AUTHOR=Zhu Weihao , Li Yingmin , Ma Xiaoying , Yang Huihuang , Wang Zhen , Shi Rui , Shi Weibo , Cong Bin TITLE=Bibliometric analysis of post-traumatic stress disorder in forensic medicine: Research trends, hot spots, and prospects JOURNAL=Frontiers in Psychology VOLUME=13 YEAR=2023 URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2022.1074999 DOI=10.3389/fpsyg.2022.1074999 ISSN=1664-1078 ABSTRACT=Background

Post-traumatic stress disorder (PTSD) has various risk factors, complex pathogenesis, and diverse symptoms, and is often comorbid with other injuries and diseases, making forensic diagnosis difficult.

Methods

To explore the current research status and trends of PTSD, we used the Web of Science Core Collection databases to screen PTSD-related literature published between 2010 and 2021 and CiteSpace to perform bibliometric analysis.

Results

In recent years, PTSD-related research has grown steadily. The countries and institutions with the most research results were the United States and England, and King’s College London and Boston University, respectively. Publications were identified from 2,821 different journals, including 13 forensic-related journals, but the journal distribution was relatively scattered and there was a lack of professional core journals. Keyword co-occurrence and clustering identified many hot topics; “rat model,” “mental health,” and “satisfaction” were the topics most likely to have a clear effect on future research. Analysis extracted nine turning points from the literature that suggested that neural network centers, the hypothalamic–pituitary–adrenal axis, and biomarkers were new research directions. It was found that COVID-19 can cause severe psychological stress and induce PTSD, but the relationship needs further study. The literature on stress response areas and biomarkers has gradually increased over time, but specific systemic neural brain circuits and biomarkers remain to be determined.

Conclusion

There is a need to expand the collection of different types of biological tissue samples from patients with different backgrounds, screen PTSD biomarkers and molecular targets using multi-omics and molecular biology techniques, and establish PTSD-related molecular networks. This may promote a systematic understanding of the abnormal activation of neural circuits in patients with PTSD and help to establish a personalized, accurate, and objective forensic diagnostic standard.