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Participants in a conversation must carefully monitor the turn-management

(speaking and listening) willingness of other conversational partners and adjust

their turn-changing behaviors accordingly to have smooth conversation.

Many studies have focused on developing actual turn-changing (i.e., next

speaker or end-of-turn)models that can predict whether turn-keeping or turn-

changing will occur. Participants’ verbal and non-verbal behaviors have been

used as input features for predictive models. To the best of our knowledge,

these studies only model the relationship between participant behavior and

turn-changing. Thus, there is no model that takes into account participants’

willingness to acquire a turn (turn-management willingness). In this paper, we

address the challenge of building such models to predict the willingness of

both speakers and listeners. Firstly, we find that dissonance exists between

willingness and actual turn-changing. Secondly, we propose predictivemodels

that are based on trimodal inputs, including acoustic, linguistic, and visual cues

distilled from conversations. Additionally, we study the impact of modeling

willingness to help improve the task of turn-changing prediction. To do

so, we introduce a dyadic conversation corpus with annotated scores of

speaker/listener turn-management willingness. Our results show that using

all three modalities (i.e., acoustic, linguistic, and visual cues) of the speaker

and listener is critically important for predicting turn-management willingness.

Furthermore, explicitly adding willingness as a prediction task improves

the performance of turn-changing prediction. Moreover, turn-management

willingness prediction becomes more accurate when this joint prediction

of turn-management willingness and turn-changing is performed by using

multi-task learning techniques.

KEYWORDS

speaking and listening willingness, willingness prediction, turn-taking, multi-task

learning, multimodal signal processing
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1. Introduction

Turn-changing is an important aspect of smooth

conversation, where the roles of speaker and listener change

during conversation. For smooth turn-changing, conversation

participants must carefully monitor the speaking and listening

(turn-management) willingness of other conversational partners

and consider whether to speak or yield on the basis of their own

willingness and that of their partner.

To realize a dialogue system that can interact as smoothly as

humans do, the dialogue system must be able to switch between

listening and speaking at appropriate times, just as humans do.

Therefore, predicting turn-changing can be helpful for

conversational agents or robots as they need to know when

to speak and take turns at the appropriate time. The field

of human-computer interaction has long been dedicated to

computational modeling of turn-changing. Many studies

have focused on developing actual turn-changing (i.e., next

speaker or end-of-turn) models that can predict whether

turn-keeping or turn-changing will happen using participants’

verbal and non-verbal behaviors (Ferrer et al., 2002; Schlangen,

2006; Chen and Harper, 2009; de Kok and Heylen, 2009;

Laskowski et al., 2011; Kawahara et al., 2012; Jokinen et al.,

2013; Holler and Kendrick, 2015; Ishii et al., 2015a,b, 2016a,b,

2017, 2019; Lammertink et al., 2015; Levinson, 2016; Hömke

et al., 2017; Hara et al., 2018; Holler et al., 2018; Lala et al.,

2018; Masumura et al., 2018, 2019; Roddy et al., 2018; Ward

et al., 2018). These studies predicted turn-changing on the

basis of verbal and non-verbal behaviors. However, the speaker

and listener make the next speaking behavior based on their

own willingness to speak or to listen to the partner’s speaking.

In addition to an individual’s own willingness to speak, the

decision regarding who takes the next turn to speak is also

dependent on the willingness of the other. We believe that in

order to predict the turn-changing, we should focus not only

on the actions of the speaker and listener, but also on their

willingness to speak, and by predicting these simultaneously,

there is possibility to predict the turn-changing with higher

accuracy.

In this paper, we explore turn-management willingness

during dyadic interactions with the goal of incorporating

the modeling of willingness into a computational model

of turn-changing prediction (see Figure 1). In this work,

we study four types of willingness for speakers and

listeners: turn-holding (speaker’s willingness to speak),

turn-yielding (speaker’s willingness to listen), turn-grabbing

(listener’s willingness to speak), and listening (listener’s

willingness to listen). We also address two new research

questions:

Q1) Is actual turn-changing taking place in accordance

with the participant’s willingness to speak? In other

words, is there consonance between turn-management

willingness and actual turn-changing?

Q2-1) Are the verbal and non-verbal behaviors of speakers

and listeners useful in predicting turn-management

willingness?

Q2-2) Does explicitly modeling willingness help with turn-

changing prediction?

First, we analyze the relationship between turn-management

willingness and actual turn-changing in our empirical study

to address Q1. In particular, we investigate the relationship

between the actual turn-changing and turn-management

willingness of conversation participants to determine whether

turn-changing occurs in accordance with the turn-management

willingness in dialogue.

Second, we study the relative behavioral usefulness

of features obtained from acoustic, linguistic, and visual

modalities, from both speakers and listeners, to address Q2-1.

Predicting this willingness directly has the potential to support

conversational agents and robots with appropriate starting and

ending utterances to have smooth conversations. To respond

to Q2-2, we built predictive models for actual turn-changing

prediction. As a first step, we use trimodal inputs, i.e., acoustic,

linguistic, and visual cues, to directly predict turn-changing. As

a second step, we incorporate willingness prediction into turn-

changing prediction. This joint modeling approach is motivated

by the intuition that humans are likely to control actual turn-

changing on the basis of speaking and listening willingness.

We build a multi-task model for joint turn-changing and

willingness prediction, and then we evaluate the effectiveness of

our proposed approach in terms of performance improvement.

To answer these research questions, we collected a new dyadic

dialogue corpus including audio and video recordings, and we

transcribed the content of dyad conversations as well as acquired

annotations of speaking and listening willingness scores for

both conversation participants. The dataset was collected to

empirically study the various combinations of speaking and

listening willingness with turn-changing-based multimodal

behavioral markers extracted from these three modalities (i.e.,

acoustic, linguistic, and visual). As the method for collecting

willingness scores, it is very difficult for participants to evaluate

their own internal state in dialogue. We deal with scores of

willingness as perceived by several third parties observing the

participants.

In Section 2, we review relevant related work and highlight

our motivation to propose new approaches to turn-management

willingness. Section 3 describes the corpus data collection using

dyad interactions. Section 4 describes our analysis of turn-

management willingness and actual turn-changing to address

Q1. Sections 5 and 6 describe the implementation and evaluation

of the proposed predictive models for turn-willingness and turn-

changing to address Q2-1 and Q2-2. Section 7 discusses the
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FIGURE 1

Overview of our research questions.

results for Q1, Q2-1, and Q2-2. We conclude in Section 8 with a

brief summary and mention of our future work.

2. Related work

2.1. Turn-changing and behaviors

Smooth turn-changing is an important aspect of social

communication. It is one of the main means of coordinating

one’s communicative actions and interacting in a successful

manner with others. In general, a turn refers to an interlocutors’

right to speak, or “hold the floor,” while the partner (or

partners) listens (Kendon, 1967). A turn typically consists

of a stretch of speech that has a particular meaning or a

message that the speaker intends to send across. Research on

the elucidation of the mechanism behind turn-changing mainly

began in the field of sociolinguistics. Sacks and colleagues

(Sacks et al., 1974) proposed a turn-changing model, arguing

that speaker switching occurs only at transition-related points

(TRPs). Studies have demonstrated that verbal and non-verbal

cues are important to indicate the presence or absence of

turn-changing in dyad conversations (Lammertink et al., 2015;

Levinson, 2016). Several studies have recently examined that

non-verbal cues of conversation partners are discriminative for

turn-changing prediction. In particular, it has been shown that

eye-gaze behavior (Kawahara et al., 2012; Jokinen et al., 2013;

Holler and Kendrick, 2015; Ishii et al., 2016a), head movement

(Ishii et al., 2015b, 2017), respiration (Ishii et al., 2016b), and

hand gestures (Holler et al., 2018) are strongly related to turn-

changing.

To elaborate, the mutual interaction of gaze behavior is

thought to contribute to smooth turn-changing (Kawahara et al.,

2012; Jokinen et al., 2013; Holler and Kendrick, 2015; Ishii et al.,

2016a). During turn-changing, the speaker tends to look at a

listener in order to yield their turn to the listener. The listener

who is to become the next speaker tends to look at the speaker,

resulting in mutual gaze. During turn-keeping, listeners tend

not to engage in mutual gazing with the speaker. Ishii et al.

(2015b, 2017) have shown that nodding and head movements

are more frequent during turn-changing. It has also been shown

that the head movements of the speaker and listener tend to

occur simultaneously during turn-changing. Ishii et al. (2014,

2016b) have also shown that participants breathe differently

between turn-keeping and turn-changing. In detail, the speaker

periodically takes quick breaths between utterances during turn-

keeping. The speaker exhales and does not immediately begin

taking a breath during turn-changing. The listener takes a larger-

than-normal breath to start speaking during turn-changing. It

has been reported that speaker’s hand gestures tend to occur

more during turn-keeping than during turn-changing (Holler

et al., 2018).

2.2. Turn-changing prediction
technology

As a result of previous research on conversation turns and

behaviors, many studies have developed models for predicting

actual turn-changing, i.e., whether turn-changing or turn-

keeping will take place, on the basis of acoustic features (Ferrer

et al., 2002; Schlangen, 2006; Chen andHarper, 2009; de Kok and

Heylen, 2009; Huang et al., 2011; Laskowski et al., 2011; Eyben

et al., 2013; Jokinen et al., 2013; Hara et al., 2018; Lala et al.,

2018; Masumura et al., 2018, 2019; Roddy et al., 2018; Ward

et al., 2018). They have used representative acoustic features

from the speaker’s speech such as log-mel and mel-frequency

cepstral coefficients (MFCCs) as feature values.

Others have used linguistic features, such as BERT (Devlin

et al., 2019), extracted from speaker’s utterance text (Lala et al.,

2018; Masumura et al., 2018, 2019; Roddy et al., 2018). Others

have used visual features, such as overall physical motion (Chen

and Harper, 2009; de Kok and Heylen, 2009; Dielmann et al.,
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2010; Roddy et al., 2018) near the end of a speaker’s utterances

or during multiple utterances. Moreover, some research has

focused on detailed non-verbal behaviors, such as eye-gaze

behavior (Chen and Harper, 2009; de Kok and Heylen, 2009;

Huang et al., 2011; Jokinen et al., 2013; Ishii et al., 2015a, 2016a),

head movement (Huang et al., 2011; Ishii et al., 2015b, 2017),

mouth movement (Ishii et al., 2019), and respiration (Ishii et al.,

2015a, 2016b). Specifically, information on the length of time

and patterns of a speaker’s gaze direction toward a listener

during speaking, the amount of head movement, the patterns of

the mouth opening and closing, and the amount of inspiratory

volume are used as features for prediction.

However, many studies on turn-changing prediction use

mainly features as mentioned above extracted from only

speakers (Chen and Harper, 2009; de Kok and Heylen, 2009;

Dielmann et al., 2010; Huang et al., 2011; Jokinen et al., 2013;

Lala et al., 2018; Masumura et al., 2018, 2019; Roddy et al., 2018).

Several studies have used limited features and modalities of

listeners, such as linguistic, eye-gaze behavior, head movement,

mouse movement, and respiration as mentioned above (Ishii

et al., 2015a,b, 2016a,b, 2017, 2019; Masumura et al., 2018).

Therefore, previous studies (Ferrer et al., 2002; Schlangen,

2006; Chen and Harper, 2009; de Kok and Heylen, 2009;

Laskowski et al., 2011; Kawahara et al., 2012; Jokinen et al., 2013;

Holler and Kendrick, 2015; Ishii et al., 2015a,b, 2016a,b, 2017,

2019; Lammertink et al., 2015; Levinson, 2016; Hömke et al.,

2017; Hara et al., 2018; Holler et al., 2018; Lala et al., 2018;

Masumura et al., 2018, 2019; Roddy et al., 2018; Ward et al.,

2018) have predicted the turn-changing based on the verbal and

nonverbal behaviors of the speaker and listener. In other words,

the focus has been on predicting the next behavior from the

current behavior.

However, the speaker and listener make the next speaking

behavior based on their own willingness to speak or to listen

to the partner’s speaking. In addition to an individual’s own

willingness to speak, the decision regarding who takes the next

spoken turn is also dependent on the willingness of the other.

For example, even if the speaker is willing to continue

speaking and performs verbal and non-verbal actions to start

speaking, and the listener has a stronger willingness to speak, the

speaker may not choose to continue speaking and may give up

speaking to the listener. We believe that we should investigate

not only on the actions of the speaker and listener, but also on

their willingness to speak in order to predict the turn-changing.

As a result, joint predictions might lead to improvement of the

turn-changing performance.

To the best of our knowledge, our paper is the first

to study the prediction of turn-management willingness in

dyad interactions and the first attempt to explicitly add the

willingness prediction task to the turn-changing predictive

model. Furthermore, there is no prior research that investigates

all acoustic, linguistic, and visual modalities of speakers and

listeners for turn-changing prediction. Our study is the first

to build a model for predicting willingness and turn-changing

using trimodal information, including acoustic, linguistic, and

visual cues of both speakers and listeners.

2.3. Human-agent interaction with
turn-changing prediction

In the literature, researchers have mainly attempted to

ensure smooth turn-changing, where the agent waits for its turn.

Previous research predicts when human speech is completely

finished, and the agent starts speaking after the human has

finished speaking. In addition, the agent continues to make a

predetermined utterance (continue turn-keeping) regardless of

whether or not the human with whom it is interacting wants to

speak or not. For example, in Schlangen (2006) and Atterer et al.

(2008), algorithms were developed to predict turn-endings as

soon as possible such that the system can immediately respond

in order to simulate human-like behavior. In Raux and Eskenazi

(2008), the authors demonstrated how audio features are used

to detect an end-of-turn as soon as possible; thus, an agent can

start to speak as soon as possible. In human-agent interactions,

an agent attempts to acquire a turn and starts uttering at an

appropriate time by using the prediction of a turn-changing

predictive model. In Jonsdottir et al. (2008) and Jonsdottir

and Thórisson (2009), a real-time turn-changing model was

developed to minimize the gaps of silence between the speech

turns of a human and system.

Also, using our estimation of turn-management willingness,

agents may be able to facilitate users’ in speaking on the basis

of the users’ willingness. For example, although a listener may

strongly want to take a turn, he/shemay not actually be able to do

so (i.e., the speaker does not yield to him/her). At suchmoments,

the agent may be able to prompt the listener to start speaking

using verbal and non-verbal behavior (the discrepancies between

the turn-management willingness of speakers and listeners and

actual turn-changing will be reported in Section 4).

3. New MM-TMW corpus

3.1. Dialogue data collection

We collected a new corpus (named the “MM-TMW

Corpus”) that contains verbal and non-verbal behavioral

information on human-human dialogues. It consists of 12 face-

to-face conversations of people who had never met before (12

groups of 2 people). The participants were 24 Japanese (12

males and 12 females) in their 20–50 s (mean: 32.0, STD:

8.4). Participants were recruited from the general public at

large through a staffing agency. The age difference between

pairs and the number of male-female pairs were set to be

as varied as possible. All participants gave informed consent.
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FIGURE 2

Histogram of utterance interval duration for turn-keeping (left) and turn-changing (right) from MM-TMW Corpus.

They were seated in close proximity to each other in a quiet

environment. The conversations were structured to be about

multiple topics, including taxes and social welfare balance. The

lengths of these conversations were unified to be around 10

min. The total time of all conversations was 120 min. The

participants’ voices were recorded by a headset microphone.

The entire discussions were recorded by a camera. We also

took upper body videos of each participant recorded at 30 Hz.

A professional transcribed all Japanese utterances, and another

double-checked the transcripts.

3.2. Annotation of turn-management
willingness

As a first step, professional annotators identified the spoken

utterance segments using the annotation scheme of the inter-

pausal unit (IPU) (Koiso et al., 1998). Each start and end of an

utterance was denoted as an IPU. When a silence interval of 200

ms or more occurred, the utterance was separated. Therefore, if

an utterance was produced after a silent period of less than 200

ms, it was determined to be a continuation of the same utterance.

When a silence interval of 200 ms or more occurred, the

utterances were separated. Since this IPU can determine the

start and end of an utterance using only the duration of silent

segments, it is very convenient and useful when performing real-

time utterance segment detection. For this reason, many studies

on turn-changing have utilized these IPU units of utterances

(Ferrer et al., 2002; Schlangen, 2006; Chen and Harper, 2009;

de Kok and Heylen, 2009; Laskowski et al., 2011; Kawahara

et al., 2012; Jokinen et al., 2013; Holler and Kendrick, 2015; Ishii

et al., 2015a,b, 2016a,b, 2017, 2019; Lammertink et al., 2015;

Levinson, 2016; Hömke et al., 2017; Hara et al., 2018; Holler

et al., 2018; Lala et al., 2018; Masumura et al., 2018, 2019; Roddy

et al., 2018; Ward et al., 2018). In Japanese, it is considered

appropriate to adopt 200 ms as the threshold for an appropriate

IPU to be segmented as a single utterance; if the threshold is

set at around 100 ms, utterances with only words are extracted

or are cut off by a brief pause in occurrence. If the time is set

to about 300 ms, there is the problem of different utterances

being connected as a single utterance. Therefore, a threshold of

200 ms has been used in many studies. The largest corpus of

Japanese speech (Maekawa, 2003), which contains speech signals

and transcriptions of about 7 million words along with various

annotations like parts of speech and phonetic labels, also uses

the 200-ms threshold as an appropriate threshold for segmenting

Japanese speech. We took these considerations into account and

adopted the 200-ms threshold.

We excluded backchannels without specific vocal content

from the extracted IPUs. Next, we considered IPU pairs

produced by the same person in temporally adjacent IPU pairs

as turn-keeping and those produced by different people as turn-

changing. Specifically, data was excluded when the IPU pair

utterance interval was less than 200 ms. The total number of

pairs was 2,208 for turn-keeping and 442 for turn-changing.

Histograms of the utterance interval duration for turn-keeping

and turn-changing are shown in Figure 2. The average duration

was about 577 ms for turn-keeping and 892 ms for turn-

changing.

It is very difficult for participants to evaluate their own

internal state in dialogue. Therefore, for the sake of accuracy

and objectivity of assessment of the internal state, such as

emotion and engagement, the annotation from a third party

annotator who does not participate in the dialogue has been

collected in many studies (Devillers et al., 2005; Busso et al.,

2008; Reidsma and op den Akker, 2008; Huang et al., 2010;

Nicolaou et al., 2011; Ishii et al., 2013; Kumano et al., 2015).

The subject’s internal state obtained in this way is not the

subject’s internal state but only the internal state as perceived

by the observer. We collected turn-management scores from

multiple external observers using the same annotation method

for multiple external observers as a reference. Thus, we deal with

the turn-management willingness of the dialogue participants as

perceived by the observers.
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FIGURE 3

Scheme for annotating speaking and listening willingness of speaker and listener.

The 10 annotators carefully watched each video from the

beginning of one utterance (IPU) to the point of one frame (i.e.,

33 ms) before the beginning of the next utterance to annotate

willingness scores (see Figure 3). The annotators were not aware

of who would become the next speaker because they could only

watch the video until the moment just before the start of the

next speaker. This approach was taken to avoid affecting the

annotators’ judgement on the willingness of the speakers and

listeners to speak and listen. For very short IPUs of less than

1 s, we set the start of the video to a moment earlier than

the start time of the IPUs so that the annotators could view

at least 1 s of video. In addition, the content of the current

utterance and that of the past dialogue was considered to be

important for judging turn-management willingness. Therefore,

the annotators observed the utterances in order, starting with

the first utterance at the beginning of the dialogue. They could

refer to contextual information on past dialogue to annotate the

willingness score. The annotation order for the 12 dialogues was

randomized for each annotator. For each video, the annotators

provided scores to four types of turn-management willingness of

speakers and listeners:

• Turn-holding willingness (speaker’s willingness to speak):

Does the speaker have the will to hold the turn (continue

speaking)?

• Turn-yielding willingness (speaker’s willingness to listen):

Does the speaker have the will to yield the turn (listen to

listener’s speaking)?

• Turn-grabbing willingness (listener’s willingness to speak):

Does the listener have the will to take a turn (start speaking)?

• Listeningwillingness (listener’s willingness to listen): Does the

listener have the will to continue listening to the speaker?

The annotators scored each willingness index on a 5-point

Likert scale, where 1 meant “He/she is not showing willingness,"

5 meant “He/she is showing strong willingness," and 3 meant

“uncertain." We had the 10 annotators score all videos to ensure

good reliability. We calculated the rater agreement using the

Intraclass Correlation Coefficient (ICC). The ICC scores for

all four categories were over 0.870: ICC(2, 10) = 0.904 for

speaker’s willingness to speak, ICC(2, 10) = 0.877 for speaker’s

willingness to listen, ICC(2, 10) = 0.878 for listener’s willingness

to speak, and ICC(2, 10) = 0.875 for listener’s willingness to

listen. A high annotation agreement measured by ICC suggests

that the data was very reliable. We used the average values of the

10 annotators as willingness scores.

4. Analysis of turn-management
willingness and turn-changing
patterns (related to Q1 research
question)

4.1. Overall trends

In this section, we analyze the relationship between

willingness scores and actual turn-changing or turn-keeping

as an empirical study. Figure 4 shows box plots of each

willingness score in our corpus, separated between turn-

keeping and turn-changing to investigate the overall relationship
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FIGURE 4

Average willingness scores in turn-keeping (left) and turn-changing (right).

between them.When turn-keeping happened, the average scores

for the speaker’s speaking willingness and listener’s listening

willingness were higher than 4.5, which is very high. In contrast,

the average scores for the speaker’s listening willingness and

listener’s speaking willingness were less than 2.0, which is

very low.

This means that the person who becomes the next speaker

has a high speaking willingness and the person who becomes

the next listener has a high listening willingness in turn-keeping.

In other words, “the speaker prefers to continue speaking, and

the listener prefers to continue listening” during turn-keeping.

Corresponding t-tests were conducted to determine if there was

a statistically significant difference between turn-holding and

turn-yielding willingness scores. The results showed that there

was a significant difference between turn-holding and turn-

yielding scores [t(2, 219) = 3.70, p < 0.001]. Similarly, there

was a significant difference between scores for turn-grabbing

and listening willingness [t(2, 219) = 3.56, p < 0.001]. This

result is not too surprising, and it suggests that the participants’

willingness and turn-keeping were consistent (i.e., there was no

dissonance).

For turn-changing, all the average willingness scores

were from 3.0 to 3.5, with larger standard deviations. This

result suggests that around turn-changing, the person who

becomes the next speaker does not always have a high

speaking willingness, and the person who becomes the next

listener does not always have a high listening willingness.

The results of a corresponding t-test showed that there

was no significant difference between turn-holding and turn-

yielding scores and between turn-grabbing and listening

willingness scores.

Therefore, the relationship between willingness

and turn-changing is more complex than expected.

There may be cases of dissonance between willingness

and actual turn-changing as answer to research

question Q1.

4.2. Detailed analysis of combinatorial
patterns

To study this relationship in detail, we analyzed the

relative ordering of speaking and listening willingness scores

when co-occurring with turn-keeping or turn-changing. We

denote willingness combinatorial patterns as (rSS, rSL, rLS, rLL)

to represent the ordering position among all willingness scores,

where rSS, rSL, rLS, rLL are the ranks of the speaker’s speaking,

speaker’s listening, listener’s speaking, and listener’s listening

willingness, respectively. For example, rSS = 1 if the speaker’s

speaking willingness score has the highest value among all

of the scores. As another example, when the scores for

speaker’s speaking, speaker’s listening, listener’s speaking, and

listener’s listening willingness were 3.57, 2.95, 1.82, and 4.44, the

corresponding pattern was denoted as (2, 3, 4, 1).

Figure 5 shows the frequency of the willingness

combinatorial patterns for turn-keeping and turn-changing.

In this figure, “others” includes patterns taking less than 5%

for turn-keeping or turn-changing. We define consonance

as moments when actual turn-changing/keeping matched

the participants’ willingness. We also define dissonance as

moments when actual turn-changing/keeping went against their

willingness, and these are marked with ∗. We discuss these

results in the following paragraphs.

4.2.1. Consonance in combinatorial patterns

Consonance cases happen during turn-keeping when “the

speaker prefers to continue speaking” (rSS < rSL) or “the

listener prefers to continue listening” (rLS > rLL). As shown in

Figure 5, consonance patterns took up 96.4% for turn-keeping,

which suggests that there were few cases of dissonance between

willingness and turn-keeping. For turn-changing, consonance

cases happen when “the speaker prefers to start listening” (rSS <

rSL) or “the listener prefers to start speaking” (rLS < rLL).
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FIGURE 5

Frequency of willingness combination patterns for turn-keeping (left) and turn-changing (right). (rSS, rSL, rLS, rLL) indicates ranks of speaker’s and

listener’s speaking and listening willingness, where highest value was ranked as 1. “others" includes patterns taking up less than 5%. Cases of

conflict are marked with ∗, which means that actual turn-changing/keeping was against participants’ willingness. Detailed analysis is given in

Section 4.

Consonance patterns took up 49.6% for turn-changing. This

means that consonance cases almost always happen during

turn-keeping but not during turn-changing.

4.2.2. Dissonance in combinatorial patterns

During turn-keeping, dissonance cases happen when “the

speaker wants to listen, and the listener wants to speak" (rSS > rSL

and rLS < rLL). This means that the preferences of both the

speaker and listener are in harmony. Thus, a turn-change should

occur. For turn-changing, dissonance cases happen when “the

speaker wants to speak, and the listener wants to listen" (rSS < rSL

and rLS > rLL). In this case, both participants want to keep

their role. In Figure 5, we marked all dissonance cases with ∗.

As shown in the figure, 3.6% of cases of dissonance occurred

for turn-keeping, while 50.4%were for turn-changing. The large

number of cases between willingness scores and turn-changing

indicates the importance of estimating the willingness score. The

next speaker decided against his or her own willingness as well as

their partner’s willingness. Such occurrences have the potential

to frustrate participants during a conversation.

5. Turn-management willingness
and turn-changing predictive
models (related to Q2-1 and Q2-2)

5.1. Motivation

The analysis results in Section 4 suggest that the willingness

scores sometimes had discrepancies with actual turn-changing.

The accuracy could be further improved by performing multi-

task learning on willingness and turn-changing since they have

a strong relationship. Multi-task learning is the process of

learning latent representations that are shared among multiple

related tasks. In the field of deep learning, deep learning-based

approaches in which the parameters of hidden layers are

shared by multiple tasks are well-established and commonly

used. Learning multiple related tasks simultaneously has been

demonstrated to improve the prediction performance of each

single task while exploiting commonalities and differences

across tasks (Ruder, 2017). For that reason, we hypothesize

that joint prediction of turn-management willingness

and turn-changing could lead to improved performance

on each task in comparison with training two predictive

models separately.

To address Q2-1, we implemented three kinds of models

for predicting turn-management willingness by using the

multimodal behaviors of either the speaker or listener or both

of them. By investigating and comparing the performance of

the models, we demonstrate that turn-management willingness

can be predicted by using the multimodal behaviors of speakers

and listeners. To addressQ2-2, we also implemented models for

predicting turn-changing that jointly predict turn-management

willingness on the basis of single turn-management predictive

models. By comparing the performance of the models

between using multi-task learning and single-task learning, we

demonstrate that joint-willingness prediction can improve the

performance of turn-changing prediction.

5.2. Multimodal features

Weused the features of behaviors extracted during IPUs (i.e.,

the time between the start and end of an IPU) as input for the
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predictive models the same as other research on turn-changing

prediction (Ferrer et al., 2002; Schlangen, 2006; Chen and

Harper, 2009; de Kok and Heylen, 2009; Laskowski et al., 2011;

Kawahara et al., 2012; Jokinen et al., 2013; Holler and Kendrick,

2015; Lammertink et al., 2015; Levinson, 2016; Hömke et al.,

2017; Holler et al., 2018; Lala et al., 2018; Masumura et al., 2018).

This means that our models could predict willingness and turn-

changing at the end of a speaker’s utterance (IPU). Since the

duration between the end of one speaker’s utterance and the start

of the next speaker’s utterance is about 629 ms on average, our

models could predict willingness and turn-changing about 629

ms before actual turn-keeping and turn-changing happen.

Our goal is not necessarily to propose the most

complex multimodal fusion approach but rather to

study willingness and its impact on turn-changing

precision. Recently, high-level abstract features, which

are extracted from large-scale pre-trained neural

network models, have been very useful for many various

prediction tasks.

In deep learning, a large-scale pre-trained model is a

model that has been trained on a large dataset. In general,

generic features common to a specific domain task (e.g.,

image classification, text prediction, speech recognition,

etc.) can be trained in a hidden layer and extracted for

transition learning (Han et al., 2021). Such pre-trained

models can be used to extract high-level abstract audio,

visual, and written features even in stimuli not used for

training. Such high-abstracted features are known to

be more useful in various estimation tasks than speech,

image, and text features of interpretable features, which are

hand-crafted and designed on the basis of prior domain

knowledge.

For example, in one of the most recent pieces of research

(Soleymani et al., 2019), a model was proposed to estimate self-

disclosure utterances using the multimodal features of acoustic,

linguistic, and visual modalities while utterances take place. It

was demonstrated that the latest high-level abstract features,

such as those of VGGish (Hershey et al., 2017), BERT (Devlin

et al., 2019), and ResNet-50 (He et al., 2016), were more useful

than interpretable features hand-crafted and designed on the

basis of prior domain knowledge, such as mel-frequency cepstral

coefficients that represent the power spectrum of a sound similar

to that approximated in the human auditory system (MFCCs)

(Eyben et al., 2013), LIWC, which analyzes text to identify the

psychological categories of words (Kahn et al., 2007), and facial

action units, which can be analyzed to identify facial expressions

(AU) (Baltrusaitis et al., 2018).

These are human-empirically designed features that extract

only a limited subset of the features of speech, language,

and video. On the other hand, pre-trained models using

neural networks with large datasets extract features from

a wide variety of hidden aspects that cannot be designed

by humans.

To implement willingness prediction models, we used

automatically extracted high-level abstract features from the

recorded acoustic, linguistic, and visual modalities on the basis

of an existing study (Soleymani et al., 2019) as mentioned above.

Acoustic Modality

We used VGGish (Hershey et al., 2017), which is a pre-

trained deep convolutional neural network, to extract features

of the acoustic modality from audio data. VGGish is a variant

of the VGG model (Simonyan and Zisserman, 2015), trained on

a large YouTube dataset to classify an ontology of 632 different

audio event categories (Gemmeke et al., 2017), involving human

sounds, animal sounds, natural sounds, etc. The audio files were

converted into stabilized log-mel spectrograms and fed into

the VGG model to perform audio classification. The output

128-dimensional embeddings were post-processed by applying

a PCA transformation (that performs both PCA and whitening).

Therefore, each audio sample was encoded as a feature with a

shape of T × 128, where T is the number of frames. During

natural conversations, listeners are not always absolutely silent;

there are short backchannel responses or echoes of what speakers

have said. Therefore, the VGGish features could be extracted

from the listeners’ acoustic signals in addition to speakers’

acoustic signals.

Linguistic modality

We applied a data-driven approach (BERT) (Devlin et al.,

2019) to extract linguistic representations. BERT is a multi-layer

bidirectional Transformer network that encodes a linguistic

sequence into a fixed-length representation. We used a pre-

trained BERT model on Japanese Wikipedia1 to transfer each

utterance into a 768-dimensional feature. The BERT feature

could be extracted from the listeners’ speech in addition to

speakers’ speech similarly to acoustic features since listeners

often have short backchannel responses.

Visual modality

For visual information, high-level representations were

extracted using ResNet-50 (He et al., 2016), which is a deep

residual convolutional neural network for image classification.

We used a ResNet-50 model that was trained on ILSVRC2012

(Russakovsky et al., 2015), a large scale dataset that contains

about 1.2 million training samples in 1,000 categories, to provide

good generalization and yield robust features. The feature vector

for a video sequence consisted of a 2, 048-dimensional vector

obtained from the penultimate layer for each frame. As a result,

the extracted feature was in the shape of T × 2048.

1 http://nlp.ist.i.kyoto-u.ac.jp/index.php?BERT%E6%97%A5%E6%9C

%AC%E8%AA%9E\Pretrained%E3%83%A2%E3%83%87%E3%83%AB.
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FIGURE 6

Architecture of multi-task model with input features of acoustic, linguistic, and visual modalities from speaker and listener.

5.3. Predictive models

Turn-management willingness and turn-changing were first

predicted individually using regression models (for predicting

turn-management willingness scores) and classification models

(for turn-changing/keeping prediction), respectively. A multi-

task model was then learned to jointly predict willingness

and turn-changing/keeping. This helps to understand the

impact of modeling willingness on turn-changing explicitly. The

architecture of our model is illustrated in Figure 6.

Turn-management willingness prediction

We formulated turn-management willingness prediction

as a regression task and average willingness scores from the

10 annotators as the ground truth. We trained deep neural

network-based predictive models to estimate willingness scores.

The unimodal features were first fed into individual processing

modules to be further processed as 64-dimensional embeddings.

For acoustic and visual modalities, the processing module was

a one-hidden-layer gated recurrent unit (GRU) (Cho et al.,

2014). A fully connected (FC) layer was used for the linguistic

modality. The embeddings were then concatenated together and

forwarded into a FC layer with an output size of 192 for fusion. A

final linear layer followed, outputting four predicted willingness

scores. We used mean squared error (MSE) as our loss function.

Turn-changing prediction

Turn-changing prediction was considered a classification

task. Each turn was labeled as either turn-changing or turn-

keeping, depending on whether the current listener became the

next actual speaker. The classification model followed the same

structure as the regression one, except that it output a two-

dimensional vector for prediction. Cross entropy (CE) was used

as the loss function.

Multi-task prediction (joint prediction of
turn-management willingness and
turn-changing)

To embed knowledge on willingness into turn prediction,

our proposed multi-task model jointly predicts willingness

scores and turn-changing/keeping. In particular, the turn-

management willingness and turn-changing prediction tasks are

simultaneously learned by the proposed multi-task predictive

model. The architecture of the proposed model is designed on

the basis of the neural architecture discussed above. The main

difference is that, after the fusion layer, there is a FC layer for

each task. The entire loss function is a weighted average of MSE

and CE with weights of 1 and 2, respectively.

6. Experiments with predictive
model (related to Q2-1 and Q2-2)

6.1. Experimental methodology

To answer Q2-1, we implemented different predictive

models for turn-management willingness prediction based on

the multimodal behaviors of either the speaker or listener or

both. We investigated and compared the performance of the

models to demonstrate that turn-management willingness can

be predicted by using the multimodal behaviors of speakers

and listeners. To answer Q2-2, we also implemented models for
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TABLE 1 Results of turn-management willingness and turn-changing prediction.

Features Willingness prediction (CCC) Turn-changing

Model Speaker Listener MtL Speaker Listener Prediction

# Acoustic Ling. Visual Acoustic Ling. Visual Turn-holding Turn-yielding Turn-grabbing Listening (F1 Score)

(1) –0.011 –0.013 –0.025 0.007 0.528

(2) × 0.399 0.306 0.167 0.241 0.703

(3) × 0.371 0.360 0.295 0.296 0.735(5)*

(4) × 0.182 0.127 0.146 0.135 0.678

(5) × 0.413(2)* 0.397(2)** 0.506(6)** 0.478(3)** 0.715

(6) × 0.190 0.215 0.318 0.291 0.709

(7) × 0.069 0.074 0.099 0.095 0.660

(8) × × 0.513(2)**,(5)**,(9)** 0.460(2)**,(5)**,(9)** 0.532(2)**,(5)**,(9)** 0.513(2)**,(5)**,(9)** 0.720(2)*

(9) × × 0.411(3)**,(6)** 0.409(3)**,(6)** 0.434(3)**,(6)** 0.403(3)**,(6)** 0.745(6)*

(10) × × 0.201(4)*,(7)** 0.152(4)*,(7)** 0.149(7)** 0.164(4)*,(7)** 0.675(4)**,(7)**

(11) × × × 0.497(12)** 0.425(12)** 0.344 0.395 0.759

(12) × × × 0.412 0.376 0.485(11)** 0.465(11)** 0.711

(13) × × × × × × 0.556(5)**,(11)** 0.504(5)**,(11)** 0.573(5)**,(12)** 0.549(5)**,(12)** 0.771(3)**,(11)*,(12)**

(14) × × × × × × × 0.580(8)**,(13)* 0.530(8)**,(13)* 0.572(8)** 0.560(8)**,(13)* 0.797(9)**,(13)**

Each row represents results of model with different configuration of input features. Section (6) describes experiments in detail. CCC is reported for each model for turn-management willingness prediction. F1 score is reported for turn-changing

prediction. Results of running two-sided Wilcoxon signed rank among models (2) to (7), (8) to (10), and (11) to (13) are shown. The highest performance per a given configuration of input features is marked in bold. Results are shown for pairs of two

conditions, (2) and (5) vs. (8), (3) and (6) vs. (9), (4) and (7) vs. (10) and (3) vs. (13), and (8) vs. (13) for willingness and turn-changing prediction, and (13) vs. (14) for willingness and turn-changing prediction. * stands for p < 0.05, while ** stands for

p≪ 0.001.
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turn-changing prediction that jointly predict turn-management

willingness and turn-changing. We compared the performance

of the multi-task learning models and single-task models to

demonstrate that incorporating willingness into turn-changing

predictive models improves turn-changing prediction.

All models were trained using the Adam (Kingma and Ba,

2015) optimizer with a learning rate of 0.0001 for 50 epochs.

The batch size was 64. Furthermore, we added dropout layers

with a rate of 0.1 for the FC layers. Leave-one-dyad-out testing

(12-fold cross-validation method) was used to evaluate model

performance. With the testing, we evaluated how much the

willingness and turn-changing of new dyads can be predicted.

For the willingness prediction task, we report the

concordance correlation coefficients (CCCs) between predicted

and actual scores (i.e., annotated ground truth). A high CCC

value indicates high agreement between the values of the

predicted scores and ground truth. This means that prediction

and ground truth values are similar to each other, and the

general trend changes for both signals are the same (Muszynski

et al., 2019). We compared the predictions of pairs of regression

models by means of two-sided Wilcoxon signed rank tests at a

0.05 significance level (Wilcoxon, 1945). For the classification

task, we evaluated the performance using F1 scores weighted

by the label proportion since the numbers of turn-changing

and turn-keeping labels were imbalanced in our dataset. The

predictions of pairs of classifiers were made by means of a

McNemar test at a 0.05 significance level (McNemar, 1947).

6.2. Results

6.2.1. Comparison method of predictive models

Models were built using combinations of different input

features. The results for willingness and turn prediction are

shown in Table 1. Model (1) was the base model of prediction. It

was a random predictive model that randomly generates scores

and classes from learning data without using the features of

speakers and listeners. The CCCs of the willingness prediction

for model (1) were –0.011 for turn-holding, –0.013 for turn-

yielding, –0.025 for turn-grabbing, and 0.007 for listening. The

F1 score for turn-changing prediction was 0.528.

Models (2) to (7) were predictive models fed with

acoustic, linguistic, or visual modalities of speaker or listeners,

respectively. The performance of these models was evaluated

to verify if each modality was effective and discriminative for

our prediction tasks. Models (8) to (10) were predictive models

that were fed with a single modality of speakers and listeners.

In detail, model (8) was applied to speech features, while model

(9) was fed with linguistic features. Furthermore, model (10)

was trained on visual features. By comparing models (8) to

(10) with models (2) to (7), we could verify whether using the

features of speakers and listeners is more effective than using the

features of either speaker or listener. Models (11) and (12) were

predictive models that used features from the three modalities

of speakers or listeners. Model (13) was a predictive model that

learns on input features extracted from the three modalities of

both the speaker and the listener. By comparing models (11) to

(13) with models (2) to (7), we could examine the usefulness

and discriminative power of multimodal features over features

extracted from a single modality. These comparisons were made

to address Q2-1. Model (14) was a multi-task learning predictive

model trained on the three modalities of speakers and listeners

to simultaneously predict turn-management willingness and

turn-changing. This model (14) was compared with model

(13), which does not use multi-task learning techniques. These

comparisons were intended to respond to Q2-2.

6.2.2. Results of turn-management willingness
prediction using speaker/listener behaviors
(related to Q2-1)

First, we examined which of the speaker’s and listener’s

unimodal features was most useful for estimating turn-

management willingness when used alone. As shown in Table 1,

models (2) to (7) used only the unimodal features of the

speaker or listener independently. Comparing the performances

of the models among (2) to (7), the CCCs for turn-holding,

turn-yielding, turn-grabbing, and listening prediction for model

(5), 0.413, 0.397, 0.506, and 0.478, were significantly higher

than those of the models that had the second highest values,

0.399 for (2), 0.360 for (3), 0.318 for (6), and 0.296 for (3)

(p < 0.05 or p < 0.001). This suggests that a listener’s acoustic

features are most useful for predicting speaker and listener

turn-management willingness among the unimodal features of

speakers and listeners.

We examined whether using unimodal features from both

speakers and listeners to estimate turn-management willingness

is more useful than using those from one of them alone. As

shown in Table 1, models (8) to (10) used only the unimodal

features of both the speaker and listener independently. We

comparedmodel (8) withmodels (2) and (5) to demonstrate that

acoustic features from both the speaker and listener are more

useful than using only those from either the speaker or listener.

The CCCs for model (8), 0.513, 0.460, 0.532, and 0.513, were

significantly higher than those of models (2) and (5) (p < 0.001).

We compared model (9) with models (3) and (6) to demonstrate

that linguistic features from both the speaker and listener are

more useful than using only those from either the speaker

or listener. The CCCs for model (9), 0.411, 0.409, 0.434, and

0.403, were significantly higher than those of models (3) and (6)

(p < 0.001). We compared model (10) with models (4) and (7) to

demonstrate that linguistic features from both the speaker and

listener are more useful than using only those from either the

speaker or listener. The CCCs for model (8), 0.201, 0.152, 0.149,

and 0.164, were significantly higher than those of models (4)

and (7) except for the case of turn-grabbing willingness between
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models (4) and (10) (p < 0.05 of p < 0.001). These suggest that

using unimodal features from both the speaker and listener to

estimate turn-management willingness was more useful than

using them alone.

Comparing models (8) to (10), the CCCs of turn-

management willingness prediction for model (10) were

significantly highest (p < 0.001). This suggests that acoustic

features are most useful for turn-management prediction when

using unimodal features from both the speaker and listener.

We examined which of the speaker’s or listener’s multimodal

features were most useful for estimating turn-management

willingness. As shown in Table 1, models (11), (12), and

(13) used trimodal features of the speaker, listener, and both

independently.

Comparing models (11) and (12), the CCCs of turn-holding

and turn-yielding prediction for model (11), 0.497 and 0.425,

were significantly higher than those of model (12), 412 and

0.376 (p < 0.001). In contrast, the CCCs of turn-grabbing

and listening prediction for model (12), 0.485 and 0.465, were

significantly higher than the CCCs for model (11), 0.344 and

0.395 (p < 0.001). This suggests that speaker/listener features are

more useful for predicting speaker/listener turn-management

willingness than listener/speaker willingness.

Comparing model (13) with models (11) and (12), model

(13) with all features performed best, 0.556 for turn-holding,

0.504 for turn-yielding, 0.573 for turn-grabbing, and 0.549 for

listening, being significantly higher than models with speaker

features (11) or listener features (12) (p < 0.001). This suggests

that a model using features from both speakers and listeners

outperforms a model using them from one person. Comparing

model (5), which had the highest CCC when using only

unimodal features, and (13), which had the highest CCC when

using multimodal features, the CCCs of turn-holding and turn-

yielding prediction for model (13) were significantly higher

than that of model (5) (p < 0.001). We found an overall

improvement in turn-management willingness prediction by

fusing the multiple features of speakers and listeners.

6.2.3. Results of turn-changing prediction using
speaker/listener behaviors

We implemented and evaluated the performance of turn-

changing predictive models (2) to (13) similarly to the turn-

management predictive models to assess the effect of multi-

task learning on turn-changing prediction. We report the

performance of the models to confirm whether our extracted

speaker and listener features were useful for turn-changing

prediction.

First, we examined which of the speaker’s and listener’s

unimodal features was most useful for predicting turn-changing

when used alone. Comparing the performances of the models

among (2) to (7), the F1 score for model (3), 0.735, was

significantly higher than that of the model that had the second

highest values, 0.715 for (5) (p < 0.05). This suggests that a

speaker’s linguistic features are most useful for predicting turn-

changing among the unimodal features of speakers and listeners.

We examined whether using unimodal features from both

the speaker and listener to predict turn-changing is more useful

than using them alone. We compared model (8) with models

(2) and (5) to demonstrate that acoustic features from both the

speaker and listener are more useful than using only those from

either the speaker or listener. The F1 score for model (8), 0.720,

was significantly higher than that of model (2) (p < 0.05). We

comparedmodel (9) withmodels (3) and (6) to demonstrate that

linguistic features from both the speaker and listener are more

useful than using only those from either the speaker or listener.

The F1 score for model (9), 0.745, was significantly higher than

that of model (6) (p < 0.05). We compared model (10) with

models (4) and (7) to demonstrate that linguistic features from

both the speaker and listener are more useful than using only

those from either the speaker or listener. The F1 score for model

(10), 0.675, was significantly higher than those of models (4) and

(7) (p < 0.05 and p < 0.001). These suggest that using unimodal

features from both the speaker and listener for estimating turn-

changing was more useful than using only those from one of

them.

Comparing models (8) to (10), the CCCs of turn-

management willingness prediction for model (9) were

significantly highest (p < 0.001). This suggests that acoustic

features are most useful for turn-management prediction when

using unimodal features from both the speaker and listener.

We examined which of the speaker’s or listener’s multimodal

features were most useful for predicting turn-changing. As

shown in Table 1, models (11), (12), and (13) used trimodal

features of the speaker, listener, and both independently.

Comparing models (11) and (12), the F1 score of turn-

changing prediction for model (11), 0.759, was significantly

higher than that of model (12), 711 (p < 0.001). This suggests

that the speaker’s features are more useful for predicting turn-

changing.

Comparing model (13) with (12), model (13) with all

features performed best, 0.771, which was significantly higher

than model (12) (p < 0.001). This suggests that the model

using the features from speaker and listener more effective than

the model only using the features of speaker or listener. We

found an overall improvement in turn-changing prediction by

fusing multiple speaker and listener features. These results are

in line with previous research that similarly used both speaker

and listener behaviors for turn-changing prediction (Ishii et al.,

2016a,b, 2019).

The performance of our turn-changing predictive models

was high [i.e., 0.771 for model (4)] even though the prediction

task is known to be difficult and our dataset is relatively small.

As an alternative, features from pre-training models such as

VGGish, BERT, and ResNet-50 could be used to mitigate our

relatively small dataset. Turn-changing predictive models (2) to

Frontiers in Psychology 13 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.774547
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Ishii et al. 10.3389/fpsyg.2022.774547

(4) can serve as a baseline for evaluating the effect of using

multi-task learning.

6.2.4. Results of multi-task prediction of
turn-management willingness and
turn-changing (related to Q2-2)

We first analyzed whether applying multi-task learning

to turn-management willingness and turn-changing prediction

can improve turn-changing prediction. Model (14) used multi-

task learning in addition to model (13). We compared the

performance between models (13) and (14) for turn-changing

prediction. Model (14) had a significantly higher F1 score, 0.797,

than model (13), 0.771 (p < 0.001). This suggests that multi-task

learning incorporating turn-management willingness prediction

into turn-changing predictive models improves the performance

of turn-changing prediction.

We also analyzed whether multi-task learning is useful

for predicting turn-management willingness. We compared the

performance between models (13) and (14). Model (14) had

significantly higher CCCs, 0.580 for turn-holding, 0.530 for

turn-yielding, and 0.560 for listening, than model (13), 0.556

for turn-holding, 0.504 for turn-yielding, and 0.549 for listening

(p < 0.05). This suggests that multi-task learning also improved

the performance of the speaker’s turn-management willingness

prediction only when using the features of speakers and listeners.

7. Discussion

7.1. Answer to Q1

In Section 4, we observed dissonance between the

willingness score and actual next speaker in turn-changing.

In detail, we found that many turn-changes happened even

when the speaker had a high turn-holding willingness to

continue speaking and the listener had a low turn-grabbing

willingness to continue listening. This means that there are

discrepancies between willingness and actual speaking behavior

(i.e., turn-changing). This dissonance between willingness and

actual speaking behavior during turn-changing is the first time

that such a dissonance has been revealed. Previous studies have

focused primarily on what verbal and non-verbal behaviors

humans engage in during turn-changing. In the future, it may

be possible to examine how verbal and non-verbal behaviors

change depending on the type of participant’s willingness during

turn-changing.

The results also suggest that there is a possibility that

willingness prediction could be beneficial for building an agent

that has smooth turn-management based on the discrepancies

between willingness and actual turn-changing. For example, the

agent may be able to prompt a listener to take a turn and start

speaking by exhibiting verbal and nonverbal behavior.

The willingness we collected was not reported by the

individuals participating in the dialogue but by a third party

observing the video. The agreement rate of the willingness

data annotated by the 10 outside observers was very high

and considered to be of high quality. However, it is not

certain that judgments on willingness by third parties and the

participants themselves will be exactly the same. It would be

desirable to examine what differences exist when participants

themselves and third parties annotate willingness. The data we

used was dialogue data between two Japanese in a discussion

featuring divergent opinions. It is conceivable that the topic,

number of people, culture, language, and other conditions

could have a variety of effects on speaker alternation. It would

also be interesting to examine how these conditions affect the

relationship between willingness and actual turn-changing.

7.2. Answer to Q2-1

Our results show that the listener’s acoustic information is

most useful for predicting the speaking and listening willingness

of speakers and listeners when using only a single feature from

speakers or listeners. Generally, the listener uses short bits of

speech and non-verbal behaviors such as nodding, changing

the head direction, and gazing (Duncan, 1972). Our results

suggest that the listener’s acoustic backchannel has the potential

to be the most useful for indicating the listener’s willingness

to speak and listen. Moreover, this is a very interesting result

since the acoustic features of the listener are most useful

for predicting not only the listener’s willingness but also the

speaker’s willingness. Thus, the listener’s reaction influences

the speaker’s willingness (to continue speaking or to stop and

listen) heavily. A speaker’s linguistic features is most useful for

predicting turn-changing when features from either the speaker

or listener are used. One explanation is that the speaker’s verbal

behavior is one of the most useful cues for yielding and holding

a turn (Kendon, 1967). This is a very interesting result since the

most useful modality differs between willingness prediction and

turn-changing prediction.

Moreover, our results show that the features of both speakers

and listeners are useful for predicting turn-management

willingness. Individual turn-management willingness can be

predicted better using features from individuals rather than from

others. Individual willingness is well reflected in an individual’s

behavior. Moreover, the models using features of both speakers

and listeners performed better than those using only speaker or

listener features. When using features of both the speaker and

listener, the acoustic modality is the best-performing modality

for predicting the speaking and listening willingness among

the trimodal features. One explanation is that the listener’s

acoustic information is most useful for predicting speaking

willingness when using a single feature from a single modality.

Moreover, the multimodal approach with the trimodal features

of the speaker and listener is most useful in predicting the

turn-management willingness of both persons. In other words,

the turn-management willingness of a speaker and listener can
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influence the verbal and non-verbal behaviors of both. This

suggests that predicting the internal state of an individual, such

as their willingness, using features from not only the individual

but also conversational partners could be greatly useful in dyad

interactions.

7.3. Answer to Q2-2

Turn-changing prediction becomes most accurate when

turn-management willingness and turn-changing are predicted

simultaneously using multi-task learning. This demonstrates

that explicitly adding willingness as a prediction target improves

the performance of turn-changing prediction. This introduces

new possibilities for more accurately predicting human behavior

by predicting human psychological states at the same time in

conversations. Moreover, models that jointly learn two tasks

also improve the performance of turn-management willingness

compared with models that perform just one task. The multi-

task learning approach allows a model to learn the underlying

relationship between willingness scores and turn-changing. This

results in both improved turn-changing and turn-management

willingness prediction. These results also suggest that a multi-

task prediction approach that predicts the internal state of

people, such as their willingness and actual behaviors, could be

greatly useful in dyad interactions. Applying such an approach

to tasks other than turn-changing prediction will be part of our

further investigation.

7.4. Future work

For conversational agents or robots to start or stop speaking

at the right time, we do believe that predicting human turn-

management willingness is critically important, rather than

simply predicting the next speaker (actual turn-changing). In

this study, we attempted to predict the willingness of two

conversation partners simultaneously during dyad interactions.

When considering a human-agent interaction (HAI) scenario,

our approach would need to be adapted to predict only one user’s

willingness using the tri-modal features, for either a speaker role

or a listener role. This is one of our future research directions.

Modeling turn-management willingness may aid in

detecting discrepancies between willingness toward turn-

changing and actual turn-changing. A conversational system

can then recognize users having a high willingness to speak

(speaker’s turn-holding or listener’s turn-grabbing willingness)

even though they cannot speak. It could even help to mediate

meetings by possibly interrupting the current speaker if a

person does not notice that the conversation partner has a

low willingness to listen. Many studies have been conducted

to facilitate human interactions with agents and robots. For

example, robots have been proposed to prompt the user who

has the least dominance in a conversation (Nakano et al.,

2015). With such facilitation, the appropriate time at which

an agent can prompt a user to speak could be recognized with

our prediction results on turn-management willingness and

turn-changing.

Our goal is to study turn-management willingness and

its impact on turn-changing precision. We used high-level

abstracted features extracted from acoustic, linguistic, and visual

modalities. We plan to use other interpretable features, such as

prosody (Ferrer et al., 2002; Holler and Kendrick, 2015; Hömke

et al., 2017; Holler et al., 2018; Masumura et al., 2018, 2019;

Roddy et al., 2018) and gaze behavior (Chen and Harper, 2009;

Kawahara et al., 2012; Jokinen et al., 2013; Ishii et al., 2015a,

2016a) and to implement more complex predictive models

(Masumura et al., 2018, 2019; Roddy et al., 2018; Ward et al.,

2018) that take into account temporal dependencies.

Hara et al. (2018) proposed a predictive model that can

predict backchannels and fillers in addition to turn-changing

usingmulti-task learning. To analyze andmodel the relationship

between turn-management willingness, backchannels, and fillers

would be interesting future work.

We also plan to incorporate predictive models into

conversational agent systems that can leverage smooth turn-

changing and facilitate the start of speaking for those who cannot

speak despite having a high turn-holding or turn-grabbing

willingness.

8. Conclusion

We found that many turn-changes happen even when

the speaker has a high turn-holding willingness to continue

speaking and the listener has a low turn-grabbing willingness

to continue listening. This means that there are discrepancies

between willingness and actual speaking behavior (i.e., turn-

changing). Conversational agents could perform smooth

turn-changing and facilitate users in speaking with the

prediction results of turn-management willingness and

actual turn-changing. We built models for predicting the

turn-management willingness of speakers and listeners as

well as turn-changing with trimodal behaviors, acoustic,

linguistic, and visual cues, in conversations. An evaluation

of our models showed that turn-management willingness

and turn-changing are predicted most precisely when all

of the modalities from speakers and listeners are used.

Furthermore, turn-changing prediction becomes more accurate

when turn-management willingness and turn-changing are

predicted jointly using multi-task learning. Turn-management

willingness prediction also becomes more accurate with

combined prediction. These results suggest that more

accurate predictive models of human behaviors could be

built by incorporating other predictions related to human

psychological states.
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