AUTHOR=Tamati Terrin N. , Sevich Victoria A. , Clausing Emily M. , Moberly Aaron C. TITLE=Lexical Effects on the Perceived Clarity of Noise-Vocoded Speech in Younger and Older Listeners JOURNAL=Frontiers in Psychology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2022.837644 DOI=10.3389/fpsyg.2022.837644 ISSN=1664-1078 ABSTRACT=
When listening to degraded speech, such as speech delivered by a cochlear implant (CI), listeners make use of top-down linguistic knowledge to facilitate speech recognition. Lexical knowledge supports speech recognition and enhances the perceived clarity of speech. Yet, the extent to which lexical knowledge can be used to effectively compensate for degraded input may depend on the degree of degradation and the listener’s age. The current study investigated lexical effects in the compensation for speech that was degraded via noise-vocoding in younger and older listeners. In an online experiment, younger and older normal-hearing (NH) listeners rated the clarity of noise-vocoded sentences on a scale from 1 (“very unclear”) to 7 (“completely clear”). Lexical information was provided by matching text primes and the lexical content of the target utterance. Half of the sentences were preceded by a matching text prime, while half were preceded by a non-matching prime. Each sentence also consisted of three key words of high or low lexical frequency and neighborhood density. Sentences were processed to simulate CI hearing, using an eight-channel noise vocoder with varying filter slopes. Results showed that lexical information impacted the perceived clarity of noise-vocoded speech. Noise-vocoded speech was perceived as clearer when preceded by a matching prime, and when sentences included key words with high lexical frequency and low neighborhood density. However, the strength of the lexical effects depended on the level of degradation. Matching text primes had a greater impact for speech with poorer spectral resolution, but lexical content had a smaller impact for speech with poorer spectral resolution. Finally, lexical information appeared to benefit both younger and older listeners. Findings demonstrate that lexical knowledge can be employed by younger and older listeners in cognitive compensation during the processing of noise-vocoded speech. However, lexical content may not be as reliable when the signal is highly degraded. Clinical implications are that for adult CI users, lexical knowledge might be used to compensate for the degraded speech signal, regardless of age, but some CI users may be hindered by a relatively poor signal.