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This study focuses on the measurement of mathematical ability in the Chinese

Compulsory Education Qualification Monitoring (CCEQM) framework using

bifactor theory. First, we propose a full-information item bifactor (FIBF) model

for the measurement of mathematical ability. Second, the performance of the

FIBF model is empirically studied using a data set from three representative

provinces were selected from CCEQM 2015–2017. Finally, Monte Carlo

simulations are conducted to demonstrate the accuracy of the model

evaluation indices and parameter estimation methods used in the empirical

study. The obtained results are as follows: (1) The results for the four used

model selection indices (AIC, SABIC, HQ, BIC) consistently showed that the

fit of the FIBF model is better than that of the UIRT; (2) All of the estimated

general and domain-specific abilities of the FIBF model have reasonable

interpretations; (3) The model evaluation indices and parameter estimation

methods exhibit excellent accuracy, indicating that the application of the FIBF

model is technically feasible in large-scale testing projects.

KEYWORDS
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1. Introduction

The Chinese Compulsory Education Qualification Monitoring (CCEQM) project

(The National Assessment Center for EducationQuality, 2018), which is organized by the

Basic Education Quality Monitoring Centre (BEQMC) under the Ministry of Education

of the People’s Republic of China (MOE), is the largest student assessment project in

China. CCEQM applies to mathematics, Chinese reading, science, moral education,

art, and physical education. Each subject is monitored every 3 years, with a focus on

two subjects per year (Jiang et al., 2019). The first assessment cycle ran from 2015 to

2017, with a total of 572,314 fourth-grade and eighth-grade students from 32 Chinese

provinces, municipalities, and autonomous regions participating in the assessment (Yin,

2021). In July 2018, the first CCEQM Report was released, attracting considerable
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attention in China. Furthermore, CCEQM 2015–2017 evaluated

students’ academic achievements based on the concept of core

literacy. Therefore, the work conducted toward CCEQM 2015–

2017 provides valuable experience for educational evaluation

reform in China.

Mathematics is one of the most important basic subjects

in the compulsory education stage of China, and mathematical

literacy is the core content assessed by CCEQM 2015–

2017. On the basis of the “10 core concepts” put forward

by the “Mathematics Curriculum Standard of Compulsory

Education (2011 Edition),” and referring to the experience

of international large-scale assessment projects such as the

Programme for International Student Assessment (PISA) or

the Trends in Mathematics and Science Study (TIMSS), a

mathematics literacy assessment framework was developed by

the experts of BEQMC for CCEQM 2015–2017. Specifically, in

the mathematics literacy framework, mathematical ability—as

a general concept—includes the five domains of “mathematical

computation,” “space imagination,” “data analysis,” “logical

reasoning,” and “problem solving” (The National Assessment

Center for Education Quality, 2018; Jiang et al., 2019). The first

four are the same as those in themathematics literacy framework

developed by the “Mathematics Curriculum Standards of Senior

High School (2017 Edition)” and the “Mathematics Curriculum

Standards of Compulsory Education (2022 Edition).” The

domain of “problem solving” was defined by reference to PISA

2012 (OECD, 2014), and covers the ability to discover, analyze,

and solve problems. The definitions of mathematical ability, as

well as the five domains, are not the focus of this study, so they

are not described in detail here.

In CCEQM 2015–2017, the subscores on the five cognitive

domains for mathematics are estimated using between-item

multidimensional IRT (MIRT) models, and the unidimensional

IRT (UIRT) model is used to estimate the overall score for

mathematics (Jiang et al., 2019). Note that the UIRT model

is also the main measurement model in PISA (OECD, 2014).

There are some issues that need attention. First, the subscores

on the five domains must be strongly correlated, because all five

domains share common cognitive and intelligence influences.

The common element is not captured in the between-item

MIRT models, which is likely to result in a false interpretation

of the subscores. However, the one-factor structure of the

UIRT model does not match the five-dimensional assessment

framework, in which only the common element is considered,

and so the idiosyncratic nature of each domain cannot be

explained. Furthermore, as discussed by Jiang et al. (2019), the

subscores are hardly comparable with the overall score, as they

are obtained from different models. Therefore, it is desirable

to develop a more powerful and reasonable measurement

model for the evaluation of mathematical ability in large-scale

assessment projects.

Bifactor models are a powerful approach for representing

a general construct comprised of several highly correlated

domains (Chen et al., 2006; Bornovalova et al., 2020), in

which the common and unique elements of all domains

are modeled separately. The bifactor theory and model were

originally proposed by Holzinger and Swineford (1937) to

rectify the problem of adequately separating a single general

factor of intelligence (Spearman, 1904) from domain factors. To

analyze item response data using a bifactor structure, Gibbons

and Hedeker (1992) and Gibbons et al. (2007) generalized

the work of Holzinger and Swineford (1937) to derive full-

information item bifactor (FIBF) models for dichotomous and

polytomous response data, respectively. Cai et al. (2011) further

extended the FIBF framework to a multiple-group model that

supports a variety of MIRT models for an arbitrary mixture

of dichotomous, ordinal, and nominal items. After years of

relative neglect, bifactor analysis has become an important

statistical method for handling multidimensional concepts. The

bifactor model has been used primarily in studying intelligence

and personality (Gault, 1954; Acton and Schroeder, 2001;

Rushton and Irwing, 2009a,b; Watkins, 2010; Martel et al., 2011;

McAbee et al., 2014; Watkins and Beaujean, 2014; Cucina and

Byle, 2017; Moshagen et al., 2018). Recently, it has become

increasingly popular across a broad range of research fields

such as depression and anxiety (Simms et al., 2008; Gomez

and McLaren, 2015; Kim and Eaton, 2015; Olatunji et al.,

2017; Snyder et al., 2017; Jorge-Botana et al., 2019; Heinrich

et al., 2020; Waldman et al., 2020; Arens et al., 2021; Caiado

et al., 2022), health outcomes (Reise et al., 2007; Leue and

Beauducel, 2011; Shevlin et al., 2016; Monteiro et al., 2021),

emotion expression (Caiado et al., 2022), and cognitive abilities

(McFarland, 2013, 2016; Beaujean et al., 2014; Valerius and

Sparfeldt, 2014; Foorman et al., 2015). In addition, as a special

case of confirmatory MIRT modeling, FIBF models have been

used to address some important problems in psychological and

educational measurement. For instance, modeling test response

data and identifying the local dependence of item responses

(DeMars, 2006; Liu and Thissen, 2012), assessing the dimension

of test scales (Immekus and Imbrie, 2008), and equating and

vertical scaling of test scores (Li and Lissitz, 2012; Kim and Cho,

2020). It is apparent that the advantages and values of bifactor

analysis have been largely verified and are widely recognized.

Motivated by previous studies, this article proposes a

bifactor structure for mathematical ability, and applies a mixed

FIBF model to assess mathematical achievement. Furthermore,

an empirical study is conducted based on data from three

representative provinces sampled for the CCEQM 2015–2017

survey. The main tasks of this empirical study are to verify the

advantages of the FIBF model over the traditional models of

between-item MIRT and UIRT, and to interpret the bifactor

scores of mathematical ability. Furthermore, to ensure the

accuracy of the empirical analysis, a Monte Carlo simulation

study is conducted to investigate the performance of the

statistical analysis methods used in the empirical study. Finally,

we summarize the research conclusions and review the main
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results of this study, while identifying its limitations, and discuss

some future research issues.

2. FIBF model for mathematical
ability in CCEQM 2015–2017

The Mathematics Curriculum Standards of Senior High

School (2017 Edition) stated that “...different domains of

mathematical literacy are not absolutely different, but integrated

with each other...” So the five domains (“mathematical

computation,” “space imagination,” “data analysis,” “logical

reasoning,” and “problem solving”) are different and represent

different aspects of mathematical ability, but they must have a

overlap or common part. From this point of view, we consider

that the bifactor structure is suitable formodeling the assessment

of mathematical ability.

The item bifactor measurement structure for mathematical

ability is illustrated in Figure 1A, where the observed categorical

responses are indicated by squares, the latent factors are

represented by circles. All items load on a general or common

factor, although each item loads on only one group or domain-

specific factor. The general factor, which represents the common

element of all aspects of mathematical ability, is interpreted as

the general mathematical ability, which is a broadly defined

concept. The five group factors represent the unique elements

of the five domains, and can be interpreted as domain-specific

mathematical abilities that are conceptually more narrowly

defined mathematical facets. The particularity and commonality

of mathematical ability are represented together in the bifactor

structure.

When there is no group factor, the bifactor structure is

reduced to a one-factor structure; when there is no general

factor, it is a five-factor structure. From this point of view,

the bifactor model can be thought of as a combination of

one-factor and five-factor structures. Because the commonality

of the five domains of mathematical ability is explained by

the general factor, the general and group factors are assumed

to be orthogonal in the bifactor analysis. The orthogonality

of general and specific factors is beneficial for evaluating

the relative contribution of each factor to the overall test

performance. In the following, an FIBF model is proposed for

the math test item response data under the bifactor structure of

mathematical ability.

Consider j = 1, ...,M items in the total item pool, each

scored in Kj ≥ 2 categories, where Kj = 2 indicates that the item

is scored dichotomously. Let there be i = 1, ...,N independent

students, and let Xij (with xij representing one observation)

denote the response variable from person i to item j. Without

loss of generality, we assume that Xij takes integer values from

{0, 1, ...,Kj − 1}. Let θθθ i = (θ0i, θ1i..., θ5i) denote the vector of

the latent mathematical ability of student i, wherein θ0i denotes

the general mathematical ability and (θ1i..., θ5i) denote the five

domain-specific mathematical abilities. The mathematics testing

instrument consists of two types of items: dichotomously scored

items and graded scored items. Thus, the FIBF model must be

a mixed dichotomous and polytomous model. To represent the

dichotomous item response data, the bifactor extension of the 2-

parameter logistic (2PL) model is used. The 2PL is one of the

most important dichotomous IRT models, and is widely used

in practice. When item j is a dichotomous item, Xij ∈ {0, 1};

Xij = 1 denotes the correct response, andXij = 0 otherwise. The

conditional probability of the correct response given θ0i and θvi

is formulated as

P(Xij = 1|θ0i, θvi) =
exp(a0jθ0i + avjθvi + bj)

1+ exp (a0jθ0i + avjθvi + bj)
, (1)

where a0j and avj are the item slopes, which are analogous to

the factor loading parameters on the general factor and the

domain-specific factor, and bj is the item intercept parameter.

The bifactor extension of the logistic version of GRM is

used to represent the graded item response data. When item j

is graded, Xij ∈ {0, 1, ...,Kj − 1} and Kj > 2. The conditional

probability of response category k given θ0i and θvi is formulated

as

P(Xij = k|θ0i, θvi) = P(Xij ≥ k|θ0i, θvi)− P(Xij ≥ k

+ 1|θ0i, θvi), (2)

and

P(Xij ≥ 0|θ0i, θvi) = 1, (3)

P(Xij ≥ k|θ0i, θvi) =
exp (a0jθ0i + avjθvi + bkj)

1+ exp (a0jθ0i + avjθvi + bkj)
,

k = 1, ..,Kj − 1, (4)

P(Xij ≥ Kj|θ0i, θvi) = 0, (5)

where b1j, ..., b(Kj−1)j are the set of Kj − 1 (strictly ordered)

intercepts. As before, a0j and avj are the item slope parameters.

Importantly, the statistical inference (such as parameter

estimation and model fit evaluation) using the FIBF models

is mature, and a number of software packages have been

developed. At present, the application of the FIBF model is

technically feasible in modeling the incomplete mixed item

response data that often occur in large-scale testing projects.

Zhan et al. (2019) proposed a third-order DINA model,

which is a cognitive diagnosis model, for assessing scientific

literacy in PISA 2015. As verified by Zhan et al. (2019),

this third-order Deterministic Inputs Noisy “And” gate model

(DINA) model has some advantages over the UIRT model

for modeling scientific test data. However, the DINA model

is dichotomous, and cannot model polytomous response data,
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which greatly limits its application in large-scale assessment

projects. From this point of view, practicality and feasibility

are important benefits of using the FIBF model to measure

mathematical ability.

The second-order factor model is an alternative method for

representing general constructs consisting of multiple highly

related domains (Chen et al., 2006). The second-order factor

structure for mathematical ability is illustrated in Figure 1B, in

which the five domains of mathematical ability are explained

by defining five first-order factors, and correlations among the

five domains are identified by stipulating a single second-order

factor. In the second-order model, general mathematical ability

is conceptualized in terms of a second-order factor. Different

from the bifactor model, the effects of the second-order factor

on the item responses are mediated by the five first-order

factors. Consequently, the first-order factors reflect two sources

of variance (general and group), while the group factor in the

bifactor model only reflects group effects. The bifactor model

directly separates the unique contributions to the item responses

of the general and group factors. Compared with the second-

order model, the bifactor model makes evaluating theoretical

hypotheses about general and group factors clearer and more

interpretable. Furthermore, the second-order model is simply

a more constrained version of the bifactor model. The second-

order structure can be derived from the bifactor structure by

constraining the ratio of the weights between any given specific

factors and keeping the general factor constant (Reise, 2012).

Overall, in contrast to the second-order model, the bifactor

model makes theoretical hypotheses more interpretable, and has

more degrees of freedom with which to fit the data. In addition,

several studies have verified that bifactor models can produce a

better fit than second-order models (Morgan et al., 2015; Cucina

and Byle, 2017; Bornovalova et al., 2020).

3. Empirical study

3.1. Data description

Data from three representative provinces were selected from

the CCEQM 2015–2017 survey, in which 2,017 fourth-grade

students (53% males) and 1,404 eighth-grade students (54%

males) participated. To ensure the representativeness of the

data, three provinces were selected from different geographical

regions (east, middle, and west), economic development levels

(developed, moderately developed, and less developed), and

mathematical academic achievement ranking (high, middle,

and low).

Let us introduce the design of the mathematical assessment

instrument in CCEQM. To ensure broad content coverage

while avoiding an excessive testing burden, the partial balanced

incomplete block design was employed to administer the math

tests. Specifically, for the fourth-grade students, 59 items were

allocated to six test booklets, each booklet consisting of 10

dichotomous items and 8 polytomous items; for the eighth-

grade students, a total of 60 items were grouped into six test

booklets, each booklet consisting of 12 dichotomous items and

8 polytomous items. Each student was assessed with only one

booklet and each booklet was completed by several of the

students. In this way, the testing time was held to <2 h, and

all five domains of mathematical literacy could be adequately

covered. However, the incomplete test administration design

resulted in incomplete test data, which increases the difficulty of

data analysis. In this empirical study, the R package “mirt” was

used to conduct the statistical analysis. This package allows for

statistical inferences on multidimensional item response models

under incomplete test administration; additionally, it is open

source and can be easily obtained.

Three competing models were fitted to the data, namely the

FIBF (bifactor structure), between-itemMIRT (correlated-factor

structure), and UIRT (one-factor structure) models. The MIRT

was estimated using the Metropolis-Hastings Robbins-Monro

(MH-RM) algorithm of Cai (2010), whereas the FIBF and UIRT

were estimated using the expectation-maximization algorithm,

with the mathematical abilities of students estimated using the

expectation a posteriori (EAP) estimation. These estimation

methods are commonly used in practice and are known to be

powerful. Bifactor models are more general than one-factor,

correlated-factor, and second-order factor models, and are thus

more prone to overfitting (DeMars, 2006; Murray and Johnson,

2013; Rodriguez et al., 2016; Bonifay and Cai, 2017; Greene et al.,

2019; Sellbom and Tellegen, 2019), that is, a bifactor model is

inappropriately favored by model selection indices. Therefore,

overfitting is an important issue in the use of bifactor models.

To avoid unreasonable model fitting, the four commonly used

model selection indices of Akaike’s information criterion (AIC;

Akaike, 1987), Bayesian information criterion (BIC or Schwarz

criterion; Schwarz, 1978), Hanna–Quinn index (HQ; Hannan

andQuinn, 1979), and sample size-adjusted BIC (SABIC; Sclove,

1987) were computed to compare the model fitting.

3.2. Results

3.2.1. Comparison of models

First, the obtained values of the four model selection indices

(AIC, SABIC, HQ and BIC) for the three competing models

are reported in Table 1. The four model selection indices of the

FIBF model are consistently smaller than those of the other two

models, with the largest values given by the between-itemMIRT

model. These results consistently support the FIBF model as the

best for fitting this empirical data. The fit of the UIRT model is

better than that of the MIRT model.

Further, the estimated correlation coefficients of the

five latent abilities of the between-item MIRT model are

given in Figure 2. All values are larger than 0.7, and most
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FIGURE 1

(A) Bifactor structure of mathematical ability. (B) Second-order factor structure of mathematical ability.

TABLE 1 Four model selection indices (AIC, SABIC, HQ, and BIC) of the three competing models (FIBF, MIRT, and UIRT) for fitting the mathematics

test data of the fourth and eighth grades in CCEQM 2015–2017.

AIC SABIC HQ BIC

Fourth grade FIBF 45916 46422 46342 47029

MIRT 46199 46586 46525 47088

UIRT 46166 46528 46471 47068

Eighth grade FIBF 29213 29640 29617 30294

MIRT 30363 30684 30667 31176

UIRT 29613 29916 29802 30380

The smallest values of the four model selection indices are bold.

of them are above 0.8, indicating that the five domains

of mathematical ability are highly related. The strong

correlations among the five domains of mathematical

ability once again support the assertion that the bifactor

structure is suitable for representing mathematical ability.

Based on these results, it is not surprising that the four

model selection indices consistently demonstrate that UIRT

is superior to between-item MIRT, because a between-item

MIRT model with a high related factor structure is close to

the UIRT model, and the model evaluation indices prefer

simpler models.

3.2.2. Correlation analysis of the factor scores

To investigate the performance of the FIBF model, the

relationships between the mathematical ability scores from

the FIBF model and those from the between-item MIRT and

UIRT models were analyzed. First, the correlation coefficients
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FIGURE 2

Estimated correlation coe�cients between the five

domain-specific abilities of the between-item MIRT model for

students in the fourth and eighth grades. MC, mathematical

computation; LR, logical reasoning; SI, space imagination; DA,

data analysis; PS, problem solving. (A) Fourth grade. (B) Eighth

grade.

between the general ability of the FIBF and the ability

parameter of the UIRT model (denoted as R) were computed;

the results are shown in Figure 3. Almost all points fall on

the diagonal, and the correlation coefficients for both the

fourth- and eighth-grade students are R ∼= 0.996, that is,

they are approximately equal to 1.00. This indicates that the

general mathematical ability reflected by the FIBF model is

nearly equal to the ability suggested by the UIRT model. This

phenomenon supports the assertion that general factor of the

FIBF model can be interpreted as the general mathematical

ability and represents the common element of the five domains

of mathematical ability.

FIGURE 3

Correlation coe�cients between the general abilities of the FIBF

model and the abilities of the UIRT model for students in the

fourth and the eighth grades. (A) Fourth grade. (B) Eighth grade.

Second, the correlation coefficients between the five domain-

specific mathematical abilities of the FIBF model and those

of the MIRT model were computed; the results are presented

in Figure 4. For the fourth-grade students, the correlation

coefficients of the same domain-specific mathematical ability

from the two models are between 0.3 and 0.6, and exhibit

moderate positive correlations; for the eighth-grade students,

these correlation coefficients are slightly smaller. However,

for both grades, the correlation coefficients between different

domain-specific mathematical abilities from the two models are

close to 0.0. Based on these results, it can be concluded that the

group factors of the FIBF model represent the unique elements

of the five specific domains. Additionally, we conducted a

correlation analysis of the estimated latent factors in the FIBF

model, which reflects whether the latent factors are orthogonal;

the results are presented in Figure 5. All of the correlation
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FIGURE 4

Correlation coe�cients between the five domain-specific

abilities of the FIBF model and those of the between-item MIRT

model. MC, mathematical computation; LR, logical reasoning;

SI, space imagination; DA, data analysis; PS, problem solving. (A)

Fourth grade. (B) Eighth grade.

coefficients are very close to 0.0, which strongly indicates that the

general and domain-specific latent abilities are independent. In

addition, due to the independence of general and specific factors,

the relative contribution of each to the overall test performance

can be evaluated more readily.

Overall, the results obtained in this empirical study

demonstrate that the bifactor model is a powerful approach for

representing the intercorrelations among the five domains of

mathematical ability. The FIBF model provides a better fit to

the empirical data and a cleaner interpretation of mathematical

ability than the MIRT and UIRT models.

4. Monte Carlo simulation study

In this section, a Monte Carlo simulation is used to illustrate

the performance of the four model selection indices and the

parameter estimation methods used in the empirical study.

FIGURE 5

Correlation coe�cients between the six abilities (the general

ability and the five domain-specific abilities) of the FIBF model

for students in the fourth and eighth grades. GMA, general

mathematical ability; MC, mathematical computation; LR,

logical reasoning; SI, space imagination; DA, data analysis; PS,

problem solving. (A) Fourth grade. (B) Eighth grade.

4.1. Design

As in the mathematics test in CCEQM 2015–2017, there

were six booklets in this simulated test, each including 20 items

(12 dichotomous and 8 three-category items). Furthermore,

each booklet had items in common with two other booklets; for

instance, of the 20 items in “Booklet A,” 10 items were the same

as those in “Booklet B,” and 10 items were the same as those in

“Booklet C.” Thus, there wereM = 60 items in total. In addition,

as for CCEQM 2015–2017, the 60 items were divided into five

dimensions. The sample size of the test takers was N = 2, 000,

similar to the sample size of students in the empirical study.

Each booklet was answered by ≥ 300 test takers, and each item

was included in two booklets. Thus, each item was answered by
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TABLE 2 Four model selection indices (AIC, SABIC, HQ, and BIC) of the three competing models (FIBF, MIRT, and UIRT) under the condition that the

generating model is FIBF.

AIC SABIC HQ BIC AIC SABIC HQ BIC

FIBF 49737 50210 50151 50858 FIBF 49543 50016 49957 50,664

MIRT 50175 50532 50487 51021 MIRT 49990 50343 50302 50836

UIRT 50652 50986 50944 51443 UIRT 50423 50757 50716 51215

FIBF 50122 50479 50434 50968 FIBF 49773 50245 50186 50894

MIRT 50652 50986 50944 51443 MIRT 50271 50628 50583 51117

UIRT 50755 51088 51047 51546 UIRT 50755 51088 51047 51546

FIBF 49750 50223 50163 50871 FIBF 49629 50102 50043 50751

MIRT 50174 50535 50491 51025 MIRT 50110 50467 50423 50957

UIRT 50561 50895 50853 51353 UIRT 50634 50968 50926 51426

FIBF 49773 50246 50187 50894 FIBF 49855 50328 50269 50976

MIRT 50300 50657 50612 51146 MIRT 50318 50675 50630 51164

UIRT 50749 51083 51041 51540 UIRT 50768 51102 51060 51559

FIBF 49839 50312 50253 50961 FIBF 49920 50393 50334 51041

MIRT 50222 50579 50534 51068 MIRT 50344 50701 50656 51190

UIRT 50696 51030 50988 51488 UIRT 50765 51099 51057 51557

FIBF 49863 50336 50277 50984 FIBF 49661 50134 50075 50783

MIRT 50230 50587 50542 51076 MIRT 50181 50538 50493 51027

UIRT 50736 51070 51029 51528 UIRT 50684 51018 50976 51475

FIBF 49941 50414 50355 51062 FIBF 49740 50213 50154 50862

MIRT 50375 50732 50688 51221 MIRT 50230 50587 50543 51077

UIRT 50836 51170 51128 51627 UIRT 50646 50980 50938 51437

FIBF 49741 50214 50155 50862 FIBF 49947 50420 50361 51068

MIRT 50172 50529 50485 51019 MIRT 50381 50738 50693 51227

UIRT 50565 50899 50857 51356 UIRT 50834 51168 51127 51626

FIBF 49516 49989 49930 50638 FIBF 49829 50302 50243 50950

MIRT 50021 50378 50334 50868 MIRT 50335 50692 50647 51181

UIRT 50435 50769 50727 51226 UIRT 50752 51085 51044 51543

FIBF 49618 50091 50031 50739 FIBF 49916 50389 50329 51037

MIRT 50114 50471 50426 50960 MIRT 50375 50732 50687 51221

UIRT 50525 50859 50818 51317 UIRT 50850 51184 51142 51641

The smallest values of the four model selection indices are bold.

≥ 600 test takers. Overall, the design of this simulation mimics

the real situation of CCEQM 2015–2017 as much as possible.

To guarantee that the superior fit of the FIBF model to

the empirical data is not due to overfitting, the performance

of the four model fit assessment indices (AIC, BIC, SABIC,

and HQ) is investigated. In this simulation study, the FIBF,

MIRT, and UIRT models were used as the generating models

respectively to generate item response data. Let U(l1, l2) denote

the uniform distribution with a range of [l1, l2], and N(µ, σ 2)

denote the normal distribution with mean µ and variance σ 2.

Let MVN(333,6) denote the multivariate normal distribution

with mean vector 333 and covariance matrix 6. Based on the

results of empirical data analysis, the true values of the item

parameters of the three models are selected as follows.

a) FIBF generating model

The slope parameters a0j and avj are sampled from

a0j ∼ U(0.5, 2.5) (6)
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TABLE 3 Four model selection indices (AIC, SABIC, HQ, and BIC) of the three competing models (FIBF, MIRT, and UIRT) under the condition that the

generating model is between-item MIRT.

AIC SABIC HQ BIC AIC SABIC HQ BIC

MIRT 54761 55118 55073 55607 MIRT 54904 55261 55216 55750

FIBF 54868 55341 55282 55989 FIBF 54993 55466 55407 56114

UIRT 55139 55473 55431 55930 UIRT 55378 55712 55670 56109

MIRT 54676 55033 54988 55522 MIRT 54772 55129 55085 55619

FIBF 54780 55253 55194 55901 FIBF 54936 55409 55350 56057

UIRT 55074 55408 55366 55865 UIRT 55188 55522 55480 55980

MIRT 54796 55153 55109 55642 MIRT 54853 55210 55165 55699

FIBF 54925 55398 55339 56046 FIBF 54985 55458 55399 56106

UIRT 55085 55419 55377 55876 UIRT 55284 55618 55576 56076

MIRT 54866 55223 55178 55712 MIRT 54638 54995 54951 55485

FIBF 55007 55480 55421 56129 FIBF 54770 55243 55184 55891

UIRT 55283 55617 55575 56075 UIRT 55084 55417 55376 55875

MIRT 55003 55360 55316 55849 MIRT 54932 55289 55244 55778

FIBF 55122 55595 55536 56243 FIBF 55043 55516 55456 56164

UIRT 55417 55751 55710 56209 UIRT 55315 55649 55607 56106

MIRT 54919 55276 55231 55765 MIRT 54758 55115 55071 55605

FIBF 55046 55519 55459 56167 FIBF 54879 55352 55293 56000

UIRT 55286 55619 55578 56077 UIRT 55180 55514 55472 55971

MIRT 54722 55079 55034 55568 MIRT 54637 54994 54950 55484

FIBF 54847 55320 55261 55968 FIBF 54739 55212 55152 55860

UIRT 55138 55472 55430 55929 UIRT 54988 55321 55280 55779

MIRT 54808 55165 55121 55655 MIRT 54993 55351 55306 55840

FIBF 54919 55392 55333 56040 FIBF 55122 55595 55536 56243

UIRT 55079 55412 55371 55870 UIRT 55419 55753 55711 56211

FIBF 54756 55113 55069 55602 MIRT 54721 55078 55033 55567

MIRT 54869 55342 55283 55990 FIBF 54858 55331 55272 55979

UIRT 55130 55464 55422 55921 UIRT 55156 55490 55448 55947

MIRT 54824 55181 55137 55671 MIRT 54796 55153 55108 55642

FIBF 54935 55408 55348 56056 FIBF 54906 55379 55320 56027

UIRT 55222 55555 55514 56013 UIRT 55178 55512 55470 55970

The smallest values of the four model selection indices are bold.

and

avj ∼ U(0, 1.5) (7)

for v = 1, ..., 5 and j = 1, ..,M.

The simulated test is a combination of dichotomous and

three-category items, and the intercept parameters of the two

types of item response models are different. For dichotomous

items, the intercept parameter bj is sampled from

bj ∼ N(0.0, 1.0), (8)

while for three-category items, the intercept parameters bbbj =

(b1j, b2j) are randomly sampled from

b1j ∼ U(−2.0, 0.0), b2j |b1j ∼ U(b1j, b1j + 2.0) (9)

for j = 1, ...,M.

The latent abilities of the test takers are orthogonal in the

FIBF model, so the true values of θθθ i are randomly generated

from
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TABLE 4 Four model selection indices (AIC, SABIC, HQ, and BIC) of the three competing models (FIBF, MIRT, and UIRT) under the condition that the

generating model is UIRT.

AIC SABIC HQ BIC AIC SABIC HQ BIC

UIRT 45512 45845 45804 46303 UIRT 45457 45789 45747 46243

FIBF 45548 46021 45962 46669 FIBF 45500 45971 45912 46615

MIRT 45633 45990 45945 46479 MIRT 45553 45908 45863 46394

UIRT 45106 45440 45398 45897 UIRT 45406 45738 45696 46192

FIBF 45150 45623 45564 46271 FIBF 45425 45896 45837 46541

MIRT 45201 45535 45487 46017 MIRT 45507 45862 45817 46348

UIRT 45397 45728 45687 46182 UIRT 45430 45764 45722 46221

FIBF 45440 45911 45852 46556 FIBF 45478 45951 45892 46599

MIRT 45493 45848 45804 46334 MIRT 45539 45896 45851 46385

UIRT 45799 46133 46091 46590 UIRT 45430 45763 45722 46221

FIBF 45856 46329 46270 46977 FIBF 45468 45941 45881 46589

MIRT 45915 46272 46228 46761 MIRT 45501 45858 45813 46347

UIRT 45574 45906 45864 46360 UIRT 45511 45843 45801 46297

FIBF 45622 46093 46034 46738 FIBF 45561 46031 45973 46676

MIRT 45672 46027 45983 46513 MIRT 45613 45968 45923 46454

UIRT 45030 45364 45322 45821 UIRT 45536 45870 45828 46327

FIBF 45084 45557 45498 46205 FIBF 45572 46045 45986 46693

MIRT 45130 45487 45442 45976 MIRT 45653 46010 45965 46499

UIRT 45632 45989 45944 46478 UIRT 45327 45658 45617 46113

FIBF 45737 46207 46149 46852 FIBF 45374 45844 45785 46489

MIRT 45737 46068 46027 46523 MIRT 45437 45792 45748 46278

UIRT 45545 45879 45837 46337 UIRT 45710 46042 46001 46496

FIBF 45592 46065 46006 46713 FIBF 45757 46228 46169 46873

MIRT 45640 45996 45952 46486 MIRT 45805 46159 46115 46646

UIRT 45200 45532 45490 45986 UIRT 45353 45684 45643 46138

FIBF 45237 45707 45648 46352 FIBF 45385 45855 45797 46500

MIRT 45317 45671 45627 46157 MIRT 45469 45824 45780 46310

UIRT 44973 45307 45265 45764 UIRT 45261 45595 45553 46052

FIBF 45004 45477 45418 46125 FIBF 45288 45761 45701 46409

MIRT 45084 45441 45396 45930 MIRT 45364 45721 45676 46210

The smallest values of the four model selection indices are bold.

θθθ i ∼ MVN(0006×1, I6) (10)

for i = 1, ...,N; here, 0006×1 is a 6× 1 vector in which all elements

are 0 and I6 is the five-dimensional identity matrix.

b) Between-item MIRT generating model

The between-item MIRT model can be derived from the

FIBF model with the constraint that a0j = 0 for all items, that

is, only the domain-specific slope parameters avj(v = 1, ..., 5)

need to be generated. The true value of avj is sampled from,

avj ∼ U(0.5, 2.5) (11)

for v = 1, ..., 5 and j = 1, ...,M.

The generation of the true values of the intercept

parameters is the same as for the FIBF model, that is,

bj (dichotomous items) and bbbj (three-category items)

Frontiers in Psychology 10 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.1049472
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Meng et al. 10.3389/fpsyg.2022.1049472

TABLE 5 ARMSE (ACor) values for the estimation of the item slope and intercept parameters in the three models: FIBF, between-itemMIRT, and UIRT.

General-factor slope Specific-factor slope Intercept

a0 a1 a2 a3 a4 a5 b

FIBF 0.19 (0.95) 0.27 (0.95) 0.29 (0.94) 0.27 (0.97) 0.29 (0.95) 0.28 (0.94) 0.15 (0.98)

MIRT – 0.24 (0.98) 0.28 (0.97) 0.32 (0.99) 0.25 (0.99) 0.26 (0.99) 0.15 (0.99)

UIRT 0.19 (0.97) – – – – – 0.15 (0.99)

are sampled from the distributions in Equations (8) and

(9).

The latent ability factors of the between-item MIRT model,

θθθ i = (θi1, ..., θi5)
′, are correlated, and the true values of θθθ i are

sampled from

θθθ i ∼ MVN(0005×1,6θθθ ), (12)

where 6θθθ is a 5 × 5 covariance matrix, for i = 1, ...,N. In

this simulation, the main diagonal elements of 6θθθ are fixed to

1, and the remaining elements are covariance parameters that

are randomly drawn from a uniform distribution over the range

[0.4, 0.8].

c) UIRT generating model

The UIRT model can be derived from the FIBF model with

the constraint that avj = 0 for v = 1, ..., 5. There is only one

general ability θ0i in the UIRT case. The true values of a0j, bj,

and bbbj are drawn from the distributions in Equations (6), (8),

and (9) for j = 1, ...,M; θ0i is randomly drawn from N(0, 1) for

i = 1, ...,N.

In this simulation, 20 replications were performed

under each simulation condition, and each simulated

dataset was fitted by the three models: FIBF, between-

item MIRT, and UIRT. All simulations were conducted

using the R software, and the four model evaluation

indices (AIC, BIC, SABIC, and HQ), as well as the model

estimations, were computed based on the “mirt” R package.

Note that, if you need the R code, you can contact the

authors.

4.2. Results

4.2.1. Behavior of model selection indices

The values of AIC, SABIC, HQ, and BIC for the FIBF, MIRT,

and UIRT models are reported in Tables 2–4.

Table 2 presents the results obtained under the condition

that the FIBF is the true model. The four model selection

indices of the FIBF model are consistently the smallest, which

suggests that the FIBF is the best model under this simulation

condition. Furthermore, across the 20 replications, the four

model evaluation methods consistently suggest that the MIRT

model is better than the UIRT model. Because the generating

model is FIBF, which is amultidimensional structure, it is correct

that the model selection indices support the fit of the MIRT

model being better than that of the UIRT model.

Table 3 presents the results obtained under the condition

that the between-item MIRT is the true model. All four indices

consistently suggest that MIRT, which is the generating model, is

the best model. Furthermore, the values of AIC, SABIC, and HQ

for the FIBF model are smaller than those for UIRT, whereas the

opposite is true for BIC. That is, in comparison with the other

model selection methods, the BIC prefers simpler models.

Table 4 presents the results obtained under the condition

that the UIRT is the true model. As for the above two simulation

conditions, the four model evaluation indices consistently

indicate that the generating model is the best model. Except for

AIC, the evaluation indices indicate that MIRT is better than

FIBF. We believe that MIRT and FIBF should be very close in

fitting the unidimensional test data, but as the MIRT model is

simpler, it is preferred by the SABIC, HQ, and BIC indices.

Summarizing these results, the four model selection

indices (AIC, BIC, SABIC, and HQ) provide excellent

accuracy in assessing the three models used in the empirical

study. First, they successfully identified the model used

to generate the item response data across all simulation

conditions. Second, when the FIBF was not the generating

model, some model selection indices such as BIC did not

support the FIBF model being better than the simpler

models. This indicates that overfitting of the bifactor model

does not occur for the FIBF model under the incomplete

block design.

4.2.2. Recovery of item parameters

The recovery of the three models (FIBF, MIRT, and UIRT)

using the “mirt” package was checked in this simulation.

The estimation accuracy was assessed by computing the

average root mean squire error (ARMSE) of each parameter

over all items and the average of the correlation (ACor)

between the estimates and the true parameter across the 20

replications.

These metrics were calculated as

ARMSE
δ̂
=

1

M

M
∑

j=1

√

√

√

√

√20−1
20
∑

g=1

(

δ̂jg − δj

)2
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and

ACor
δ̂

=
1

20

20
∑

g=1

∑M
j=1 δ̂jgδj −

1
M

∑M
j δ̂jg

∑M
j δj

√

(
∑M

j=1 δ̂2jg −
1
M (

∑M
j=1 δ̂jg )2)(

∑M
j=1 δ2j − 1

M (
∑M

j=1 δj)2)
,

where δj denotes any one of the parameters of item j and

δ̂jg denotes the corresponding estimate obtained with the g-th

simulated data.

The obtained results are presented in Table 5. Use of the

“mirt” package allows the item parameters of the three models

to be recovered satisfactorily under simulated conditions that

are similar to the math tests in CCEQM 2015–2017. First, for

all three models, the ARMSE values of the slope parameters do

not exceed 0.3, and the corresponding correlations range from

0.94 to 0.99. These results indicate that the slope parameters

were well-recovered. Second, the ARMSEs of the intercept

parameters of the three models are 0.15, and the values of

ACor are >0.98. The recovery for the intercept parameters

is excellent, and is slightly better than that for the slope

parameters. Furthermore, the estimation accuracy of FIBF

is slightly poorer than that of MIRT and UIRT. As stated

above, FIBF is the most complex of the three models, so it

is normal that the accuracy of its parameter estimation is

slightly poorer. Finally, each item was answered by no more

than 700 test takers in this simulation. It is likely that the

recovery accuracy of the three models will improve as the sample

size increases.

5. Conclusion and further issues

The main contribution of this study is to propose a bifactor

structure for modeling mathematical ability. On this basis, a

mixed FIBF model has been developed for the measurement

of mathematical ability in CCEQM 2015–2017. Within the

discipline of core literacy theory, mathematical ability is defined

as a construct that consists of several domains. These domains

differ in their specific concept, but they have common elements,

and are thus highly correlated because they all belong to the

broader concept of mathematical ability. Bifactor models are

a powerful approach for describing such constructs, in which

the common element of the five domains is represented by

a general factor that is considered as general mathematical

ability, and the uniqueness of each domain is represented by

a group or domain-specific factor. From the view of bifactor

theory, this study has proposed a mixed FIBF model that

is a bifactor extension of the mixed IRT model for the

measurement of mathematical ability in CCEQM 2015–2017.

Furthermore, an important advantage of FIBF analysis is its wide

practical adaptability. FIBF models can be applied to various

test situations, and numerous related computing tools have been

developed. These provide strong support for the application

of FIBF to actual large-scale tests. Taken together, not only is

the bifactor structure a reasonable approach for representing

mathematical ability, but FIBF models are also highly feasible

in practice.

The second contribution of this study comes from the

empirical study conducted using data from CCEQM 2018 to

verify the performance of the FIBF model. The results for

the four model selection indices (AIC, BIC, SABIC, and HQ)

consistently showed that the fit of the FIBF model is better

than that of the UIRT and MIRT models, and the ability scores

from the FIBF model had a more reasonable interpretation.

The advantages of the FIBF model are fully verified by this

empirical study. One important problem with the application

of bifactor models is their ease of overfitting. To ensure that

no overfitting occurred in the empirical study, a Monte Carlo

simulation was constructed to investigate the performance of

the four model selection indices under a test design similar

to that of CCEQM 2015–2017. The results indicate that the

four indices consistently select the generating or true model as

the best model across all simulation conditions, and when the

FIBF is not the true model, it is not supported. Therefore, the

model selection results in the empirical study provide strong

evidence that, for fitting the math test data, the FIBF model

is superior to the MIRT and UIRT approaches. Furthermore,

the simulation results demonstrate that the estimations of the

FIBF model have high recovery accuracy under the incomplete

test design with mixed item types. Overall, the simulation

results show that the existing methods and technologies can

support the application of the FIBF model in large-scale

testing projects.

There are several considerations for the current study

that warrant mention. (1) The estimations of domain-specific

factors cannot be directly regarded as scale scores of domain-

specific abilities, because they only represent the uniqueness

of domain-specific abilities. The scale score of each domain

should be a combination of the general and domain-specific

factors. Therefore, computing the scale score of domain-

specific ability is an important issue that requires further

study. (2) Heterogeneity is an important issue in large-scale

assessments, such as measurement invariance, heterogeneity

of residual variance, and whether the distribution of latent

ability is multimodal or skewed. These factors inevitably result

in serious unfairness in testing. Thus, to ensure fairness in

testing, the development and application of a heterogeneity

FIBF model should be further studied. (3) In this study,

the bifactor structure of mathematical ability was verified by

only one empirical study, and so the obtained conclusion has

certain limitations. The bifactor assumption of mathematical
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ability should be discussed based on more empirical data from

large-scale assessment projects. (4) The application of bifactor

theory to a measurement model for other disciplines is also

worthy of further study.
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