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Mother-young bonding is a process by which the young establish social 

preferences for their mother. It fosters reproductive success and the survival 

of offspring by providing food, heat, and maternal care. This process promotes 

the establishment of the mother-young bond through the interaction of 

olfactory, auditory, tactile, visual, and thermal stimuli. The neural integration 

of multimodal sensory stimuli and attachment is coordinated into motor 

responses. The sensory and neurobiological mechanisms involved in filial 

recognition in precocial and altricial mammals are summarized and analyzed 

in this review.
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Introduction

In mammals, the mother-young bond formation is essential for newborn survival and 
involves a set of neurological, behavioral, and cognitive mechanisms. Mutual recognition 
between the mother and the newborn is essential to establish and maintain the bond and 
guarantee maternal care during the young development (Bolhuis, 2009; Mota-Rojas et al., 
2021). The process of mutual recognition between the mother and the newborn involves 
multimodal sensory signals in the brain of both individuals and occurs during a sensitive 
period (Broad et al., 2006). This period is important for the mother to recognize and 
identify their newborn, avoiding misdirected care, reducing energy outlays, and 
enhancing their reproductive success. Imprinting is a process, mostly studied in birds 
(Vallortigara and Versace, 2018), by which newborns establish a social preference for their 
mother, another individual, or even an object (Hess, 1972; Ohki-Hamazaki, 2012). 
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According to Hess (1959), the process of imprinting, observed by 
Lorenz in European birds, is a phenomenon also reported in 
other animals such as insects, fish, and some mammals (sheep, 
buffalo, and deer). However, in the present paper, we will deal 
with the bonding and interaction process between a young and 
its mother.

The process of mother-young recognition requires specific 
sensory stimuli integrated by brain structures (Bolhuis, 1999). 
It involves structural changes in cortical regions and the 
release of neurotransmitters that allow newborns to learn to 
identify their mother—or the individual/object imprinted—
through visual, auditory, tactile, and olfactory cues (Sullivan 
and Wilson, 1994; Insel and Young, 2001; Debiec and Sullivan, 
2017). These areas interconnect with other regions to promote 
the secretion of neurotransmitters associated with the 
behavioral responses observed during mutual bonding, such 
as oxytocin, gamma-amino-butyric acid (GABA), glutamate, 
acetylcholine, and among others (Ohki-Hamazaki, 2012). 
Neonatal recognition’s set time varies from a few hours to a 
few days depending on the species. As the mother-young 
interaction depends on the newborn’s locomotor, sensory, and 
neuronal level of development, it varies in precocial and 
altricial species. Offspring from precocial species (e.g., goat 
kids, lambs, and calves) are born fully developed, have a more 
developed thermoregulatory system (Muir, 2000; Glatzle et al., 
2017), and thus, shortly after birth are capable of following the 
mother and feed with more independence (Muir, 2000; Glatzle 
et  al., 2017). These species develop discriminative care, 
allowing exclusive suckling, and a clear chemosensory 
recognition between the offspring and the dam soon after 
birth (Horrell and Hodgson, 1992; Booth and Katz, 2000). On 
the other hand, offspring from altricial species (e.g., canids, 
rodents, and felines) are not fully developed and have limited 
sensory and locomotor abilities at birth (Lévy and Keller, 
2008), requiring continuous parental protection during the 
first postnatal weeks, parental grooming, feeding (Scheiber 
et al., 2017), and in nidicolous species (e.g., rats, mice, rabbits), 
nesting behavior represents a protective physical barrier, 
delimiting the space where the mother-young interaction 
develops (Frohlich, 2020). In many altricial species such as 
canines, puppies are born with non-functional ears and eyes, 
and are severely limited in their capacity for mechanical 
movement (Czerwinski et al., 2016). The cognitive, sensory, 
and locomotor capacities of both precocial and altricial species 
are associated with prenatal neurogenesis and degrees of brain 
maturation (Glatzle et al., 2017).

Complementary, the imprinting process can occur between a 
young and a human handler, such as observed during artificial 
rearing in sheep (Markowitz et al., 1998) and sea lions (Lynn et al., 
2010). This type of imprinting can be also used as a tool to simplify 
foal handling (Spier et  al., 2004). In these circumstances, the 
young establish a preferential bond toward the human and 
activates neuronal pathways related to emotional bond (Coulon 
et  al., 2013). This review aims to summarize and analyze the 

sensory and neuronal mechanisms of mother-young bonding in 
non-human mammals.

Establishment of the 
maternal-young bond during the 
sensitive period

The sensitive (or critical) period is a length of time after birth 
for a mother to become bonded to her young. The formation of 
this bond depends on maternal responsiveness, social cues from 
members in the dyad, neuroendocrinological changes, and the 
display of maternal and neonatal behaviors. The establishment of 
a mother-young bond implies the social preference of the mother 
and the offspring for each other. There are several stimuli of 
distinct origins required for the mother-young bond, that vary 
according to the development of the offspring’s senses (Bolhuis, 
1999; Yamaguchi et al., 2012; Lemche, 2020). At the cerebral level, 
a key architectural and biochemical configuration gives rise to 
neuronal circuits, such as the frontal cortex and excitatory 
neurotransmitters. These circuits participate in creating the 
neonatal cerebral pathways to establish stable, or preferred, 
connectivity patterns that act as guidelines for developing a set of 
behavioral patterns and strategies required for the offspring’s 
survival (Knudsen, 2004) and even for their adulthood traits, such 
as sexual behavior (Bateson, 1990). The sensitive period and the 
structural configuration of brain connectivity depend entirely on 
the degree of learning achieved. On the other hand, atypical 
interference can cause irreversible alterations in these brain 
mechanisms and, therefore, affect the establishment of the bond 
(Moriceau and Sullivan, 2005). Modifications of neuronal 
plasticity in the offspring may involve such mechanisms as 
synaptic consolidation through molecular adhesion cells, 
abolition of the activation of synapses because of the insertion of 
stabilizing molecules, and the construction of synapses through 
the growth of axons or dendrites. In addition, it has been 
suggested that the development of neuronal networks also 
requires a certain level of connectivity, or degree of brain maturity. 
This, however, depends on innate mechanisms, including 
connections close to the retina or spinal cord. It is important to 
note that some brain regions involved in the development of the 
offspring, including the amygdala, cerebral cortex, and 
hippocampus, maintain a constant level of plasticity throughout 
life so they can establish long-lasting connection patterns 
(Knudsen, 2004). In this regard, studies have demonstrated that 
in numerous mammal species, the primary visual cortex performs 
a selective elimination of connections in the thalamic axons and 
that certain actions require the participation of various brain 
centers (Sullivan and Wilson, 1994; Maekawa et al., 2006;Mora-
Medina et al., 2018; Orihuela et al., 2021). Likewise, cascades of 
molecular elements have been reported to orchestrate the 
beginning and end of periods of mutual recognition (Sullivan and 
Wilson, 1994; Insel and Young, 2001; Sullivan, 2003; Moriceau 
and Sullivan, 2005; Debiec and Sullivan, 2017).
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Sensory channels involved in the 
mother-young bonding process

This process requires the integration of several sensory 
inputs that come together from hypothalamic structures, the 
limbic system, and the cerebral cortex (Mora-Medina et al., 
2018; Orihuela et  al., 2021). Multimodal signals are 
transmission pathways that allow learning using sensory stimuli 
(sight, hearing, smell, taste, and thermal; Glatzle et al., 2017; 
Mora-Medina et  al., 2018; Orihuela et  al., 2021). The main 
involved pathways are conditioned by the degree of sensory 
functionality characteristic of the offspring at birth (Mora-
Medina et al., 2018). Dams can recognize auditory, visual, and 
odor signals, but newborns are conditioned by the degree of 
their sensory development, so they are incapable of capturing 
certain features of their physical and social environment until 
their senses and communication channels reach optimal levels 
of development (Muir, 2000; Werneburg et al., 2016). In altricial 
species, olfactory cues are essential for the onset of young-
mother interaction after parturition (Poindron et al., 1988; Lévy 
and Nowak, 2017), and communication is practically 
unidirectional (Muir, 2000). For instance, rat pup-dam licking 
behavior is regulated by the pup’s preputial gland secretion 
(Brouette-lahlou et  al., 1991b). However, some altricial 
neonates, including those of feline species, can detect odor 
stimuli that help them locate the mother’s mammary gland 
(Vitale, 2018). In mice, Al Aïn et  al. (2013) elegantly 
demonstrated that mouse pups imprint on their own mother’s 
odor in utero, and these imprinted odors from the amniotic 
fluid improve nipple attachment of the pups by inducing nipple 
grasping (Workman et al., 2013). The development of neural 
structures in the offspring is probably related to acquiring a 
more functional sensitive sensibility (Workman et al., 2013; 
Glatzle et al., 2017).

On the other hand, the offspring of precocial species can 
establish communication channels only a few minutes after birth, 
as they can perceive sensory stimuli and perhaps even follow the 
mother due to their fully-developed motor neurons (Workman 
et al., 2013). This occurs, for example, in water buffaloes, bovine 
cattle, goats, and sheep. These four precocial species are classified 
as prey animals that are in constant movement; therefore, the 
young and the mother must have the ability to identify each other 
immediately after birth, especially in the case of large social groups 
(Glatzle et al., 2017; Mora-Medina et al., 2018; Orihuela et al., 
2021). Overall, the communication pathways depend on the 
degree of neurodevelopment of the neonate (Mora-Medina et al., 
2018; Orihuela et al., 2021).

Tactile and thermal stimuli

Tactile stimuli serve to form the mother-young bonding and 
contribute to the offspring standing, finding the teat/udder to feed, 
and suckling (Vince, 1987; Vázquez et al., 2015).

Numerous studies have highlighted the importance of the 
licking on the anogenital region and other areas of the newborn’s 
body because it can influence emotional responses from the 
mother, as observed in dogs (Lezama-García et  al., 2019). In 
lambs, a precocial species, tactile stimulation is the primary 
stimulus that the offspring receives (McGlone and Stobart, 1986). 
It also reduces stress and promotes the development of social skills 
in neonates, as has been demonstrated in rats (Caldji et al., 1998; 
Champagne et al., 2003; Starr-Phillips and Beery, 2014). Licking 
the face encourages the newborn to stand and start mouth and 
munching movements resembling suckling, particularly when the 
head of the newborn touches warm and hairless areas such as the 
udder (Mottershead et al., 1985).

In this aspect, the differences in the skin temperature of the 
dam play a key role in teat-seeking and the start of suckling 
(Vince, 1993). Authors such as Vince (1984) found that lambs 
prefer warmer naked surfaces between 32 and 39°C such as the 
inguinal area and the udder (around 35°C–37°C). The average 
value of 36°C influenced the suckling time (55.6 ± 6.62 s) and the 
maintenance of the contact between the nose and lips. Likewise, 
neonatal pigs use thermal and tactile cues as motivation for teat-
seeking (Hrupka et al., 2000). Nonetheless, this reaction does not 
only depend on thermal influence since other cues are necessary 
(Vince, 1984).

The endocrine influence of estradiol and progesterone has 
been tested by Le Neindre et al. (1979) and injection of ovarian 
steroids influences licking behavior and selective recognition in 
the mother. All this has beneficial responses in the young, 
including diminished anxiety (Meaney, 2001), but also has long-
term consequences, as the presence/absence and frequency of 
licking modify the sensitivity of the newborn brain to different 
hormones in adulthood (Meaney, 2001). However, whether there 
are differences in these responses among altricial or precocial 
species remains to be studied.

Visual stimuli

The visual communication pathway participates in the mutual 
recognition and bonding of the offspring to their mother. In 
altricial neonates, however, the uptake of visual stimuli is delayed 
because the development of retinogenesis and corticogenesis 
occurs gradually after birth (Workman et  al., 2013; Glatzle 
et al., 2017).

The ability of a newborn to detect visual stimuli depends on 
the species and different levels of functional maturation. Moye and 
Rudy (1985) determined that 15-days-old rat pups are able to 
detect visual and auditory stimuli; however, they cannot associate 
visual cues until day 17th, due to the morphological differentiation 
of the visual cortex neurons happening around postnatal day 21 
(Miller, 1986). Additionally, although eye opening is a key process 
for any animal, in rats, before pups open their eyes, head direction 
cells of the hippocampal formation and anterodorsal thalamic 
nucleus integrate sensory information and appear 3 days before 
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eye opening, going through a rapid maturation after this stage 
(Tan et  al., 2015). Cancedda et  al. (2004) demonstrated that 
maturation and ability to process visual stimuli can be affected by 
the sensory-motor environment in mice, where newborn pups 
reared in enriched environments (wire mesh lid, running wheel, 
tunnels, shelters, stairs, among others) caused a precocious eye 
opening (71% at day 12 in enriched animals vs. 6% in the control 
group), a faster visual acuity development by 6 days compared to 
control animals, and this also had an influence in maternal care, 
since high concentration of brain-derived neurotrophic factor 
(BDNF; a neurotransmitter found in enriched animals) are 
associated to higher levels of licking.

Olfactory stimuli

Olfaction has an essential role in the modulation and 
establishment of the dam-offspring bond in several mammal 
species (Lévy et al., 2004). For example, the olfactory cues derived 
from the preputial gland of rodent pups (dodecyl propionate), are 
associated with the beginning of licking in this area (Brouette-
lahlou et al., 1991a). Olfactory signals are detected by the main 
olfactory system, composed of the main olfactory epithelium 
(MOE), of which olfactory neurons project to the olfactory bulb 
(OB). However, the requirement of full functionality of the OB in 
some species is not necessarily associated with behavioral 
responses of the newborns, as nipple attachment or suckling are 
not affected in seven-day-old rat pups with partial bulbectomy 
(Risser and Slotnick, 1987). Similarly, newborn rabbits with a 
medial or lateral removal of 80% of the OB still responded to 
pheromones and odor signals without altering their suckling 
behavior (Hudson and Distel, 1987), reinforcing the concept that 
partial functionality might be enough at this stage of development.

Indeed, some “olfactory” cues such as the pup’s preputial gland 
pheromone are detected by the vomeronasal organ (VNO), 
forming with the Accessory Olfactory Bulb (AOB) the 
Vomeronasal System (VNS) or Accessory Olfactory Sytem (AOS; 
Brouette-Lahlou et  al., 1999). In addition, some authors 
demonstrated that the maternal VNS is essential for the early 
mother-infant bond in the rat (Del and Cerro, 1998) or for the 
neonatal offspring recognition in sheep (Booth and Katz, 2000). 
On another hand, the mammary pheromone can enhance 
olfactory learning in rabbits pups by functioning as a “cognitive 
organizer” that promotes early learning of environmental cues 
(Coureaud et  al., 2006). Thus, this could help the rapid 
development of mother-young recognition and bonding.

Auditory stimuli

The role of auditory perception of the offspring has been still 
little studied in mammals. The hearing ability observed in animals 
at birth mainly depends on whether it is an altricial or precocial 
species. For example, guinea pig pups (a precocial species) can 

hear and respond to auditory cues at birth (Ehret, 1980). Similarly, 
newborn lambs between the second and 35th postnatal days do 
not have a significant difference in latency or amplitude of 
brainstem auditory evoked responses, due to the prenatal 
maturation of the brain in precocial species (Ashwal et al., 1984).

Contrarily, rat pups are deaf at birth and their auditory cortex 
evokes responses only after the first 2 weeks post-partum 
(Makarov et al., 2021). In neonatal rabbits, thalamocortical axons 
are the main sensory afferent before hearing onset and can 
be found as early as postnatal day one (de Venecia and McMullen, 
1994); however, rabbit pups cannot hear until day 7, approximately 
(Kral and Pallas, 2011). Additionally, all newborns from any 
species can produce the “isolation call,” a vocalization present 
when exposed to distressful environments (Ehret, 1980). When 
rat pups are isolated from their mothers, ultrasonic vocalizations 
occur mainly during the first 6 to 7 days postpartum and elicit 
searching or retrieving of the pups (Nagasawa et al., 2012).

Another example is the female Australian sea lion, which 
develops a rapid bonding with its pup within a few days after 
parturition since it has to return to foraging sea very shortly after. 
This bonding is primarily mediated via vocal recognition as both 
mothers and pups produce individually stereotyped vocalizations, 
named attraction calls (Charrier and Harcourt, 2006; Charrier 
et  al., 2022). Identity is encoded in amplitude modulations, 
frequency modulations, and frequency of call (Pitcher et al., 2012). 
Then, mother recognition of pup calls is established within 48 h of 
birth, before the female leaves to forage (Pitcher et al., 2010), but 
pups cannot identify their mother’s voice before the end of the 
perinatal period, during their first separation from their mothers 
(Pitcher et al., 2009). Pups only play a more active role at a more 
advanced period when they have acquired their vocal 
discrimination abilities.

Neural circuits involved in the 
mother-young mutual recognition 
process

Neural changes during tactile 
recognition

All tactile stimuli activate the locus coeruleus (LC), which has 
the largest reserve of norepinephrine (NE) and is the brain region 
that provides this neurotransmitter to the olfactory bulb (Debiec 
and Sullivan, 2017). Licking activities depend on the action of the 
hippocampus and limbic system with participation by the 
amygdala and nucleus accumbens (Figure 1; Francis et al., 2002; 
Lévy and Nowak, 2017; Orihuela et al., 2021).

In rodents, licking newborns affect the expression of 
glucocorticoids receptors in the hippocampus (Liu et al., 1997), 
oxytocin and vasopressin receptors in the central nucleus of the 
amygdala, bed nucleus of the stria terminalis, and lateral septum 
(Francis et al., 2002; Curley et al., 2012), and estrogen receptors in 
the medial preoptic area (Champagne et  al., 2003). Maternal 
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contact also increases the cerebral oxytocin concentration of the 
offspring (Kojima et al., 2012).

In addition, in a dopamine genotype-dependent manner, 
female rat offspring that received higher early-life licking displayed 
higher dopamine levels in the nucleus accumbens and provided 
higher late-life licking to their pups (Lauby et al., 2021). Likewise, 
differences in estrogen receptors expression in the medial preoptic 
area (MPOA) are transmitted from the mother to her female 
offspring and influence their licking/grooming behavior of pups 
at the adult age (Champagne et al., 2003).

Neural changes during visual recognition

The process of visual imprinting has been studied in depth in 
birds (Beecher et al., 1981; Bolhuis, 1991; Maekawa et al., 2006; 
Nakamori et al., 2013), although there are few studies in mammals. 
Previously, it was stated that the level of neurodevelopment of 
mammals at birth influences their ability to recognize the mother 
and the environment through their eyes. In general, in young 
mammals, the visual system is the last to develop, just after 
auditory, proprioceptive, vestibular, and nociceptive systems 
(Mellor, 2019). For example, in lambs, the visual cortex at birth 
has a similar physiology of adults (Clarke et al., 1979), which helps 
in recognizing the mother in the first minutes post-partum 
(Mellor and Diesch, 2007). Visual stimuli travel through the optic 

nerve and link to the occipital lobe and lateral geniculate nucleus. 
Signals are projected to the visual cortex, which senses and then 
establishes visual configurations that allow mutual identification 
between the dam and the offspring at a distance (Mora-Medina 
et al., 2018; Orihuela et al., 2021).

In birds, the region analogous to the mammalian visual cortex 
is called the visual Wulst. Studies of this region using optical 
imaging techniques show that imprinting on a specific object 
increases the activity of the neurons of this area, as well as their 
synapses (Maekawa et al., 2006). Upon receiving signals from the 
retina, the visual Wulst transmits the information to the posterior 
region of the telencephalon, the nucleus rotundus in the thalamus 
and entopallium, the core and periventricular regions of the 
hyperpallium densocellulare, and the intermediate medial 
mesopallium (IMM; Ohki-Hamazaki, 2012). The IMM is a zone 
where early learning derived from visual stimuli is consolidated 
(Insel and Young, 2001). In newly hatched chicks, the IMM also 
receives afferents from the optic tectum, hippocampus, amygdala, 
and regions of the nidopallium (Nakamori et  al., 2013). The 
information processed there is transmitted to the amygdala and, 
subsequently, the medial striatum (MSt) and its dopaminergic 
nuclei (Nakamori et al., 2013).

After hatching, birds show an increase in excitatory 
glutamatergic transmission in the IMM that remains high for at 
least 24 h (Meredith et  al., 2004) and an increase in spinal 
excitatory synapses of the IMM (McCabe, 2019). Key 

FIGURE 1

Tactile recognition in sheep. Tactile cues include licking the newborn, particularly during the first hour of life. By starting at the head, nose, ears, 
and the anogenital region, the mother encourages the offspring to stand up and consume colostrum. The endocrine response in lambs activates 
zones in the LC, AMY, and BNST, where an increase in noradrenergic neurons, adrenergic, oxytocin or V1a receptors occurs. AMY, amygdala; LC, 
locus coeruleus; NE, norepinephrine; V1a, vasopressin 1a.
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neurotransmitters involved in this process are NE, glutamate, 
acetylcholine, GABA, and taurine. Also, the density of N-methyl-
D-aspartate receptors (NMDA) shows high activity and plasticity 
in the IMM (Nakamori et al., 2013). It has been reported that 
during imprinting the density of NMDA receptors increases by 
more than 59% on the left side of the IMM, an area associated with 
long-term memory (Figure 2; Bateson and Horn, 1994; Bolhuis, 
1999; McCabe, 2013). Nakamori et al. (2015) found that NMDA 
receptors containing a specific subunit (NR2B/NR1) are expressed 
at the beginning of the imprinting process and the knockdown of 
these subunits impairs imprinting. Likewise, McCabe and Horn 
(1994) determined that the expression of the early gene Fos in the 
IMM of chicks participates in the learning and memory process 
of imprinting.

An interruption in the functioning of these receptors has been 
associated with failed imprinting in precocial birds such as ducks, 
chickens, and geese (Ohki-Hamazaki, 2012). The lack of 
stimulation during the sensitive period generates structural 
alterations in the brain that result in a deprived visual cortex 
(Hubel et  al., 1977), alterations of the auditory cortex, and 
structural changes in the olfactory bulb (Wong-Riley, 2021). In the 
case of mammals, blindfolded lambs did not stand in the first 
hours of life and did not approach the dam, showing that visual 

stimulation is important to establish the maternal bond (Vince 
et al., 1987).

During visual imprinting, the plasticity of the visual cortex 
depends on this sensitive period and is not altered by external 
effects (Bischof, 1983). The effects of cortical plasticity are seen 
during the first few weeks of life in the offspring. For example, cats’ 
dendritic spines increase during the first 8 weeks of life, though 
their number decreases at the end of the sensitization period 
(Bischof, 1983).

Neural changes during olfactory 
recognition

Olfactory recognition of the mother and odor stimuli are 
essential for neonate animals whose visual systems are not 
completely functional at birth, as occurs in altricial species 
(Leon, 1992), in whom tactile input has a stronger association 
with attachment (Nowak, 2006). Indeed, early olfactory 
associative learning (wherein an odorant conditioned stimulus 
is temporally paired with another unconditioned stimulus to 
produce a conditioned behavioral response to the odorant) 
must occur for the pup to survive weaning (for instance, in the 

FIGURE 2

Visual imprinting in birds. The stimulus captured by the retina is projected to the thalamus DLA and Wust, a region of the hyperpallium analogous 
to the mammalian primary visual cortex. Through connections to the IHA and HDCo, visual signaling reaches the IMM, the main structure involved 
in long-term memory, early learning, and imprinting. During the sensitive period, amounts of glutaminergic neurons and NMDAr in this zone 
increase to promote imprinting. AMY, amygdala; DLA, dorsolateralis anterior thalami; Dopa, dopamine nuclei; GLU, glutamate; HDCo, 
hyperpallium densocellulare; Hipp, hippocampus; IHA, hyperpallium apical; IMM, intermediate medial mesopallium; MSt, medial striatum; NMDAr, 
N-methyl-D-aspartate receptors; OT, optic tectum.
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nest, for nipple attachment and closeness to the mother). 
Consequently, conserved neural mechanisms under strong 
evolutionary control are involved (Sullivan and Wilson, 2003). 
For example, in lambs, neurons at the olfactory bulb (OB) are 
continuously generated and in the first developmental stages, 
these neural cells rapidly divide into neuroblasts to migrate and 
form interneurons, involved in the recognition of environmental 
odor cues (Corona et al., 2018). The synapsis of OB interneurons 
in the embryonic brain is mediated by the inhibitory transmitter 
GABA that contrarily to its main activity, has an excitatory 
nature in neonates, as Carleton et al. (2003) reported in mice. 
In addition, this process was shown to rely on relatively reduced 
neural circuitry. In rats, areas like the amygdala, hippocampus, 
and frontal cortex are not fully developed at birth, so those 
newborns require other pathways for learning and bonding. 
This process depends on the activation of nerve terminals in the 
OB, LC, and olfactory cortex, involving neurotransmitters like 
NE and serotonin (Yuan et  al., 2003; Debiec and Sullivan, 
2017), which has an essential role during the sensitive period 
(Figure 3; Hussain, 2011; Johnson-Delaney and Orosz, 2011; 
Mucignat-Caretta et  al., 2012). In particular, the OB and 
accessory OB are the principal structures involved in olfactory 
mother-young recognition in mice and rats (Hudson, 1993), 
also with a central role of noradrenergic afferences to these 
areas. In particular, the blockage of beta-noradrenergic 
receptors inhibits the olfactory preference process (Shakhawat 
et al., 2012). The NE reduces the inhibitory action of GABA, 
thus strengthening their synapses, and acts on the 
β1-adrenoreceptors of mitral cells in the olfactory bulb, 
participating in the learning of the maternal odor, thus fostering 
neural plasticity (Yuan et al., 2003; Debiec and Sullivan, 2017). 
In this species, the increased function of noradrenergic neurons 
in the LC and the hypofunction of the amygdala facilitate 
preference learning while blocking odor aversion (Sullivan, 
2006). The continuous activation of mitral cells in the OB 
causes metabolic changes and promotes learning odors 
(Sullivan, 2006). Similarly, the duration of the sensitive period 
(7–10 days) coincides with the presence of noradrenergic locus 
coeruleus neurons in the OB, which acquire adult characteristics 
in the same period (Debiec and Sullivan, 2017). Odor and 
tactile stimulation also cause an increase of 400% in 
extracellular dopamine concentrations (Leon, 1992).

Hippocampal activity has been studied during mother-young 
bonding in sheep. Findings show that the number of maternal 
cells that respond to odor stimuli from lambs increases by 
approximately 60% in the first weeks postpartum; that is, during 
the sensitive period so the olfactory recognition is facilitated. 
Around half of those cells respond only to filial offspring. Likewise, 
increased GABA and glutamate concentrations are observed in 
the OB. In the case of neonates, as shown in Figure 4, the reduced 
plasticity to GABA, hypofunction of the amygdala, and other 
underdeveloped structures such as the frontal cortex, 
hippocampus, and amygdala, participate, together with the OB, in 
odor learning (Insel and Young, 2001).

Neural changes during auditory 
recognition

There is scarce information on the neural changes related to 
auditory cues during mother-young interaction, although some 
authors refer to this type of recognition as more relevant than 
visual (Bolhuis and Van Kampen, 1992). The main structures 
involved in auditory stimulation are the auditory cortex and 
forebrain, but activity in the dorsal region of the cerebral 
hemispheres and the roof of the forebrain predominates (Orihuela 
et  al., 2021). In chicks, the hyperstriatum accessorium, lateral 
neostriatum, and medial neostriatum/hyperstriatum ventrale 
respond to 1.8-kHz sounds (Leon, 1992). Specifically, the 
mediorostral neostriatum responds to auditory stimuli (Insel and 
Young, 2001).

Wolfson et al. (1990) found that in premature lambs, brain-
stem auditory evoked potentials are present at 106 days of 
gestation, and fully mature at within the first 122 days of gestation, 
making this a sensitive developmental stage. In contrast, in 
neonatal rats, the auditory function begins on post-natal day 
12–14 and until day 22, the hearing function is similar to an adult 
(Geal-Dor et  al., 1993). In another rodent, Octodon degus, 
“mothering calls” incite a metabolic activity in the somatosensory 
frontoparietal and frontal cortex of two-week-old pups. In these 
animals, Braun and Scheich (1997) reported that the pups can 
create an association between the vocalizations and the proximity 
of the mother, contributing to the process.

Importance of the role of 
neuromodulators

During mother young interaction, communication networks 
induced by essential neurotransmitters develop. These networks 
favor the learning process of the newborn (Castro-Sierra et al., 
2007; Orihuela et al., 2021). The neuropeptides involved show 
activation of the hypothalamus, which secretes hormones and 
neurotransmitters (Insel, 2010). Several neuromodulators are 
involved in the mutual recognition, including oxytocin, GABA, 
glutamic acid (GLU), monoamines such as dopamine (DA) and 
serotonin (5-HT), as well as N-methyl-D-aspartate (NMDA), 
prolactin (PRL), and BDNF (Castro-Sierra et  al., 2007). For 
example, newborn rats should learn their mother’s odor, orient 
to her, select a nipple and huddle to favor its’ development 
(Teicher and Blass, 1977). Nevertheless, this system improves 
both learning and attachment while pups are confined in the 
nest (Sullivan, 2003; Moriceau and Sullivan, 2005). In this 
attachment process, there are three important structures 
involved: the olfactory bulb, the noradrenergic locus coeruleus, 
and the amygdala (Sullivan, 2003).

Oxytocin is a hormone primarily synthesized in magnocellular 
neurons of the PVN and supraoptic nuclei (SON) of the 
hypothalamus. Its connection to the posterior pituitary, where it 
is stored as secretory vesicles, causes its release into the 
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bloodstream. In addition, the dendritic release of oxytocin into the 
extracellular space through the brain has local effects on specific 
tissues and biological functions. Furthermore, smaller 
parvocellular neurons in the PVN also produce oxytocin and have 
connections to other brain structures including the limbic system 
(notably the amygdala and hippocampus) and the nucleus 
accumbens. Hence, oxytocin can also act as a neurotransmitter/
neuromodulator. There is also a positive autoregulation action of 
oxytocin itself (Meyer-Lindenberg et  al., 2011). Besides, it is 
influenced by gonadal steroids that foster its synthesis and 
modulation (Sharpey-Schafer, 1933; Orsucci et  al., 2013). 
Oxytocin binds to the oxytocin receptor present in several cerebral 
regions, suggesting that the oxytocin receptor in the central 
nervous system has a wide variety of effects (Jurek and 
Neumann, 2018).

This neurotransmitter is involved in the mother-young 
bonding notably via the mediation of mother preference as 
shown in infant lambs treated with synthetic antagonist OT 
receptors which led to a decrease of the exploration of the 
mother’s body and impaired the expression of the mother 
preference (Nowak et al., 2021). Furthermore, these authors 
also showed that close social contact of the young with its 
mother during suckling periods (probably through 
somatosensory stimulations from the orogastric sphere) 
triggered the release of OT in the lamb’s plasma and 

cerebrospinal fluid, as also previously described in calves’ 
plasma (Lupoli et al., 2001).

PRL is a polypeptide neurohormone that plays multiple 
homeostatic roles in the organism in conjunction with the 
dopaminergic and oxytocinergic system, since PRL secretion is 
controlled by a complex network of positive (oxytocin) and 
negative (dopamine) feedback loops (Freeman et  al., 2000; 
Kennett and McKee, 2012). PRL receptors on the MPOA 
participate in the initiation of maternal recognition (Salais-López 
et al., 2021), the development of neural systems that underline 
the control of maternal behavior, as well as immune and 
reproductive development of the offspring, as studied in rat pups 
deprived from maternally-derived PRL intake through the milk 
(Melo et al., 2009). This hormone and its role on the fetal brain 
and activation of neural circuits that trigger maternal behaviors 
when adults has been studied in mice pups, where the lack of 
receptors to produce PRL results in normal pups grow but 
nursing deficiencies when reaching adulthood (Sairenji et al., 
2017). In addition, the expression of PRL receptors at all levels of 
the olfactory system of rat’s neonates indicates that PRL 
participates in the differentiation and development of the 
olfactory system. Thus, in the neonatal period, PRL may 
modulate olfactory function that plays a key role in the 
interactions between the newborn pup and its mother (Freemark 
et al., 1996).

FIGURE 3

Olfactory signaling and processing in rabbit pups. Although pups cannot see at birth, perimammary odors are responsible for olfactory signaling in 
newborns. The mammary pheromone (2 MB2), a pheromone presents in sebaceous structures and released in the milk, is known to incite the 
head-searching and oral grasping movements of the newborn. Rabbit pups can detect the pheromone through peripheral (VNO) and central 
(olfactory bulb) structures of the auditory system, promoting an endocrine response that contributes to behavioral changes. GG, Grueneberg 
ganglion; P4, progesterone; PRL, prolactin; SOM, septal organ of Masera.
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Another example is BDNF, a transmitter that modulates the 
plasticity of the visual cortex in rodents during early postnatal 
development, together with GABAergic neurons. This is relevant 
because studies have shown that a higher concentration of these 
markers promotes an active interaction with their environment, 
including the mother, enhancing the level of licking in these pups 
and, consequently, a precocious maturity of the visual system 
(Cancedda et al., 2004).

Future directions

In intensive production systems, neonates and dams are 
frequently separated shortly after birth, truncating the mother-
young bonding process, and its associated neurobiological 
developments that can reduce the welfare of both mother and 
newborn, including until later at the adult age. Hence, an 
especially important field for the future study includes the 
development of new procedures that do not impact the 
performance of production units but benefit animal welfare. In 
that sense, it is important to understand the processes in different 
species to propose new production models that enhance the 
current practices. New research perspectives are opening, focusing 
on analyzing the neurobiological processes inherent to the 
mother-young recognition, where pheromonal communication 

also plays an important role. However, although this kind of 
mediation has been studied in female rodents (Larsen et al., 2008), 
the role of maternal pheromones on the neonatal brain is still a 
research field that could be investigated thoroughly.

The implication of mother-young mutual recognition and 
parenting behavior on the maternal behavior of the newborn in 
their adulthood is also of interest, where studies in rodents have 
shown that oxytocin release and an adequate mother-young 
dynamic promotes enhanced maternal care for future generations 
(Nagasawa et al., 2012). Likewise, social behavior is an important 
aspect in breeding of farm animals, notably the agonistic 
interactions. In that sense, Toinon et al. (2022) showed that lambs 
reared with or separated from their mother displayed different 
social behaviors after weaning and mixing, with dam-reared kids 
initiating more but receiving less agonistic interactions the 
dam-separated kids.

Future research could also aim to qualify the particular effect 
of mother-young attachment on the young’s brain and whether the 
term imprinting could or could not apply to mammals as a notion 
of “brain imprinting” or “neurobiological imprinting” to describe 
the impact of the maternal bond on brain circuits and functioning 
on the later offspring phenotype, as it is already done in genetics 
with the term “genomic imprinting” found in mammals to 
describe the influence of a particular parental allele on offspring’s 
gene expression and phenotype (Tucci et al., 2019).

FIGURE 4

Olfactory mother-young recognition in rodents. During this process in neonate rats, the hypofunction of the amygdala (to block odor preference) 
and the greater number of noradrenergic neurons in the locus coeruleus are the main features that promote the interaction. In mothers, oxytocin 
secretion and its action on the MPOA, VTA, PVN, and BNST are associated with the presentation of maternal behaviors. AMY, amygdala; BNST, bed 
nucleus of the stria terminalis; Hipp, hippocampus; GABA, gamma-aminobutyric acid; MPOA, medial preoptic area; NE, norepinephrine; OB, 
olfactory bulb; PVN, paraventricular nucleus; VTA, ventral tegmental area.
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Imprinting is a process that is not exclusively created between 
the mother and the neonate but can be observed in newborns and 
humans. For example, imprint-trained foals to a human tactile 
stimulus (e.g., gentle rubbing) at birth decreased the defensive 
behaviors of the same animals at 3 months of age, facilitating their 
handling (Spier et al., 2004). A similar case was observed in lambs 
of 1- to 9-days old who were fed and handled by humans reduced 
avoidance behavior (Markowitz et al., 1998). However, some other 
reports on foals mention that early exposure to humans does not 
have significant differences in foal behavior at haltering and 
handling after 6 months (Williams et al., 2003), and even the cases 
where human aid on the first suckling causes an evasion response 
at 1 month (Henry et al., 2006).

In contrast to the importance of imprinting in domestic 
animals, in the area of wildlife rehabilitation, a fundamental 
requirement for the successful release of animals into their natural 
habitat consists, precisely, of preventing imprinting (Perry and 
Averka, 2020). Lynn et al. (2010) reported in a hand-reared sea 
lion that filial imprinting can cause disrupted social behaviors, 
where the sea lion needed to be returned to captivity since the 
animal responded to human voice and seek human presence 
following release. To prevent this, wildlife rehabilitation and 
reintroduction programs use techniques that prevent contact 
between animals and humans to impede the development of 
attachment (Royal Society for the Prevention of Cruelty to 
Animals, 2010). For example, “costume-rearing” is used with 
young animals in whooping cranes in reintroduction programs 
(Olive and Jansen, 2017). Imprinting processes and the responses 
they generate depend not only on species but also on the purpose 
for which animals are raised.

Conclusion

Mother-young bonding is an essential process for establishing 
the relationship between offspring and the dam. Auditory, 
olfactory, tactile, and visual stimuli participate in the onset of 
bonds through cerebral structures like the LC, with a key role of 
NE concentrations. During the sensitive (critical) period, the 
newborns’ brain is highly receptive to their mothers’ stimuli, a 
feature that is an essential component for affective bonding and 
the learning of information necessary for survival. To trigger this 
mechanism, structures such as the olfactory bulb, auditory cortex, 
visual cortex, locus coeruleus, and some areas of the limbic system 

are activated. They communicate through neurotransmitters that 
promote early learning in the newborn and maternal behaviors in 
the dam. Neonatal recognition of the mother thus depends on a 
whole series of neurobiological processes that begin with the 
uptake of multimodal sensory stimuli, which promote the 
formation and development of communication channels initiated 
by neurotransmitters. Oxytocin has been described as the 
principal neurochemical substance associated with affiliative and 
learning behaviors through conditioned affective associations that 
become integrated into motor responses.

Finally, it is important to emphasize that although the bonding 
mechanisms promoted by the aforementioned stimuli are typical 
of both precocial and altricial animals, differences among them 
may make one mechanism more important than others during the 
first days of life; for example, olfactory interaction in rodents. 
Learning more about these characteristics will help ensure that 
initial contact and response of non-human animals contribute to 
neonatal survival by promoting or preventing bonding, depending 
on the species.
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