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Recognizing emotion from Electroencephalography (EEG) is a promising and 

valuable research issue in the field of affective brain-computer interfaces 

(aBCI). To improve the accuracy of emotion recognition, an emotional 

feature extraction method is proposed based on the temporal information 

in the EEG signal. This study adopts microstate analysis as a spatio-temporal 

analysis for EEG signals. Microstates are defined as a series of momentary 

quasi-stable scalp electric potential topographies. Brain electrical activity 

could be  modeled as being composed of a time sequence of microstates. 

Microstate sequences provide an ideal macroscopic window for observing 

the temporal dynamics of spontaneous brain activity. To further analyze the 

fine structure of the microstate sequence, we propose a feature extraction 

method based on k-mer. K-mer is a k-length substring of a given sequence. 

It has been widely used in computational genomics and sequence analysis. 

We extract features that are based on the D2
*  statistic of k-mer. In addition, 

we also extract four parameters (duration, occurrence, time coverage, GEV) 

of each microstate class as features at the coarse level. We  conducted 

experiments on the DEAP dataset to evaluate the performance of the proposed 

features. The experimental results demonstrate that the fusion of features 

in fine and coarse levels can effectively improve classification accuracy.
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Introduction

Emotions are responses to significant internal and external events (Salas et al., 2012). 
Emotion plays a crucial role in rational decision-making, perception, and human 
intelligence. Meanwhile, emotional intelligence is essential in human-machine interactions. 
It is the ability to identify, assess, understand, and manage the emotions of humans. 
Emotion states can be detected from the face, voice, and physiological signals. With the 
rising interest in brain-computer interaction, recognizing emotion from 
Electroencephalography (EEG) is a promising and valuable research issue. EEG is a method 
to record an electrogram of the electrical activity on the scalp. EEG is non-invasive and can 

TYPE Original Research
PUBLISHED 23 December 2022
DOI 10.3389/fpsyg.2022.1065196

OPEN ACCESS

EDITED BY

Jiajie Peng,  
Northwestern Polytechnical University,  
China

REVIEWED BY

Zhen Tian,  
Zhengzhou University,  
China
Tianjiao Zhang,  
Northeast Forestry University,  
China

*CORRESPONDENCE

Qinfen Shu  
Qinfenshu@126.com  
Guolong Cai  
caiguolong@126.com

†These authors have contributed equally to 
this work

SPECIALTY SECTION

This article was submitted to  
Cognitive Science,  
a section of the journal  
Frontiers in Psychology

RECEIVED 09 October 2022
ACCEPTED 22 November 2022
PUBLISHED 23 December 2022

CITATION

Chen J, Zhao Z, Shu Q and Cai G (2022) 
Feature extraction based on microstate 
sequences for EEG–based emotion 
recognition.
Front. Psychol. 13:1065196.
doi: 10.3389/fpsyg.2022.1065196

COPYRIGHT

© 2022 Chen, Zhao, Shu and Cai. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that 
the original publication in this journal is 
cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2022.1065196%EF%BB%BF&domain=pdf&date_stamp=2022-12-23
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.1065196/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.1065196/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.1065196/full
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2022.1065196
mailto:Qinfenshu@126.com
mailto:caiguolong@126.com
https://doi.org/10.3389/fpsyg.2022.1065196
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Chen et al. 10.3389/fpsyg.2022.1065196

Frontiers in Psychology 02 frontiersin.org

be applied to healthy people and patients with no risk. It has been 
widely used to investigate the neural correlates of emotions (Lin 
et al., 2010; Daly et al., 2014; Balasubramanian et al., 2018; Hsu 
et al., 2018). Emotion recognition based on EEG has received 
increased attention in the field of affective computing.

Many features of EEG-based emotion recognition have 
been studied in the past (Song et al., 2018; Suhaimi et al., 
2020; Tao et al., 2020; Torres et al., 2020; Chen et al., 2022). 
To compare the existing features systematically, Jenke et al. 
(2014) reviewed feature extraction methods for emotion 
recognition from EEG based on over 30 studies. These 
features are commonly distinguished in the time domain, 
frequency domain, and time-frequency domain. More 
recently, considering the high temporal resolution of EEG, 
microstate analysis has been adopted to understand the 
spatial–temporal dynamics of complex brain activities 
(Michel and Koenig, 2018). Microstate analysis treats 
multichannel EEG as a limited number of microstate classes. 
These EEG microstates can reflect the dynamic process of a 
variety of cognitive states and traits. Gianotti et al. (2008) 
studied the temporal dynamics of the neural activity that 
responded to emotional words and picture stimuli using ERP 
microstate analysis. Shen et  al. (2020) explored EEG 
microstates for emotional experiences during music video 
watching. Hu et  al. (2022) systematically examined and 
compared the microstates for task-state EEG analysis during 
naturalistic music videos. In the existing studies, most studies 
acknowledge four standard microstate maps that can explain 
up to 65–85% of the EEG signal’s global variance. Several 
studies also suggested that the number of microstate classes 
was explicitly driven by the data (Muthukrishnan et al., 2016; 
D’Croz-Baron et al., 2019).

After microstate classes are identified, the original individual 
EEG data can be labeled as a microstate sequence by fitting back 
these microstate classes to topographies at the sample point. The 
EEG microstate sequences (EEG-MS) are symbolic time series 
related to potential neurophysiological relevance. Previous 
researchers have proposed several temporal parameters to analyze 
the EEG-MS, e.g., duration, occurrence, time coverage, and 
transition probabilities. These parameters of microstate sequences 
have been proven to offer potential biomarkers for some diseases, 
such as mood and anxiety disorders(Al Zoubi et al., 2019), autism 
spectrum disorder (D’Croz-Baron et  al., 2019), and 
schizophrenia(Kim et al., 2021). These parameters represent the 
overall characteristics of MS. However, there is a need for further 
refinement and exploration of MS at a finer level.

In the field of computational genomics and sequence analysis, 
comparative analysis for RNA/DNA sequencing data has been 
studied for decades. K-mer is an important concept in comparative 
analysis. K-mer is the substring of length k contained within a 
biological sequence. The frequency of a set of k-mer can be used 
as a signature of the underlying sequence. Kirk et  al. (2018) 
developed the k-mer sequence comparison method to deconstruct 
linear sequence relationships in IncRNAs. They found that 

k-mer-based classification is a powerful approach to detect 
relationships between sequence and function. Moreover, some 
statistics of k-mer were studied to estimate the genetic similarity 
(Murray et al., 2017; Deorowicz, 2020). Wen et al. (2014) proposed 
a k-mer natural vector model based on the distributions of k-mer 
in the genetic sequence.

As EEG-MS are symbolic time series that is similar to DNA/
RNA sequence, we adopt the concept of k-mer to discover the 
finer characteristics of the EEG-MS. In this paper, we propose a 
feature extraction method at fine and coarse levels for emotion 
recognition based on EEG-MS (as Figure 1). The features at the 
fine level are extracted based on the statistics of k-mer. In addition, 
we  also extract four parameters (duration, occurrence, time 
coverage, GEV) of each microstate class as features at the coarse 
level. We  fuse these features to improve the performance of 
emotion recognition from EEG signals.

Materials and methods

Our method can be  summarized as follows. We  start by 
generating the microstate sequences using microstate analysis. 
We then use k-mer frequency analysis to further investigate the 
relationship between emotional states and the microstate 
sequences. Finally, we  extracted features based on k-mer to 
estimate emotion based on EEG. We  now describe each step 
in detail.

Microstate analysis

EEG microstate was first introduced by Lehmann et al. (1987). 
They observed that the ongoing EEG was comprised of a discrete 
set of a few prototypical topographies that remained stable for 
around 80–120 ms before rapidly transitioning to a different 
topography. These periods of quasi-stable EEG topography have 
been called microstates. Microstate analysis mainly consists of two 
stages: (1) segmentation of EEG data to find the most 
representative template maps, which correspond to the different 
microstate classes, and (2) fitting these classes back to the EEG 
data to get the microstate sequences.

The segmentation stage is carried out by running a two-step 
cluster analysis. For each participant, the global field power (GFP) 
of each trial is calculated. GFP represents the global pattern of 
brain activity and is defined as follows:

 
GFP t

u t u t

N
i
N

i
( ) =

( ) - ( )( )=å 1

2

 
(1)

where N denotes the number of electrodes, u ti ( )  is the 
measured voltage of a specific electrode at time t, u t( )  is the 
average voltage of the N electrodes at the respective sample time 
t. The topographies around peaks of the GFP are considered with 
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the optimal signal-to-noise ratio. We  smooth GFP with a 
Gaussian-weighted moving average of 50-time points. EEG 
topographies at the smoothing GFP peaks are selected to conduct 
further clustering. They are submitted to a cluster analysis using 
dual threshold-based Atomize and Agglomerate Hierarchical 
Clustering (DTAAHC) to identify the template microstates 
(Chen et  al., 2021). DTAAHC is a bottom-up hierarchical 
clustering. The advantages of DTAAHC are the automatic 
identification of the optimal microstate classes and less 
computational cost. The optimal number of microstate classes is 
determined automatically according to the global explained 
variance (GEV) and the global map dissimilarity (GMD). The 
GEV measures the percentage of data explained by microstate 
classes. The GMD measures the topographic differences of 
microstate classes. The microstates are expected to be distinct 
and could explain more original topographies. The clustering 
analysis is first done at the individual level. Then the template 
maps for every single subject were submitted to a second 
DTAAHC cluster to identify the most dominant clusters across 
all subjects.

In the back-fitting stage, each time frame (or sample point) of 
the original EEG data is assigned to one specific microstate. 
Specifically, we  calculate the spatial correlation between the 
instantaneous EEG topography and each microstate class. Each 
sampling point is labeled according to the microstate with the 
greatest correlation. To keep the microstate label stable, temporal 
smoothing is applied to avoid interruptions of noise. In the fitting 
process, we set temporal smoothing parameters [strength = 10, 
window half-size = 3 (Pascual-Marqui et al., 1995)].

K–mer frequency analysis

K–mer
K-mer frequency analysis is originally used in computational 

genomics and sequence analysis. K-mer is a k-length substring of 
a given sequence. K-mer counting is to determine the occurrences 
of k-mer in a DNA/RNA sequence or sets of sequences (Marçais 
and Kingsford, 2011). K-mer frequency is an essential and crucial 
feature used in biological sequences. It is used to reveal the genetic 
characteristics of biological sequences and measure the similarity 
between sequences. Similar to DNA/RNA sequences, microstate 
sequences are symbolic time series. K-mer frequency can also 
be used as a “signature” of the unique microstate sequence.

Given a microstate sequence X x x xn= ¼{ }1 2, , ,  of length n, 
the sequence consists of m microstate categories 
© , , ,= ¼{ }y y ym1 2 . For fixed-length k > 0, a k-mer is a 
subsequence of length k. Since there are m microstates, one can 
construct a total number of mk  possible k-mer. Specifically, a 
counter of length k moves along the sequence and it will count the 
signature of a k-mer. Thus, it will count a total number of n k- +1 
over the sequence X. Therefore, the occurrence frequency of each 
k-mer is denoted as:

  
f Occ

n k
i mi

i k=
- +

Î éë
ù
û1

1,

 
(2)

where Occi  is the number of occurrences of the ith k-mer. 
Figure  2 illustrates an example of 4-mer counting for a 
microstate sequence.

FIGURE 1

The schema of the methodology.

FIGURE 2

Example of k-mer on microstate sequence (MS).
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The probability of k-mer
The microstate sequences can be  modeled as r-order 

homogeneous stationary Markov chains. The probability of the 
occurrence of a specific microstate at a position in a sequence 
depends on the proceeding r microstates. Considering a k-mer 
w w w wk= ¼1 2 , the probability of w can be expressed with the 
first-order Markov chain, as follows:

  

p w p w T w w
j

k
j j( ) = ( )´ ( )

=
-Õ1

2

1,

 

(3)

where  1-jw  and wj  represent the  j -( )1  th and the jth 
characters of the k-mer w, p w1( ) represents the probability of the 
occurrence of its first character, and  T w wj j-( )1, represents the 
transition probability from  wj-1  to wj .

Sequence comparisons
K-mer plays an increasingly important role in rapid sequence 

comparison. If two sequences are closely related, the k-mer 
contents of both sequences are expected to be very similar. One of 
the most widely used statistics for sequence comparison based on 
k-mer is the D2 . It is one of the most intuitive ways to find the 
similarity between two sequences. In this work, we explore the 
similarity between microstate sequences based on D2  statistic. 
More specifically, suppose that two microstate sequences, 
X x x xn= ¼{ }1 2, , ,  and Y y y ym= ¼{ }1 2, , , , are independent. Let 
Xw  and Yw  denote the number of occurrences of k-mer w in X 

and Y, respectively. The D2  is defined by

  
D X Y

w A
w w2 =

Î
å

 
(4)

where A  is the space of all possible k-mer. However, this 
statistic is found to be dominated by background noise in the 
non-uniform case (von Wegner et  al., 2017). In the work of 
(Reinert et  al., 2009; Wan et  al., 2010), they proposed a self-
standardized version of D2 , named D2

* . The centralized count 
variable is denoted as

  
( ) ( )1= - - +w w XX X n k p w

 
(5)
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(6)

where n and m are the length of sequence X and Y, respectively. 
k is the length of k-mer. p w X( )  and p w Y( )  is the probability of 
w in sequence X and Y, respectively.

The D2
*  statistic is given by
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The normalized D2
*  dissimilarity is
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Emotion recognition based on EEG

Proposed features
Microstate sequences are symbolic time series related to 

potential neurophysiological relevance. In this study, we extract 
features from the series at fine and coarse levels.

At the coarse level, four conventional temporal parameters 
per microstate are extracted: duration, occurrence, time 
coverage, and GEV. The duration is the average time that a 
given microstate was uninterruptedly present. The occurrence 
is the mean number of a given microstate per second. The 
time coverage is the percentage of analysis time covered by a 
given microstate. The GEV is the percentage of original data 
that can be explained by a given microstate. These statistical 
parameters mainly represent the overall temporal 
characteristics of microstate sequences.

At the fine level, we extracted features based on k-mer. The 
feature for each k-mer is calculated as

  
( ) ( )1

=
- +



w
X

w

n k
XF

p w
 

(9)

Here we set 
0
0

0= . n  is the length of the microstate sequence 
X . p w X( )  is the probability of w in sequence X. This probability 

can be calculated under 1-order Markov chains. Xw  is derived 
from equation 5.

Dimension reduction
If there are m basis of microstates, one can construct a total 

number of mk  possible k-mer. Therefore, the feature vector is 
high-dimensional and redundant. Principal component analysis 
(PCA) is a technique for reducing the dimensionality of such 
datasets. PCA is the process of computing the principal components 
and using them to perform a change of basis on the data, sometimes 
using only the first few principal components and ignoring the rest. 
It is defined as an orthogonal linear transformation that transforms 
the data to a new coordinate system such that the greatest variance 
by some scalar projection of the data comes to lie on the first 
coordinate (called the first principal component), the second 
greatest variance on the second coordinate, and so on.

Classification
SVM is a supervised machine learning model and has become 

a popular tool in time series forecasting. The advantages of SVM 
are good generalization performance, the absence of local minima, 
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and the sparse representation of the solution. The basic idea of 
SVM is to construct the optimal marginal hyperplane iteratively 
to minimize errors. In this study, we use SVM to predict emotion 
states from EEG signals.

Experimental results

Music–evoked EEG dataset

In this research, we use the popular public database, Dataset 
for Emotion Analysis using Physiological signals (DEAP), to 
analyze affective states (Koelstra et  al., 2011). DEAP is a 
multimodal dataset, including EEG, MEG, Galvanic skin 
resistance (GSR), electrooculography (EOG), blood volume 
pressure, skin temperature, and respiration pattern. We  use 
32-channel EEG original signals for emotion recognition based on 
microstate analysis. The raw EEG data can be downloaded from 
the following http://www.eecs.qmul.ac.uk/mmv/datasets/deap/.

These EEG data are collected from 32 subjects. During the 
experiment, 40 music videos (1 min) are used as the stimulus to 
elicit emotions for each subject. Before each video is displayed, a 
5 s baseline is recorded. Each participant is requested to finish a 
self-assessment foFr arousal, valence, and dominance on a scale of 
1 to 9 after watching.

Microstates for music–evoked emotion

Microstate classes
Before identifying the microstates, the EEG data should 

be  preprocessed. More specifically, the EEG data is average 
referenced, down-sampled to 128 Hz, filtered with a 1–45 Hz 
cutoff, and removed eye artifacts with ICA. The 5 s baseline before 
stimuli is used to correct data for stimulus-unrelated variations.

During the cluster analysis using DTAAHC, the thresholds of 
global explained variance (GEV) and global map dissimilarity 
(GMD) are set to 85% and 0.1, respectively. We  identify 10 
microstates for music-evoked emotional EEG. These microstates 
explain 86% of the variance of all global field power peaks. And 
the GMD across different microstates is less than 0.1. Figure 3 
illustrates 10 microstate topographies.

K–mer frequency
The original individual EEG data are labeled as a microstate 

sequence (MS) with fitting back 10 microstate classes to 
topographies at the sample point. Considering the valence 
dimension, the dataset is separated into high vs. low valence 
groups. The ratings of valence higher than 4.5 are high valence 
levels and vice versa. Among the total 1,280 trials of all subjects, 
736 trials are labeled as high valence and 544 as low valence. 
Figure  4 presents the probability of the occurrence of each 
microstate in MS. There is no significant difference between the 
two groups (high vs. low valence music stimuli). Each microstate 

has a similar probability of occurrence (max = 12.24, min = 7.76 
for the high valence group). The probability of microstate #6 is 
relatively lower than others.

We apply k-mer frequency analysis to analyze the 
MS. We set different lengths of k-mer (k = 2,3,4,5). For each k, 
we calculate the D norm2

*
_  dissimilarity matrix between trials 

of the high valence group and trials of the low valence group. 
This matrix is symmetric. We plot the distribution of the upper 
triangular in Figure 5. When the length of k-mer is 2, the 10

2  
2-mer can be  considered as transitions between the single 
microstate. Its frequency is similar to conventional transition 
probabilities. As is shown in Figure 4, the dissimilarity of 2-mer 
between the high vs. low valence groups is low. Previous 
research suggests transition probabilities cannot model 
transition dynamics for longer time series of at least several 
minutes (von Wegner et  al., 2017). When increasing the 
parameter k from 2 to 5, the larger dissimilarity between the 
two groups can be observed.

Recognition results

The performance of the proposed features for EEG-based 
emotion recognition is studied in this subsection. We evaluate 
the prediction accuracy on the DEAP dataset. We extract the 
60s preprocessed EEG signals induced by a music video in each 
trial for each subject. The total number of EEG epochs from 
each subject was 40. Thus, the dimension of this dataset was 
7680 32 40 32time points channels epochs subjects( )´ ( )´ ( )´ ( ) . 
For the emotional labels, each video has emotional rating 
values in the range of 1–9 in the arousal and valence domain. 
We set the 4.5 as the threshold to divide the rating value into 
two categories: more than 4.5 labeled with high arousal/
valence, and less than or equal to 4.5 labeled with low arousal/
valence. The labels are shown in Figure 6.

We use the 5-fold cross-validation method to increase the 
reliability of the classification results. The entire dataset was split into 
5 folds. In each iteration, one fold (256 trials) is used to test the model 
and the rests (1,024 trials) serve as the training set. The process is 
repeated until each fold of the 5 folds has been used as the training set.

The criterion for evaluating the performance of two-class 
classification is accuracy:

  
Accuracy =

+
+ + +
TP TN

TP TN FN FP  
(10)

where TP, TN, FP, and FN denote true positive, true negative, 
false positive, and false negative, respectively.

In this section, three experiments are conducted on the 
dataset. All experiments use SVM as a classifier. In the first 
experiment, we evaluate the performance of the fine-level features. 
The k of k-mer is set to 3,4,5. Here we use 10 microstates and 
we can construct a length of 10 10 10

3 4 5
, ,  feature vector based on 

formula 9, respectively. The increase of k value will lead to 
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exponential growth of the amount of computation. If four classical 
microstates are used, it is suggested to try a longer k-mer. PCA is 
used for dimension reduction. The number of components is 
selected based on the variance. The selected components need to 

explain a 85% percentage of the variance. In the second 
experiment, we  evaluate the performance of the coarse-level 
features. Four parameters (duration, occurrence, time coverage, 
GEV) of each microstate class are extracted as features. In the 

FIGURE 3

The topographical maps of the microstates across subjects.

FIGURE 4

The probability of the occurrence of a specific microstate.
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third experiment, the fusion of fine and coarse features is used as 
the feature set. As 5-mer performs better in the first experiment, 
features of 5-mer are used as fine features.

Table  1 provides the accuracy of SVM classifiers for the 
valence and arousal dimensions using different feature sets. As can 
be seen, the classification performance of 5-mer is better than 
3-mer and 4-mer. The fusion features at the fine and coarse levels 
give a better performance than those based on an individual level. 
The accuracy with the combination of 5-mer and four 
conventional temporal features is 64.8% for valence and 61.4% for 
arousal. We compare our proposed features to the original study 
of the DEAP dataset and other studies. The results are given in 

Table 1. The original study used spectral power and the spectral 
power asymmetry between 14 pairs of electrodes. Mert and Akan 
(2018) proposed MEMD-based features where MEMD is a time-
frequency analysis method. Clerico et  al. (2015) proposed an 
inter-hemispheric amplitude-modulated interaction feature set 
(IAMI) for emotion recognition. Compared to IAMI features, our 
features are more successful for both valence and arousal 
dimensions. Compared with spectral power-related features, the 
accuracy of our features is improved by 7% for the valence 
dimension, whereas it is reduced by 0.6% for the arousal 
dimension. Compare with MEMD-based features, the accuracy of 
our features is improved by 10% for the arousal dimension, 
whereas it is reduced by 2.2% for the valence dimension. By 
comparison, our proposed features are effective temporal features 
for EEG-based emotion recognition. In addition, it is suggested 
that feature extraction based on microstate sequences of different 
frequency bands should be considered in future work.

Conclusion

Emotion recognition based on EEG has received increased 
attention in the field of affective computing. In this study, 
we  propose a novel feature extraction method for emotion 
recognition. First, a microstate sequence is obtained using 
microstate analysis. Then, we extract features of the microstate 
sequence at fine and coarse levels. At the fine level, we propose a 
feature set derived from the statistics of k-mer. At the coarse level, 
we extract conventional four temporal parameters. Finally, SVM 
is used as a classifier for emotion recognition. These features are 
evaluated on the DEAP dataset. The classification results 
demonstrate that the fusion of fine and coarse features gives a 

FIGURE 5

The D _*2 norm  dissimilarities distribution for different length of 
k-mer. It is worth noting that the color of histogram looks like 
black due to the over-concentrated distribution at k = 2.

A B

FIGURE 6

The labels of the stimuli on the valence-arousal plane. The median 4.5 is the threshold to divide the rating value into two categories: (A) low 
valence (LV) and high valence (HV) in valence dimension, (B) low arousal (LA) and high arousal (HA) in arousal dimension.
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better performance than those based on an individual level. 
Compared with other features, our proposed features are effective 
temporal features for EEG-based emotion recognition. In 
addition, it is suggested that feature extraction based on microstate 
sequences should consider different frequency bands in 
future work.
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