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China

In educational measurement, exploring the method of generating multiple high-quality
parallel tests has become a research hotspot. One purpose of this research is to
construct parallel forms item by item according to a seed test, using two proposed item
selection heuristic methods [minimum parameters–information–distance method (MPID)
and minimum information–parameters–distance method (MIPD)]. Moreover, previous
research addressing test assembly issues has been limited mainly to situations in which
the information curve of the item pool or seed test has a normal or skewed distribution.
However, in practice, the distributions of information curves for tests are diverse.
These include multimodal distributions, the most common type of which is the bimodal
distribution. Therefore, another main aim of this article is to extend the information curves
of unimodal distributions to bimodal distributions. Thus, this study adopts simulation
research to compare the results of two item, response, theory (IRT)-based item matching
methods (MPID and MIPD) using different information curve distributions for item pools
or seed tests. The results show that the MPID and MIPD methods yield rather good
performance in terms of both two statistical targets when the information curve has a
unimodal distribution, and two new methods yield better performance than two existing
methods in terms of test information functions target when the information curve has a
bimodal distribution.

Keywords: bimodal distribution, item matching test assembly methods, item response theory, information curve,
parallel forms of tests

INTRODUCTION

Constructing multiple equivalent forms with higher quality to be administered at different
timepoints and locations has always posed a challenge for developers of educational assessments
and licensure tests. The application of automated test assembly (ATA) procedures benefits test
developers in that it dramatically reduces their workload and ensures the quality of parallel test
forms. Over the past two decades, researchers have successfully implemented optimization-based
automated test assembly techniques such as mixed integer programming (MIP; Cor et al., 2009;
Finkelman et al., 2010) and enumerative heuristics (Armstrong et al., 1992; Finkelman et al., 2009;
Brusco et al., 2013).

The MIP methods convert test specifications (the test blueprint) into mathematical expressions
from which a globally optimal solution can usually be derived using available software packages
(Chen, 2014). Heuristics methods following stepwise procedures are of great influence even though
they often yield a locally optimal solution at each step, not a globally optimal one (Chen, 2014).
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Because of the nondeterministic polynomial (NP)-hard nature
of MIP problems, heuristic methods can improve both the
performance of MIP solvers and the quality of solutions
(Chen, 2015).

Mixed integer programming approaches look for the
optimal solution, so time is longer. Besides, many solvers
are commercially available and costly. For users with a weak
mathematical background, MIP approaches are not easily
accessible (Chen, 2014). Heuristic methods avoid the above
shortcomings. Although heuristic methods find the suboptimal
solution, the suboptimal solution is acceptable for test assembly,
so this article focuses on heuristic methods. There are many
heuristics (Armstrong et al., 1992; Finkelman et al., 2009; Brusco
et al., 2013), but most of them like greedy algorithms, random
and sampling algorithms are relatively old algorithms, which
are difficult to meet today’s demand for test papers with diverse
constraints. With the development of test theory, the trend
of test assembly is to assemble high-quality test papers that
meet the constraints under the test theory framework based
on seed test. Minimum information distance method (MID)
and minimum parameters distance method (MPD) are two
classical test assembly methods based on seed test under item
response theory.

When the seed test is available, one of the targets of test
assembly is to make test information curve of generated tests
similar to test information curve of the seed test, because an
important indicator for testing whether two tests are parallel tests,
is the similarity of test information curves of the two tests (Ali and
Van Rijn, 2016). The more similar they are, the more they can
be regarded as parallel tests. The core idea of the MID method
is to match item information curve item by item, so that the
test information curve of the seed test and generated tests will
be identical (Armstrong et al., 1992). Another indicator is the
test characteristic curve of two tests (Ali and Van Rijn, 2016).
Similar test information does not necessarily guarantee that the
test characteristic curve is the same. So the advantage of MID
is that the generated tests are similar to the seed test in terms
of test information curve, but the disadvantage is that the test
characteristic curve is not necessarily similar.

In order to meet both the two indicators, Armstrong
et al. (1992) have attempted to use the MPD method for
directly matching the item’s parameters, because test information
function and test characteristic function are both functions
composed of some parameters, which will inevitably be
decided by parameters.

In general, MID only focuses on test information curve, while
MPD has a wide range of influence. It can be inferred that
MID is better than MPD on test information curve matching
target, while MPD is better than MID on test characteristic
curve matching target (Armstrong et al., 1992). On the basis of
MID and MID, can new test assembly methods be produced to
make both test information curve and test characteristic curve
matching targets achieve more satisfactorily?

Moreover, the majority of previous research addressing test
assembly problems has focused on the condition when the
information curve of the item pool or the reference test
has a unimodal distribution by default (Chen et al., 2012;

Chen, 2014, 2015; Ali and Van Rijn, 2016; Shao et al., 2019).
However, information curves vary greatly in practice, and
they include both unimodal and multimodal distributions. The
bimodal distribution is a simple and typical representative of the
multimodal distribution. Accordingly, the present study explores
both unimodal and bimodal distributions. In sum, this study’s
goal is to develop two novel item, response, theory (IRT)-based
item matching test assembly methods based on the two previously
mentioned methods and then compare the four, using different
information curve distributions for the item pools and seed tests.

The article is organized as follows. First, we briefly review
two extant item matching test assembly methods (the minimum
parameters–distance method and the minimum information–
distance method), explaining their limitations and proposing two
new methods. Subsequently, we introduce information curves
for unimodal and bimodal distributions. Finally, we compare
the proposed methods with the two traditional item matching
methods, using different information curve distributions for the
item pools and seed tests based on several criteria.

TWO TRADITIONAL HEURISTIC
METHODS

Minimum Information Distance Method
The idea of the MID method is to find one item in the item pool
that is most similar with the item in the seed test in terms of
item information curve. The figure given below (Figure 1) is the
information curve of all the items in the item pool (gray curve)
and an item in the seed test (red curve).

According to the image, it is hard to judge which item in the
item pool has the closest information curve to the item in the seed
test, so it is necessary to calculate the information curve distance
(ID) between each item in the item pool and the item in the seed
test to find the minimum ID (MID), and this is in line with the
original intention of the MID method to assemble tests.

ID2
ij =

M∑
m=1

ωm
(
fi (θm)− fj (θm)

)2

FIGURE 1 | Item information function.

Frontiers in Psychology | www.frontiersin.org 2 February 2022 | Volume 13 | Article 786772

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-786772 February 7, 2022 Time: 16:14 # 3

Huijing et al. Automated Test Assembly

The information distance is estimated by the following equation:
where IDij is the information distance between item i (in the seed
test) and item j (in the item pool). fi(θ) is the information for item
i at the ability level θ and fj(θ) is the information for item j at the
ability level θ. M is the number of the ability levels of interest, ωm
is weight coefficient and

∑M
m=1 ωm = 1, ωm > 0, ωm is selected

by the practitioner (Armstrong et al., 1992). The ability level θ

selected in this study are –2, –1, 0, 1, 2, and the weight of each
ability point is 0.2, the same for both.

The IRT model used in this study is a three-parameter logistic
model, so the calculation formula for item information curve f (θ)
is as follows:

f (θ) =
1.72
∗ a2
∗(1− c)

(c+ e1.7a(θ−b)) (1+ e−1.7a(θ−b))
2

where a, b and c are discrimination, difficulty, and guessing
parameters of an item, respectively.

The core objective of the MID method is to minimize the
differences in information statistics at crucial ability points
between the assembled test forms and the seed test, which directly
meets the criterion of test information matching.

Minimum Parameters Distance Method
In addition to matching the test information curve (TIC) of the
seed test, matching the test characteristic curve (TCC) of the seed
test is another important target of test assembly (Ali and Van
Rijn, 2016). Constraining the test information curve to be equal
does not necessarily guarantee similarity of the test characteristic
curve (Ali and Van Rijn, 2016). It can be concluded that the MID
method can only meet the matching requirements of TIC but
cannot meet the matching requirements of TCC.

The IRT model used in this study is a three-parameter logistic
model, so the calculation formula for item characteristic function
is as follows:

P(θ) = c+
1− c

1+ e[−1.7a(θ−b)]

where a, b, and c are discrimination, difficulty, and guessing
parameters of an item, respectively.

It can be concluded from the calculation formulas of item
characteristic curve (ICC) and item information curve (IIC) that
they are both functions of three parameters. The idea of the MPD
method is to find one item in the item pool that is most similar
with the item in the seed test in terms of item’s parameters. Tests
that match based on collective indices such as test, information,
function (TIF) may not be presumed to exhibit stable, similar
properties any more than can those based on item matching.
Tests built by matching item parameters (MIP) directly capture
the main properties of the items in the seed test, thereby ensuring
the satisfaction of all cumulative indices, including TIFs and
TCCs (Chen, 2015).

The figure below (Figure 2) is the item’s parameters of all
the items in the item pool (gray dot) and one item in the
seed test (red dot).

According to the image, it is difficult to judge which item in
the item pool has the closest item’s parameters to the item in

FIGURE 2 | Scatter plot of a- and b-parameters.

the seed test, so it is necessary to calculate the item’s parameters
distance (PD) between each item in the item pool and the item in
the seed test to find the minimum PD (MPD), and this is in line
with the original intention of the MPD method to assemble tests
(Wang et al., 2016). The IRT model in this study is a commonly
used three-parameters logistic model. The PD is estimated by the
following equation:

PD2
ij = ϕ1

(
ai − aj

)2
+ ϕ2

(
bi − bj

)2
+ ϕ3

(
ci − cj

)2

where PDij is the parameter’s distance between item i and item
j; ai, bi and ci are the discrimination, difficulty and guessing
parameters, respectively, of item i in the seed test; and aj, bj,
and cj are the discrimination, difficulty, and guessing parameters,
respectively, of item j in the item pool.

ϕ1, ϕ2, and ϕ3 are weight coefficient. ϕ1 ≥ 0, ϕ2 ≥ 0, ϕ3 ≥ 0
and ϕ1 + ϕ2 + ϕ3 = 1. They are selected by the practitioner
(Armstrong et al., 1992; Chen, 2015; Wang et al., 2021). Different
parameters have different effects on the test information function
and test characteristic function. Taking the three-parameters
logistic model as an example, for test information function,
the degree of discrimination and guessing parameters have a
greater impact on it, while for test characteristic function, the
degree of discrimination has the greatest influence, followed
by the difficulty and guessing parameters. Therefore, when
calculating the parameter distance, different weights are generally
given to the parameters. Chen (2017) found that these weights
(ϕ1 = 0.5, ϕ2 = 0.25, and ϕ3 = 0.25) were used to represent the
relative importance of a parameter to the information function
after examination of the TIC and TCC resulting from the
unweighted and weighted versions. The weights used in this
study are the same.

Test Assembly Procedure
1. Randomly select an item in the seed test.
2. Choose five items (the number of items is determined

by the number of parallel tests) from the item pool
according to MID or MPD.

Frontiers in Psychology | www.frontiersin.org 3 February 2022 | Volume 13 | Article 786772

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-786772 February 7, 2022 Time: 16:14 # 4

Huijing et al. Automated Test Assembly

FIGURE 3 | Procedure 1–3.

3. Five items are randomly assigned to five parallel tests and
calculate the sum of the distances between the selected
items of the five parallel tests and the seed test.

4. Delete the selected item from the item pool to prevent
repeated selection.

5. Randomly select another item in the seed test again
and choose five items from the new item pool
according to MID or MPD.

6. The five items are allocated to five parallel tests based
on the sum of distances (procedure three). The principle
is that the greater the sum of the distances of parallel
paper, the more priority items with a smaller MID or MPD
are to be assigned to it, so as to reduce the difference
between parallel tests.

7. Repeat 4–6 until all the items in the seed test have been
selected.

As shown in the figure above (Figure 3), the upper left corner
is the distance matrix between the item in the item pool (row)
and the item in the seed test (column); the lower left corner is
the distance matrix of five parallel tests; the lower right corner
calculates the sum of the current distances of each parallel test.

The first step is to randomly select one item in the seed test
(item 3 in the seed test), the second step is to find the five
items with the smallest d value in the item pool (item 2, item
5, item 19, item 155, and item 160 in the item pool), and the
third step is randomly assigned to five parallel tests, and the total
distance is calculated.

The fourth step is to randomly select one item in the seed test
(item 6). The fifth step is to find the five items with the smallest
value of d in the item pool (item 1, item 66, item 68, item 142,
and item 149 in the item pool). The sixth step is to assign five

items. The total distance calculated in the third step is allocated
to the five parallel tests in reverse order (the smaller distance item
is assigned to the test with larger total distance) to reduce the
difference between parallel tests (Figure 4).

Repeat steps 3–6 until all items in the seed test
have been selected (Figure 5).

Two New Heuristic Methods
The MID method aims to make generated tests similar to the
seed test in terms of the test information curve, but fails to take
test characteristic curve into account. MPD method of directly
matching parameters expects to achieve two targets, but the result
of test information curve is inferior to method MID. The two
methods have their own strengths, so why not combine the two
distances together to construct a new distance index to assemble
tests?

Minimum
Parameters–Information–Distance
Method
In order to achieve the best result of TIF and TCC target
matching, the two methods are combined when constructing the
distance moment. The parameters–information–distance (PID)
is estimated by the following equation:

PID2
ij = (1− λ) ∗ (PDij)+ λ ∗ (IDij)

λ =
s− 1

test_length

where PIDij is the combined distance between item i (in the seed
test) and item j (in the item pool); PDij is the parameter’s distance
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FIGURE 4 | Procedure 4–5.

FIGURE 5 | Procedure 7.

between item i and item j; IDij is the information distance
between item i and item j; λ is the adjustment factor, and s is the
number of items that have been selected so far.

The progressive method of Revuelta and Ponsoda
(1998) is used as a template for our holistic item selection
index. The role of λ is to select and generate papers in
the previous stage in order to highlight the advantages
of the MPD method and match the TCC. As s increases,
it becomes larger and 1-s decreases, highlighting the

advantages of the MID method and matching the TIC at
the later stage.

Minimum
Information–Parameters–Distance
Method
It remains unknown whether the two methods’ sequence affects
test assembly results. It is feasible to reverse the order, producing
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a minimum information–parameters–distance (MIPD) method
for meeting a variety of practical demands. At the first stage, the
purpose of selecting items is to obtain smaller TIC differences,
and during the next stage, the aim is to minimize parameters’
distances. The procedure is exactly the opposite of the MPID
method. The information, parameters, and distance (IPD) is
estimated by the following equation:

IPD2
ij = (1− λ) ∗ (IDij)+ λ ∗ (PDij)

λ =
s− 1

test_length

The meaning of the letters in the formula is the same as above.

Bimodally Distributed Test Information
Curves
Bimodal distributions often appear in the fields of biology, life
sciences, geology, and so on. For example, in a clinical context,
the highest incidence of fibrolamellar hepatocellular carcinoma
(FLC) occurs between ages 15 and 19 and between ages 70 and 74;
that is, the curve representing the age of onset is bimodal (Ramai
et al., 2021). Of course, bimodal distributions are not uncommon
in the fields of psychology and pedagogy. Bimodal distributions
appear in many psychological tests (Steinley and McDonald,
2007). This often occurs with education examinations. Tang
(2018) has found that students’ English subject test scores in each
semester exhibit abnormal bimodal distributions (based on the
Academic Quality Monitoring and Evaluation Department).

Different disciplines have different definitions of bimodal
distributions. In this article, we are referring to a distribution
showing two obvious peaks—that is, a mixed distribution
composed of two unimodal distributions—where the two peaks
need not be equal.

As we can see from the formula of the item information
function, it is not surprising that the item information curve has
one peak, such as that shown in Figure 6. An item measures the
ability with greatest precision at the ability level corresponding to
the item’s difficulty parameter. The amount of item information
decreases as the ability level departs from the item difficulty and
approaches zero at the extremes of the ability scale.

FIGURE 6 | Item information function (a = 1, b = 0).

FIGURE 7 | Unimodally distributed test, information, function (TIF).

FIGURE 8 | Uniformly distributed test, information, function (TIF).

FIGURE 9 | Bimodally distributed test, information, function (TIF).

Because a test is used to estimate an examinee’s ability, we can
also obtain the amount of information yielded by the test at any
ability level. A test is a set of items; therefore, the test information
at a given ability level is simply the sum of the item information
values at that level. Consequently, the test information function
is defined as

I (θ) =

J∑
j=1

Ij (θ)

where I(θ) is the amount of test information at ability level θ, Ij(θ)
is the amount of information for item j at ability level θ, and J is
the number of items in the test.
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TABLE 1 | MSDTIC.

Unimodal
(D = 0)

Unimodal
(D = 1)

Bimodal
(D = 2)

Bimodal
(D = 3)

MPD 0.401 0.408 0.426 0.438

MID 0.302 0.331 0.363 0.406

MPID 0.296 0.315 0.339 0.348

MIPD 0.286 0.309 0.335 0.350

The test information function is an extremely useful feature
of item response theory. It provides a metric of how well the
test is doing in estimating ability over the range of ability scores
(Xiong et al., 2002). While the ideal test information function
often may be a horizontal line (Figure 7, n represents test length),
it may not be optimal for meeting specific demands. For example,
if one aims to construct a test to award scholarships, this ideal
function may not be appropriate. In this situation, one aims
to measure ability with considerable precision at ability levels
near that used to separate those who will receive the scholarship
from those who will not. The best test information function in
this case would have a peak at the cutoff score (Figure 8; Baker
and Kim, 2017). Other specialized uses of tests could require
different test information functions. For example, for a test
provided to award scholarships at several levels, the satisfactory
test information function would have multiple peaks at the cutoff
scores (a multimodal distribution). The bimodal distribution is
one of the simplest types (Figure 9).

Nevertheless, to our knowledge, there is little research
specifically on the information curves of bimodal distributions
in the context of automated test assembly. In some educational
measurement, not only is it required to have a demarcation
score with small error and strong discrimination at the boundary
between qualified and unqualified, but also hope to have another
demarcation score with small error and strong discrimination
at the boundary between excellent and non-excellent. This
requires that the target state of the test information function
be designed as a bimodal curve (Chen and Wang, 2010). It is
undoubtedly worthwhile to investigate the performance of test
assembly methods based on the item pool information curves of
bimodal distributions.

METHOD

The goal of the simulation study was to investigate the
performance of four item selection methods under various
conditions:

Pool size, test length, and number of forms: The size of the
item pool was 540, the test length was 30, and the number of
parallel tests was 5.

Item parameters: Each item was subject to 3PLM, the
discrimination parameter had a normal distribution, with a mean
value of 1 and a standard deviation of 0.3; the difficulty parameter
had a bimodal distribution, and the guessing parameter had a [0,
0.3] uniform distribution.

Non-statistical constraints. The items in the item pool covered
three content areas A, B, and C, whose proportions of the total
content were 40, 30, and 30%, respectively. The seed test consisted
of 30 items (content proportions identical to this in item pool).

Variables for bimodal curve of test information. The most
common bimodal distribution is a combination of two normal
distributions. Xu et al. (2013) first used Excel to randomly
generate two normally distributed datasets with a seed size of
1,000 and then extracted n × 1,000 random datapoints from
the first normal distribution and 1,000 – n × 1,000 random
datapoints from the second normal distribution (n is a ratio
ranging from 0 to 1). They extracted random datapoints from
the seed and then created a scatterplot and a histogram based
on the extracted data to obtain the bimodal distribution’s shape.
The procedure for producing bimodally distributed TIC is similar
to the preceding process, except it is a combination of two
unimodally distributed TICs. Different values of a will generate
bimodal distributions of different shapes. In Kim and Lee’s (2020)
study, the ratios of extraction from the normal component θ ∼

N (–1.8, 0.8) and the normal distribution θ ∼ N (0.8, 0.8) were
3:7, 5:5, and 7:3, composing three different bimodal distributions.
These three ratios can effectively represent the different forms
of the bimodal distribution. Therefore, in this study, we set
the mixing ratios of the bimodally distributed TICs to 3:7,
5:5, and 7:3. In addition to the mixing ratio, the horizontal
spacing between the double peaks will also affect the shape of
the bimodal curve. For this reason, we included the bimodal
horizontal distances of the TICs in our estimates, which we set
to 0, 1, 2, and 3. Simply put, the main variables of bimodal TICs
observed in this study were the bimodal mixing ratio and bimodal
horizontal spacing.

We repeated the test for R (1,000) times, each time randomly
generating the item pool parameters and seed tests that met the
preceding requirements, using the four item selection methods
to generate 5 parallel test papers. To accommodate the content
constraints of the test, we only directly determined the most
matching items from each content sub-item pool and did not use
weighting factors.

Evaluation Criteria
1. Mean square deviation indicator of test information

function (MSDTIC)
We used this indicator to evaluate the difference between
the assembled test and the seed test in terms of their TICs.
We calculated it using the following formula:

MSDTIC = (

N∑
n=1

(I(θn)− Is(θn))
2)/N

where I(θn) and Is(θn) represent test information of the
assembled test and the seed test at ability point θn (n = 1,
2,..., N), respectively. The number of capability nodes N
was set to 61, the capability range was –3 to 3, and the
step size was 0.1.

2. Mean square deviation indicator of test characteristic curve
(MSDTCC)
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FIGURE 10 | Test information curve (D = 0).

FIGURE 11 | Test information curve (D = 1).
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FIGURE 12 | Test information curve (D = 2).

FIGURE 13 | Test information curve (D = 3).
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TABLE 2 | MSDTCC.

Unimodal (D = 0) Unimodal (D = 1) Bimodal (D = 2) Bimodal (D = 3)

MPD 0.227 0.232 0.249 0.268

MID 0.255 0.288 0.368 0.485

MPID 0.193 0.208 0.233 0.247

MIPD 0.197 0.215 0.233 0.263

This indicator was used to evaluate the difference between
the TCCs of the assembled test and the seed test. We
calculated it using the following formula:

MSDTCC = (

N∑
n=1

(C(θn)−Cs(θn))
2)/N

where C(θn)and Cs(θn)represent TCCs of the assembled
test and the seed test at ability point θn (n = 1, 2,...,
N), respectively. The number of capability nodes N was
set to 61, the capability range was –3 to 3, and the
step size was 0.1.

RESULTS

The mixing ratio of the bimodal distribution has little effect on
the results, so to avoid cluttering the presentations, the following
only shows the results with a bimodal mixing ratio of 3:7. The
Supplementary Appendix presents the rest of the results for
interested readers.D represents the two peaks’ horizontal spacing.

Test Information Curve
Table 1 lists the mean values for the mean square deviation of the
five forms from the target test information at 61 ability points for
all test assembly methods.

As Table 1 illustrates, when the TIC has a unimodal
distribution, the MID method performs better than the MPD
methods and the MPID and MIPD methods achieve the same
MSD as the MID method. Furthermore, the MPD method rivals
the MID methods gradually and the MPID and MIPD method
perform best when the TIC has a bimodal distribution.

In sum, the MPID and MIPD method—regardless of the
bimodal horizontal distance—perform the best among all the
four methods. The performance of the MID method when the
TIC has two peaks is not as good as when the TIC has a single
peak, indicating that the MPID and MIPD method (especially
the former) are much more suited for use with bimodally
distributed TIC than is the MID method. The MPD method has
no advantage in TIC.

van der Linden (2005) argues that if the information function
curves of the two tests are very similar—that is, when the
difference in the amount of information between the assembled
test and the seed test at different abilities is small—then
the two tests can be considered statistically equivalent. The
proximity of the TCCs can also be used as an evaluation
criterion for the quality of the assembled test. Plotting the
test information function and test characteristic curve for the
assembled test and the seed test, one can intuitively judge
the pros and cons of the item selection methods (Wang
et al., 2021). Due to limited space, we show only some of
the results here.

Figures 10–13 show the test information curves resulting
from the four methods.

FIGURE 14 | Test characteristic curve (D = 0).
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FIGURE 15 | Test characteristic curve (D = 1).

FIGURE 16 | Test characteristic curve (D = 2).
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FIGURE 17 | Test characteristic curve (D = 3).

Test Characteristic Curve
Table 2 lists the mean values for the mean square deviation of the
five forms from the target test characteristic curve at 61 ability
points for all test assembly methods.

Regarding the MSDTCC, the MPD method shows its strength
of lowering the disparity between target test and assembly
tests, resulting in smaller MSDTCC and outperforming the
other methods. The MPID and MIPD methods’ performance
is close to that of MPD. Obviously, the MID method has no
advantage in TCC.

Figures 14–17 show the test characteristic curves resulting
from the four methods.

DISCUSSION AND CONCLUSION

As far as the two existing methods are concerned, MPD
has advantages in matching TCCs, while MID is superior
in matching TICs. Two new methods combining the two
methods (the MPID and MIPD method) can not only better
match TCCs but also TICs. Although the new method only
combines the original method with progressive coefficients,
we contend that this research may help test agencies needing
to generate multiple test forms for the sake of maintaining
test security when administering multiple tests at various
locations and times.

There are several reasons for our argument. First, it is
undeniable that the two indicators are very important, and
they have distinct meanings. The similar TCC results hold

for forms that are similar in difficulty; test forms with the
same TIF are similar in terms of precision (Ali and Van
Rijn, 2016). Hence, we expect that all two indicators will be
satisfactory (Chen, 2014). Then, the advantages of the new
method are especially reflected in the bimodal distribution
conditions. The MID method is susceptible to distribution.
Under the bimodal condition, the TCCs matching effect of
the two new methods is significantly better than the existing
method. Additionally, new methods separating item selection
phase into several stages and applying various methods in
each stage offer a simple perspective on how to integrate
diverse methods’ merits. Finally, this study’s consideration of the
different distributions of test information closely matches the
reality of test data.

This study has several limitations. The MPID and MIPD
methods presented here are simplified versions, and further
modification would make them more practical. Other important
issues must be addressed in future research, including the
setting of λ parameter, to take full advantage of each approach
(Liu and Chang, 2018). In addition, it is common knowledge that
the ability point specifications can influence the MID method’s
results. The issue of whether ability points (–2, –1, 0, 1, 2) suitable
for information of unimodal distributions are as appropriate for
bimodal distributions deserves additional attention (Chen, 2015).
Finally, the item, response, theory (IRT)-based ATA methods
proposed in this study focus on information curves of bimodal
distributions. Whether the results can be extended to test designs
with information curves of other multimodal distributions needs
further investigation.
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