected that, regardless of choice of prior
distributions, the estimation procedures would recover all model
parameters accurately. The means and standard deviations of
the simulated (true) values for all parameters are shown in
Table 3.

Accuracy of model parameter recovery was indicated by
RMSE, NRMSE, bias, and R2. The calculations of all these
indexes were based on 300 simulated data sets for all investigated
network sizes except for size 100, which were based on 100
replications instead due to the inefficiency of computation
for this condition.

Data Analysis
Bayesian estimation was performed using the program JAGS
(Just Another Gibbs Sampler, Plummer, 2003). For all models,
two Markov chains were generated with each chain including
100,000 samples (number of iterations = 100,000). To represent
the posterior distribution of each parameter, the first 50,000
samples were discarded as a burn-in period. Also, to lower the
autocorrelation in a single Markov chain, every 2nd simulated
sample (rate of thinning = 2) was kept in the chain. In

TABLE 2 | Model specifications and parameter settings for data generation.

Models Specification Parameters and Distributions

Model 1 yl
iSR = βl

0 + βl
Siθ

l
S + βl

Riθ
l
R + ξ l

i βl
0 ∼N (0, 1)

βl
Ri ∼N (µR, σR)(0)

βl
Si ∼N (µSρb ∗ (σS/σR) ∗ (β

l
Ri − µR), σS∗

√
1− ρ2

b)

µS = µR = 0
σS = σR = 1
ρβ ∼ U (0.1, 0.3)

2SR ∼N
([

0

0

]
,

[
1 ρθ

ρθ 1

])
ρθ ∼ U (0.2, 0.3)
ξ l

i ∼N (0, 1)

Model 2 yl
iSR = βl

0 + βl
Siθ

l
S + βl

Riθ
l
R + βl

DiEd + ξ l
i βl

Di ∼ U (–0.4,0)
All other parameters use the same settings as their counterparts in
Model 1.

TABLE 3 | Means and standard deviations of simulated values for model parameters.

Network Size (NS)

NS = 5 NS = 10 NS = 20 NS = 30 NS* = 100

Parameters Mean SD Mean SD Mean SD Mean SD Mean SD

β0 (Grand Mean) 0.04
(0.01)

1.01
(1.03)

0.02
(0.02)

1.00
(1.02)

0.08
(0.05)

1.01
(0.97)

−0.09
(0.01)

1.04
(0.98)

0.00
(0.00)

1.00
(1.00)

BS (Sender Effect) −0.03
(0.04)

1.07
(0.99)

−0.02
(0.09)

1.02
(1.00)

0.00
(0.03)

1.04
(0.99)

−0.02
(0.01)

1.00
(0.98)

0.00
(0.00)

1.01
(1.02)

BR (Receiver Effect) 0.23
(0.19)

0.96
(1.00)

0.25
(0.19)

0.99
(0.95)

0.24
(0.23)

1.00
(0.98)

0.24
(0.20)

0.98
(0.97)

0.21
(0.23)

1.00
(0.99)

ρβ (Correlation between βSi and βRi ) 0.19
(0.23)

0.06
(0.05)

0.19
(0.19)

0.03
(0.02)

0.23
(0.21)

0.04
(0.06)

0.20
(0.20)

0.06
(0.02)

0.24
(0.20)

0.02
(0.03)

2 (Trait Score) 0.04
(0.02)

0.98
(1.04)

0.02
(0.05)

1.01
(1.00)

−0.01
(0.00)

1.01
(0.99)

0.02
(−0.02)

1.00
(1.00)

0.00
(0.01)

1.01
(1.02)

ρθ (Trait Correlation) 0.23
(0.25)

0.04
(0.04)

0.25
(0.22)

0.02
(0.01)

0.27
(0.23)

0.05
(0.03)

0.22
(0.24)

0.06
(0.02)

0.25
(0.25)

0.04
(0.02)

ξ l
i (Residuals) 0.02

(0.04)
1.03
(1.06)

0.01
(0.00)

1.01
(1.01)

0.02
(0.03)

1.00
(1.02)

0.01
(0.00)

1.00
(0.99)

0.01
(0.00)

1.00
(1.00)

BD (Effect of Distance Metric) −0.20 0.10 −0.20 0.11 −0.21 0.11 −0.21 0.12 −0.20 0.12

*The number of simulated data set is 100 for a network size of 100 instead of 300. Results from Model 2 are presented in parentheses.
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addition, given the complexity of model parameterization, 10,000
adaptive steps were allowed for the program to adjust its
algorithms (i.e., change its step size for random walks) to different
model parameters. Table 4 shows the prior distributions used
for all parameters.

RESULTS

The Effectiveness of Model
Parameterization and Model Estimation
Table 5 presents RMSE, NRMSE, bias, R2, and the cross-sample
average of the Gelman-Rubin statistic (R̂) for each parameter.
Overall, the chains for all samples converged successfully,
yielding estimates1 for all parameters with small biases and high
R2 values. These convergence and parameter recovery results
support the parameterizations of proposed LIDM. As shown in
Table 5, RMSE, NRMSE, and bias under most conditions were
small and all R2 values were above 0.95, suggesting the estimation
procedures produced accurate estimates.

The accuracy of recovery varied across parameters and
conditions. In estimating both models, the largest RMSE (0.31
for Model 1 and 0.30 for Model 2) was associated with the latent
trait matrix (2) when the network size was 5, although the biases
associated with2 were small under all conditions. Also, in fitting
Model 2, the RMSE and bias associated with the effect of the
distance metric (BD) were small. In estimating both models,
relatively large NRMSEs were observed for the parameters ρβ

and ρθ under all conditions due to the relatively small standard
deviations of their simulated values. Also, Model 2 produced
larger NRMSEs under most conditions than did Model 1 for
almost all parameters, suggesting Model 1 generally resulted in
more accurate estimates than did Model 2.

The Effects of Network Size on Model
Estimation
As shown in Table 5, for most parameters in both models, clearly
smaller RMSE and bias values, as well as higher R2 values, were
observed as network size grew, suggesting the overall accuracy of
model estimation improved when estimating both models with a
larger network. An exception was the correlation coefficient ρθ.
The changes of RMSE and bias associated with ρθ as a function of
network size were not as clear. Specifically, the largest RMSE for
ρθ was associated with a network size of 20 in fitting both models.
It should be noted that although the size of the matrix 2 was a
function of network size, smaller RMSE and bias were observed
for2 as the network grew.

The Robustness of Model Estimation to
the Violation of Model Parametrization
Table 6 shows the indices for parameter recovery accuracy and
MCMC convergence when fitting one proposed model with data

1Both mean-based estimates and median-based estimates were obtained. The
results of parameter recovery were reported based on mean-based estimates.
The results based on median-based estimates have been included in the
Supplementary Tables M1, M2.

TABLE 4 | Prior distributions for model parameters.

Parameters Prior Distributions

β0 (Grand Mean) β0 ∼ N (0, 10)

βRi (Receiver Effect) βRi ∼ N(µβR , σβR )T(0)

βSi (Sender Effect) βSi ∼ N(µβS + λ ∗ (βRi − µR) ,

σβR∗

√
1− ρ2

b)

µβR µβR = 0

µβS µβS = 0

λ λ ∼ N(0,1000)

σβR σβR = 1

σβS σβS ∼ U(1,1000)

ρβ (Correlation between βSi and βRi ) ρβ = λ ∗ (
σβR
σβS
)

θSR (Trait Score) θSR ∼ N

([
0

0

]
,

[
1 ρθ

ρθ 1

])
ρθ (Trait Correlation) ρθ ∼ U (0, 1)

τ () (Variance of Errors) τ ∼ Gamma (0.01,0.01)

βDi
∗ (Effect of the Distance Metric,

βDi
∗ = –βDi )

βDi
∗
∼ Lognormal(0,10)

generated under the other model. In analyzing data that violate
model parameterizations, both models converged successfully
with all simulated samples. Moreover, both models produced
small biases for the latent trait matrix (2) with a wide range
spanning from 0.002 to 0.020. RMSE ranged from 0.01 to 0.35,
with larger errors arising from smaller networks. The recovery
of correlation coefficient (ρθ) yielded generally small RMSE
(ranging from 0.03 to 0.21) and small but also widely ranging
bias (spanning from 0.002 to 0.030). Moreover, high R2 (above
0.95) was observed for all parameters under almost all conditions.
These results support the robustness of both models despite
misspecification.

FITTING THE LATENT
INTERDEPENDENCE MODELS ON
EMPIRICAL DATA

To illustrate the usefulness of the LIDM, we estimated the
two proposed models using interpersonal trust survey data as
described previously. The data are complete item responses
from a total of 105 dyads. Table 7 presents the results of
the two proposed models with the interpersonal trust data.
Due to limited space, in Figures 1, 2 we present only some
examples of the traces for model convergence and the posterior
distributions of model parameters; a complete report of the
parameter estimation results is included in the Supplementary
Materials, which can be accessed via the attached FigShare
link. Overall, the two models produced close estimates for most
parameters. Besides producing the estimates for each student’s
trait scores for affect-based trust (ABT) and cognition-based
trust (CBT), the models also provided estimates for the items’
differentiation of dyad members’ traits and the dissimilarity
between traits. Specifically, large positive item-specific sender
effects (ranging from 0.64 to 1.29 under Model 1 and from
0.67 to 1.39 under Model 2) were found for all six items,
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TABLE 5 | Root-mean-squared error (RMSE), normalized root-mean-squared error (NRMSE), bias, and coefficient of determination (R2) of parameter recovery,
convergence diagnosis index (R̂), and effective sample size (ESS).

Network Size (NS)

NS = 5 NS = 10

Parameters RMSE NRMSE Bias R2 Mean of
R̂

ESS RMSE NRMSE Bias R2 Mean of
R̂

ESS

β0 0.150
(0.190)

0.149
(0.184)

0.030
(0.020)

0.952
(0.950)

1.00
(1.00)

21104
(13721)

0.150
(0.180)

0.150
(0.176)

0.010
(0.020)

0.954
(0.953)

1.00
(1.00)

31120
(16741)

BS 0.190
(0.260)

0.178
(0.263)

0.060
(0.030)

0.956
(0.953)

1.00
(1.00)

10497
(5214)

0.210
(0.250)

0.206
(0.250)

0.040
(0.070)

0.957
(0.958)

1.00
(1.00)

19022
(10225)

BR 0.160
(0.160)

0.167
(0.160)

0.010
(0.008)

0.953
(0.957)

1.00
(1.00)

13880
(4901)

0.100
(0.120)

0.101
(0.126)

0.005
(0.010)

0.961
(0.958)

1.00
(1.00)

6921
(5303)

ρβ 0.200
(0.220)

3.333
(4.400)

0.009
(0.010)

0.956
(0.956)

1.00
(1.00)

10241
(4009)

0.150
(0.150)

5.000
(7.500)

0.010
(0.009)

0.959
(0.960)

1.00
(1.00)

7449
(4373)

BD 0.210 2.100 0.020 0.950 1.00 5290 0.200 1.818 0.030 0.954 1.00 3772

2 0.310
(0.300)

0.316
(0.288)

−0.020
(−0.010)

0.952
(0.954)

1.00
(1.00)

11932
(4233)

0.300
(0.280)

0.297
(0.280)

−0.010
(−0.007)

0.956
(0.953)

1.00
(1.00)

7288
(5332)

ρθ 0.100
(0.100)

2.500
(2.500)

0.020
(0.020)

0.950
(0.952)

1.00
(1.00)

9236
(3475)

0.110
(0.090)

5.500
(9.000)

0.030
(0.030)

0.957
(0.957)

1.00
(1.00)

6421
(3079)

σ 0.120
(0.110)

0.117
(0.104)

−0.020
(−0.040)

0.953
(0.955)

1.00
(1.00)

47966
(41209)

0.120
(0.150)

0.119
(0.149)

−0.040
(−0.070)

0.955
(0.955)

1.00
(1.00)

40291
(47330)

Network Size

NS = 20 NS = 30

Parameters RMSE NRMSE Bias R2 Mean of
R̂

ESS RMSE NRMSE Bias R2 Mean of
R̂

ESS

β0 0.070
(0.10)

0.069
(0.103)

0.008
(0.011)

0.973
(0.973)

1.00
(1.00)

33214
(14981)

0.030
(0.050)

0.029
(0.051)

−0.009
(0.007)

0.991
(0.991)

1.00
(1.00)

4301
(4019)

BS 0.130
(0.130)

0.125
(0.131)

0.040
(0.050)

0.971
(0.973)

1.00
(1.00)

29481
(13874)

0.080
(0.100)

0.080
(0.102)

0.010
(0.020)

0.993
(0.993)

1.00
(1.00)

6004
(3891)

BR 0.070
(0.060)

0.070
(0.061)

0.010
(0.007)

0.968
(0.971)

1.00
(1.00)

29672
(18518)

0.030
(0.040)

0.031
(0.041)

0.006
(0.006)

0.991
(0.992)

1.00
(1.00)

6442
(4701)

ρβ 0.100
(0.090)

2.500
(1.500)

0.008
(0.010)

0.970
(0.972)

1.00
(1.00)

20133
(11339)

0.050
(0.060)

0.833
(3.000)

0.004
(0.007)

0.990
(0.987)

1.00
(1.00)

3180
(3127)

BD 0.060 0.545 0.003 0.975 1.00 7812 0.050 0.417 0.004 0.994 1.00 2903

2 0.190
(0.190)

0.188
(0.192)

−0.007
(0.004)

0.967
(0.967)

1.00
(1.00)

10213
(7726)

0.090
(0.120)

0.090
(0.120)

−0.004
(0.001)

0.993
(0.991)

1.00
(1.00)

4712
(4004)

ρθ 0.120
(0.140)

2.400
(4.667)

0.060
(0.060)

0.969
(0.967)

1.00
(1.00)

20113
(10027)

0.080
(0.120)

1.333
(6.000)

−0.090
(−0.070)

0.992
(0.992)

1.00
(1.00)

5711
(3870)

σ 0.080
(0.080)

0.080
(0.078)

−0.010
(−0.010)

0.971
(0.973)

1.00
(1.00)

48910
(49013)

0.040
(0.050)

0.040
(0.051)

−0.008
(−0.008)

0.993
(0.994)

1.00
(1.00)

39244
(33278)

Network Size

NS* = 100

Parameters RMSE NRMSE Bias R2 Mean of R̂ ESS

β0 0.009 (0.006) 0.009 (0.006) 0.007 (0.002) 0.996 (0.997) 1.00 (1.00) 5014 (3772)

BS 0.010 (0.008) 0.010 (0.008) 0.003 (0.008) 0.995 (0.992) 1.00 (1.00) 5373 (2499)

BR 0.006 (0.010) 0.006 (0.010) 0.009 (0.004) 0.993 (0.995) 1.00 (1.00) 4702 (3317)

ρβ 0.010 (0.009) 0.500 (0.300) 0.002 (0.002) 0.997 (0.994) 1.00 (1.00) 2978 (2470)

BD 0.010 0.083 0.001 0.992 1.00 2144

2 0.030 (0.030) 0.030 (0.029) 0.002 (0.006) 0.996 (0.998) 1.00 (1.00) 3954 (3077)

ρθ 0.020 (0.020) 0.500 (1.00) −0.010 (0.007) 0.997 (0.995) 1.00 (1.00) 4292 (3113)

σ 0.005 (0.007) 0.005 (0.007) 0.000 (−0.001) 0.997 (0.997) 1.00 (1.00) 45330 (40291)

*The number of simulations is 100 for a network size of 100 and 300 otherwise. Results from Model 2 are presented in parentheses. β0 = the grand mean; BS = the matrix
for sender effects; BR = the matrix for receiver effect; ρβ = the correlation coefficient between sender effect and receiver effect; BD = the matrix for effect of distance
metric; 2 the matrix for latent trait scores; ρθ = the correlation coefficient between two latent traits; σ = the matrix for variance of errors; ESS = effective sample size.
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TABLE 6 | Root-mean-squared error (RMSE), normalized root-mean-squared error (NRMSE), bias, and coefficient of determination (R2) of parameter recovery,
convergence diagnosis index (R̂), and effective sample size (ESS) from model cross-estimation.

Network Size (NS)

NS = 5 NS = 10

Parameters RMSE NRMSE Bias R2 Mean of
R̂

ESS RMSE NRMSE Bias R2 Mean of
R̂

ESS

2 0.350
(0.300)

0.357
(0.288)

0.020
(0.020)

0.949
(0.953)

1.00
(1.00)

10326
(6029)

0.350
(0.320)

0.347
(0.320)

0.010
(−0.020)

0.958
(0.955)

1.00
(1.00)

11219
(4134)

ρθ 0.210
(0.150)

5.250
(3.750)

0.030
(0.030)

0.955
(0.954)

1.00
(1.00)

12193
(4670)

0.150
(0.120)

1.500
(12.000)

0.030
(0.030)

0.961
(0.955)

1.00
(1.00)

9233
(3021)

Network Size

NS = 20 NS = 30

Parameters RMSE NRMSE Bias R2 Mean of
R̂

ESS RMSE NRMSE Bias R2 Mean of
R̂

ESS

2 0.310
(0.270)

0.307
(0.273)

0.008
(0.020)

0.972
(0.972)

1.00
(1.00)

10311
(3498)

0.200
(0.130)

0.200
(0.130)

−0.002
(−0.002)

0.991
(0.995)

1.00
(1.00)

11012
(2981)

ρθ 0.140
(0.140)

2.800
(4.667)

−0.007
(−0.020)

0.968
(0.971)

1.00
(1.00)

8231
(2398)

0.100
(0.090)

1.667
(4.500)

−0.010
(0.008)

0.993
(0.993)

1.00
(1.00)

6348
(3025)

Network Size

NS* = 100

Parameters RMSE NRMSE Bias R2 Mean of R̂ ESS

2 0.010 (0.008) 0.010 (0.008) 0.003 (0.007) 0.994 (0.996) 1.00 (1.00) 4920 (2914)

ρθ 0.030 (0.030) 0.750 (1.500) −0.012 (0.005) 0.995 (0.997) 1.00 (1.00) 5049 (3622)

*The number of simulations is 100 for a network size of 100 and 300 otherwise. Results from Model 2 are presented in parentheses. 2 the matrix for latent trait scores;
ρθ = the correlation coefficient between two latent traits; ESS = effective sample size.

indicating all items were highly sensitive to the change of rating
sender’s trait scores. That is, students with different trust scores
tend to respond quite differently to these items regarding a
same rating target.

Large receiver effects (0.65 under Model 1 and 0.74 under
Model 2) were found for Item 6 (“Other work associates
who must interact with this individual consider him/her to
be trustworthy.”). Also, significant receiver effects (0.57 under
Model 1 and 0.68 under Model 2) were found for Item 2
(“If I shared my problems with this person, I know (s)he
would respond constructively and caringly.”). These two items
showed strong abilities in differentiating both rating receivers’
and rating senders’ trait scores. In other words, in measuring
interpersonal trust, students’ responses to these two items
were highly sensitive indicators in capturing both sides’ trust.
In contrast, the other four items responded strongly to the
change of rating senders’ traits scores, but weakly to the
score change of rating receivers, indicating more differentiative
indicators for one member’s trait than for that of the other.
Additionally, the effects of the distance metric produced under
Model 2 were small (ranging from −0.09 to −0.02) for
all six items, suggesting no items were influenced by the
dissimilarity between students’ trust. Finally, a high correlation
(0.81 under both models) between sender effects and receiver
effects from the same trust trait was found, suggesting one’s
general attitude toward interpersonal trust may play a highly

similar role in their own ratings to others as in the ratings they
received from others.

Overall, as with psychometric models, the LIDM can be used
as a tool by which to score group members’ relational traits and
to evaluate items’ characteristics in capturing different aspects
of a dyadic interaction in measurement settings that feature
mutual ratings within networks. These aspects include items’
abilities to differentiate rating-receivers’ and rating-senders’ traits
for any given relational constructs, as well as the dissimilarities
among dyad members’ traits. Researchers may need to decide
for themselves which specific item characteristics ought to be
preferred or valued in measuring a certain type of relationship.
These decisions ought to be subject to the theories on the
construct of interest as well as the purposes of measurement.

Further, using the estimates of students’ trait scores, we
calculated the predicted score for each observed response
(excluding measurement error). The predicted scores represent
students’ “true” responses to a given item at their latent trait
level. A student’s predicted responses from the same subscale
are summed up to quantify the “true” magnitude of the trait-
level ties they have to others in the network, which can be
interpreted using the original metric of the trust measure.
We present these “true” magnitudes of each directed trait-
level tie in Supplementary Table 1, which has been included
in the Supplementary Materials. Figure 3 presents the affect-
based trust networks and the cognition-based trust networks
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TABLE 7 | Means and standard deviations of LIDM estimated parameters, convergence diagnosis index (R̂), and effective sample size (ESS) in empirical data analysis.

Model 1 Model 2

Parameters Mean SD Median R̂ ESS Mean SD Median R̂ ESS

BS [1] 1.24 0.29 1.20 1.00 50000 1.30 0.30 1.26 1.00 6817

BS [2] 0.64 0.17 0.62 1.00 15203 0.67 0.18 0.64 1.00 4365

BS [3] 0.93 0.23 0.90 1.00 50000 0.96 0.23 0.93 1.00 10029

BS [4] 1.11 0.23 1.08 1.00 1563 1.22 0.25 1.20 1.00 1377

BS [5] 1.29 0.26 1.25 1.00 1923 1.39 0.27 1.35 1.00 1208

BS [6] 0.87 0.19 0.85 1.00 2679 0.95 0.20 0.92 1.00 1070

BR [1] 0.14 0.08 0.13 1.00 15475 0.15 0.09 0.13 1.00 6971

BR [2] 0.22 0.10 0.21 1.00 50000 0.23 0.11 0.22 1.00 6875

BR [3] 0.08 0.06 0.07 1.00 22145 0.09 0.07 0.07 1.00 43137

BR [4] 0.57 0.14 0.55 1.00 2405 0.65 0.15 0.63 1.00 2129

BR [5] 0.23 0.09 0.22 1.00 32798 0.25 0.10 0.24 1.00 3142

BR [6] 0.68 0.16 0.66 1.00 2100 0.74 0.16 0.72 1.00 1913

BD [1] − − − − −0.02 0.03 0.01 1.00 1766

BD [2] − − − − −0.03 0.03 0.02 1.00 3866

BD [3] − − − − −0.02 0.02 0.01 1.00 11370

BD [4] − − − − −0.09 0.06 0.08 1.00 4771

BD [5] − − − − −0.03 0.03 0.02 1.00 19060

BD [6] − − − − −0.03 0.04 0.02 1.00 12175

2 [1,1] 0.09 0.22 0.08 1.00 3321 0.09 0.22 0.09 1.00 829

2 [2,1] 0.52 0.25 0.50 1.00 14905 0.49 0.24 0.48 1.00 2330

2 [3,1] 0.14 0.23 0.14 1.00 5322 0.14 0.22 0.14 1.00 2420

2 [4,1] −1.12 0.31 −1.10 1.00 3663 −1.05 0.31 −1.03 1.00 770

2 [5,1] 0.53 0.25 0.51 1.00 6228 0.54 0.25 0.52 1.00 1156

2 [6,1] −0.99 0.29 −0.96 1.00 4474 −0.92 0.29 −0.90 1.00 922

2 [7,1] −0.76 0.26 −0.74 1.00 4084 −0.71 0.27 −0.70 1.00 847

2 [8,1] 1.25 0.34 1.22 1.00 6936 1.25 0.33 1.22 1.00 2254

2 [9,1] −0.22 0.22 −0.21 1.00 5114 −0.19 0.23 −0.19 1.00 1031

2 [10,1] 1.18 0.33 1.16 1.00 9700 1.16 0.32 1.13 1.00 4096

2 [11,1] −0.12 0.22 −0.12 1.00 5643 −0.11 0.22 −0.10 1.00 636

2 [12,1] −1.22 0.33 −1.20 1.00 4838 −1.14 0.32 −1.12 1.00 1514

2 [13,1] −1.01 0.30 −0.99 1.00 4309 −0.93 0.29 −0.91 1.00 605

2 [14,1] 0.76 0.27 0.74 1.00 8907 0.75 0.26 0.73 1.00 1866

2 [15,1] 0.43 0.25 0.42 1.00 10089 0.43 0.24 0.42 1.00 1329

2 [1,2] −0.50 0.20 −0.49 1.00 14425 −0.44 0.18 −0.43 1.00 488

2 [2,2] 0.05 0.18 0.05 1.00 3895 0.07 0.17 0.07 1.00 889

2 [3,2] −0.41 0.19 −0.40 1.00 29616 −0.36 0.18 −0.35 1.00 1144

2 [4,2] 0.28 0.18 0.27 1.00 2785 0.30 0.18 0.29 1.00 8410

2 [5,2] −0.18 0.18 −0.18 1.00 7136 −0.14 0.17 −0.13 1.00 941

2 [6,2] 0.08 0.18 0.08 1.00 3242 0.12 0.17 0.11 1.00 1437

2 [7,2] −0.60 0.21 −0.59 1.00 50000 −0.53 0.18 −0.51 1.00 811

2 [8,2] 2.12 0.43 2.09 1.00 2404 2.04 0.42 2.01 1.00 2902

2 [9,2] −1.12 0.27 −1.10 1.00 50000 −0.98 0.23 −0.96 1.00 739

2 [10,2] 0.03 0.17 0.03 1.00 3100 0.07 0.17 0.07 1.00 5451

2 [11,2] −0.45 0.19 −0.44 1.00 32028 −0.39 0.18 −0.38 1.00 933

2 [12,2] −1.01 0.26 −0.99 1.00 50000 −0.87 0.23 −0.85 1.00 421

2 [13,2] 1.38 0.30 1.36 1.00 1931 1.33 0.30 1.30 1.00 9637

2 [14,2] −0.30 0.19 −0.29 1.00 17123 −0.24 0.17 −0.24 1.00 1131

2 [15,2] 1.73 0.36 1.71 1.00 2894 1.65 0.35 1.62 1.00 9236

ρθ 0.41 0.24 0.38 1.00 50000 0.41 0.25 0.39 1.00 7619

ρβ 0.81 0.29 0.92 1.00 50000 0.81 0.29 0.91 1.00 18397

σb1 7.13 8.38 5.26 1.00 50000 6.90 7.28 0.92 1.00 18395

β0 3.70 0.17 3.70 1.00 1625 3.71 0.18 3.71 1.00 481

σ [1] 0.93 0.09 0.93 1.00 50000 0.93 0.09 0.93 1.00 30543

σ [2] 1.06 0.10 1.06 1.00 14474 1.06 0.10 1.05 1.00 50000

σ [3] 1.03 0.10 1.02 1.00 50000 1.04 0.10 1.03 1.00 50000

σ [4] 1.06 0.10 1.06 1.00 50000 1.06 0.10 1.05 1.00 50000

σ [5] 0.98 0.10 0.97 1.00 50000 0.97 0.09 0.97 1.00 50000

σ [6] 1.14 0.11 1.14 1.00 50000 1.14 0.11 1.14 1.00 50000

β0 = the grand mean; BS = the matrix for sender effects; BR = the matrix for receiver effect; ρβ = the correlation coefficient between sender effect and receiver effect;
BD = the matrix for effect of distance metric; 2 the matrix for latent trait scores; ρθ = the correlation coefficient between two latent traits; σ = the matrix for variance of
errors; ESS = effective sample size.
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FIGURE 1 | The traces for model convergence and the posterior distributions of a portion of Model 1 parameters.

constructed by the sum of the raw response scores and the
trait-level weighted ties under Model 1 and Model 2.

DISCUSSION

On the Development of the Latent
Interdependence Models
Psychometric relational data come from a variety of different
research settings (e.g., “multiple” round-robin designs and block

designs). The data we focused on in this paper are continuous
psychometric data with a network structure (as illustrated
by Table 1), which typically come from a setting in which
each network member rates their relations with all others.
As psychometric models, the goal of the LIDM is to score
individuals’ relational traits and to evaluate the characteristics
of the items. The estimates of model parameters can also be
used to predict the magnitude of the connections among the
group members along each latent dimension. These weighted
connections construct univariate or multivariate social networks
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FIGURE 2 | The traces for model convergence and the posterior distributions of a portion of Model 2 parameters.

at a latent-trait level and can be interpreted using the metric of
a given measure.

The LIDM adopt the idea of interdependence from the social
relations model (SRM), in which a mutual-rating process is
viewed as being influenced by both rating senders’ and receivers’
characteristics. However, they differ from SRMs in that they
score everyone’s relational traits directly. Moreover, under the
LIDM, the influence of ones’ traits on dyadic responses is
conditional on an item’s characteristics—its ability to differentiate
rating-senders’ and rating-receivers’ traits and the dissimilarities
between traits. These item characteristics provide researchers
with some useful perspectives, enabling them to evaluate how
to measure a given relational construct properly. For instance,

in measuring friendship, researchers may have an opportunity
to evaluate the differences between using a “individual-focused”
item (e.g., “I like my friend.”) and using a “dyad-focused” item
(e.g., “My friend and I like each other.”).

In the LIDM, the basic units of modeling are dyads,
which makes the LIDM distinct from other psychometric
models (e.g., univariate or multivariate item response models)
whose modeling units are single persons. For instance, in
multivariate item response models, multiple latent traits capture
an examinee’s set of abilities, with no need to involve the abilities
of other individuals, nor any need to involve a component
for the dissimilarity between two individuals’ abilities in the
measurement or structural model.
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FIGURE 3 | Affect-based trust networks and cognition-based trust networks generated from the raw scores and the estimates from Model 1 and Model 2.

Moreover, unlike traditional social network models (e.g.,
p∗ models and latent space model) that evolved from
data-mining methodologies, the LIDM can be applied to
theory-driven studies using psychometric relational data to
represent a latent structure of relational constructs. By yielding
accurate estimates for the latent traits and their covariance,
the LIDM prepares social network researchers for further
examinations of the mechanisms that underlie the formation
of ties and for visualizing multivariate social networks at a
latent-trait level.

To make the models estimable, constraints were placed onto
certain parameters. In both models, the loadings conveying the

effects of receiver’s latent traits were restricted to be positive, to
have a fixed variance of one, to be equal across dyads, and to be
item-specific. The variances of the random errors were also held
equal across dyads and varied only across items. In addition, in
Model 2, the effects of the distance metric were constrained to be
negative and to be item-specific. By specifying these constraints,
the number of parameters to be estimated does not rise as
the network size grows. We note that although these proposed
constraints and estimation procedures have been shown to be
effective for continuous outcomes, further investigation is needed
to generalize these constraints to other types of outcome data.
It should be noted that with receiver effects being constrained
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to be positive, group members’ responses need to be scored in a
proper way before entering analysis. That is, reverse scoring may
be needed for some items to make sure a rating-sender’s higher
score implies a rating-receiver’s higher trait score.

On the Simulation Study
The objectives of the simulation study were to evaluate the
parameterizations of the two proposed models and to investigate
the effectiveness of model estimation at different network sizes.
The results showed that, using the proposed Bayesian estimation
procedures with uninformative priors, both models converged
successfully for all simulated samples and that model parameters
were accurately recovered under most conditions. These findings
support the effectiveness of the parameterizations of both models.
Moreover, when estimated with data that were generated from a
different model, both models yielded relatively accurate results
for the latent trait scores, suggesting a tolerance of both models
to some model misspecification.

As expected, the accuracy of parameter recovery was improved
when network size increased, suggesting that increasing network
size can improve estimation accuracy. Since an increase in
network size would burden group members by necessitating
more ratings, researchers may face the trade-off between the
quality of model estimation and the practicability of data
collection. Additional non-round-robin data collection designs
(where not all raters rate all others) need further research, as
implications for missing data are not considered in this paper.
Although producing small biases, the estimation from a small
network with five or ten members was not satisfactorily accurate
in general due to relatively large RMSE for certain parameters.
We suggest that caution with respect to estimation accuracy when
interpreting the results from the analyses with small networks.
In addition, given a substantial improvement in the accuracy of
parameter recovery when the network size grew from 10 to 20, a
network size over 20 may suffice in terms of reaching satisfactory
estimation accuracy under the parameter values studied here.

In the simulation study estimation procedures using Bayesian
methods, weakly informative prior distributions were chosen
for all parameters but the latent traits to maximally reflect the
information from the data. It should be noted that in this study,
the estimates of parameters are obtained via expected a posteriori
(EAP) estimation. It has been noted that the EAP estimates
and other Bayesian methods (e.g., MAP estimates) are inwardly
biased with a tendency toward the mean of a given parameter
in estimating traits under item response theory models (e.g.,
Wang, 2015; Feuerstahler, 2018). For future studies, a systematic
evaluation of various estimation methods with LIDM is needed.

Limitations and Future Studies
Despite evidence that supports the parametrization of the
proposed models, we note some considerations on model
development and the design of the simulation study. First, in
this study, it was assumed that the dyadic relational response
data were continuous. In fact, psychometric relational data can
have multiple sample spaces. For instance, data collected using a
behavior checklist may be binary. In such cases, generalized latent
interdependence models with appropriate distributions and link

functions could be used. The models can also be generalized
to other types of data (e.g., ordinal data and count data). In
developing the LIDM, we only considered the situations where
each item only measures one relational trait and constrained
the form of distance metric as the Euclidean metric. Future
studies are needed to explore a more general form of the
models that would apply for items measuring multiple traits
and/or that include a more general distance metric (e.g., the
Minkowski distance).

Second, the evidence from the simulation study does not
guarantee the usefulness of the proposed models in other
settings. In the simulation study, data were generated under
a particular design with known dimensionality, in which eight
items measured two latent traits (and each item measured only
one latent trait). Although such a design seems to be practical
for social and behavioral sciences research, sometimes researchers
must compromise their design to address practical concerns.
For instance, because group members could be burdened by
a heavy item load, researchers may consider using only a few
items to measure each relation in a network. Unfortunately, small
numbers of items may cause estimation issues, such that extra
constraints may need to be put onto the models. Further studies
are needed to address these issues.

Finally, it should be noted that Model 1 is nested within
Model 2 (given a zero effect of the distance metric). In practice,
researchers can build their models starting from Model 1, with
which not only could they score latent traits and evaluate item
characteristics in terms of their sensitivity to trait change, but
also understand which part of a dyad dominates the rating
process. Moving to Model 2, researchers have an opportunity
to test the effect of the interplay between dyad members’
latent characteristics. Empirically comparing the two models
would involve a consideration of the information obtained from
statistics (such as Bayes factors) or an examination of the highest
density posterior credible intervals for the parameters of Model 2
that are not part of Model 1. Future studies are needed to derive
and test Bayes factors for the LIDM.

CONCLUDING REMARKS

Interpersonal relations can be studied at different levels.
Researchers collect psychometric relational data within network
settings to study those relational constructs that could be
conceptualized as psychological processes with multiple latent
dimensions. The development of the latent interdependence
models (LIDM) is an effort to model psychometric data in
social networks. The LIDM have the potential to be used in
theory-driven studies to help explain the latent structure of
any relational constructs. They produce estimates for group
members’ relational traits and for the effects capturing items’
sensitivity to the change of traits and to the dissimilarity
between a pair of members’ traits. Moreover, through deriving
the magnitudes of the connections among group members,
such an analytical strategy translates heavy-laden observed
networks into practically analyzable multivariate networks at
a latent-trait level. Further analyses (e.g., network properties
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calculation and multivariate networks visualization) could be
done with the latent univariate or multivariate networks, opening
the door to continued development.
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