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What is category theory to
cognitive science?
Compositional representation
and comparison

Steven Phillips*

Mathematical Neuroscience Group, Human Informatics and Interaction Research Institute, National

Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

Category theorists and cognitive scientists study the structural (analogical)

relations between domains of interest albeit in di�erent contexts, that is, formal

and psychological systems, respectively. Despite this basic commonality, very

few cognitive scientists take a category theory approach toward understanding

the structure of cognition which raises the question, What is category theory

to cognitive science? An answer is given as the slogan “Category theory is to

cognitive science as functor is to representation; as natural transformation is

to comparison” to make category theory more accessible and informative for

cognitive scientists.
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1. Introduction

What is category theory to cognitive science? A short answer is that both fields are

about “comparison of (compositional) structure” albeit in different contexts. Category

theory was invented to formalize correspondences between mathematical constructions

(Eilenberg and Mac Lane, 1945; Mac Lane, 1998). Cognitive scientists often view

cognition in terms of representations that preserve entity relationships (structure) via

relationships between corresponding mental states: e.g., classical compositionality (Fodor

and Pylyshyn, 1988). Despite contextual differences, category theory ideas relate to

concepts in cognitive science in ways not generally recognized by cognitive scientists.

Some basic connections between a mathematical theory of structure (i.e., category

theory) and the structure of cognition are educed here for the purpose ofmaking category

theory more accessible and informative to cognitive scientists.

One might say that category theory and cognitive science share a common ideal:

the representation and comparison of (compositionally) structured entities in some

domain of interest. This situation is illustrated as the following square of arrows

for the expression, John loves Mary (Figure 1). The relationship between the phrase

and the concept is depicted as transporting or transforming the left vertical arrow,

representing the structure of the expression, to the right vertical arrow, representing the

conceptual structure, by sliding along the horizontal arrows, thus forming a square. This

arrangement constitutes a so-called commutative square in that the chain of arrows in
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FIGURE 1

The expression “John loves Mary” as a commutative square of

arrows.

the anticlockwise direction equals the chain of arrows in the

clockwise direction, that is, ρ◦loves = loves◦ρ, where ◦ signifies
the operation for combining arrows to form arrows. This

arrangement is reminiscent of the compositionality principle

(see, e.g., Janssen, 1997; Coecke et al., 2010) in linguistics linking

syntax to semantics, or the structure mapping theory (Gentner,

1983) of analogy in cognitive psychology as a map from a source

domain of knowledge to a target domain of knowledge, which

features in a variety of analogy models (Gentner and Forbus,

2011) and a model of metaphor (Fuyama et al., 2020).

Despite the abstract nature of category theory, a substantial

amount of the theory organizes around this notion of

(typed) commutative square. In the context of cognition, basic

category theory constructions correspond to compositional

representation and comparison or transformation, which

comports with the representational/computational theory of

mind (Wilson, 1999) whereby cognition is seen as a system

of computational processes over cognitive representations (see,

Fodor, 1985, for a survey of this and other views). The purpose

of this article is to make this consilience more concrete for

cognitive scientists. The rest of this introduction is a preview to

prime the details that follow.

Category theory vastly formalizes this simple idea of

preserving structure as commutative squares with applications

well beyond mathematics (see, e.g., Fong and Spivak, 2019).

In recent years, researchers with a common interest in

interdisciplinary applications of category theory have coalesced

as the field known as Applied Category Theory. This “square”

of arrows appears in many guises, historically, beginning with

the formal concept of natural transformation (Eilenberg and

Mac Lane, 1945), which depends on the concepts of functor and

category. The relationships between these concepts are depicted

as a diagram of arrows (Figure 2A). A category consists of objects

and (directed) relations between objects, called arrows: e.g., f is

an arrow from an object A to an object B, also written f :A→ B,

in some category C. The dotted lines indicate the actions of two

functors on the objects and arrows in C, that is, respectively,

a functor F sends A, B, and f to objects F(A) and F(B) and

arrow F(f ) in some category D and a functor G sends A, B,

and f to the objects G(A) and G(B) and arrow G(f ) also in D.

Functors are arrows between objects that are categories: e.g.,

F,G :C → D. The objects F(A) and F(B) and the arrow F(f )

constitute the image of F; likewise, the objects G(A) and G(B)

and the arrow G(f ) constitute the image of G. The (naturality)

square of arrows involving the images of F and G depicts a

natural transformation, that is, a map η from F to G, written

η : F
.
→ G, consisting of a component map ηA : F(A) →

F(A) for each object A in C such that for each arrow f in C

the square commutes. Thus, natural transformations are maps

between functors and functors are maps between categories,

hence the logical dependencies. Although originally introduced

for applications in topology (Eilenberg and Mac Lane, 1945),

category theory constructions also feature in diverse fields

such as the use of natural transformations in music (Mannone

and Favali, 2019) and categorical forms of compositionality in

aesthetics (Kubota et al., 2017).

Categories, functors, and natural transformations

partake in another important aspect of the general theory—

compositionality: the composition of two compatible arrows

(i.e., a pair of arrows linked “head to tail”) is an arrow, for

example, f :A → B composed with g :B → C is g ◦ f :A → C,

where again ◦ signifies the composition operation. Composition

operates at all levels: arrows between objects, functors between

categories and natural transformations between functors.

The diagram of arrows (Figure 2B) involves composition of

arrows, f :A → B and g :B → C, the action of functors

on composed arrows, F(g ◦ f ), and composition of natural

transformations, α : F
.
→ G and β :G

.
→ H. (The diagram

does not show functor composition, that is, in the third,

out-of-plane direction.) These apparently different forms of

compositionality are actually the same concept in different

contexts (or dimensions): ordinary arrows are arrows between

ordinary objects (vertical dimension), functors are arrows

between objects that are categories, and natural transformations

are arrows between objects that are functors in a category

of functors (horizontal dimension). Natural transformations

also compose with functors. Category theory provides a vast

generalization of the notion of compositionality that is relevant

to cognitive science.

Basic category theory concepts, though straightforwardly

introduced this way, engender little intuition regarding

applications as nothing is said about their specific nature.

For cognitive scientists, however, these squares of relations

between objects are also reminiscent of the squares of stimuli

used in matrix reasoning tasks (Raven et al., 1998), which

have been studied as tests of intelligence (Carpenter et al.,

1990). Such reasoning tasks involve a matrix of stimuli with a

missing cell that can be completed by applying the relationship

educed from the rows or columns with all cells filled. For

instance, the proportional analogy Mare is to foal as cow is

to what? in matrix form involves a two-by-two matrix. The
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FIGURE 2

Natural transformations of (A) arrows and (B) compositions of arrows.

empty cell is filled with calf by educing that the relevant

relationship betweenmare and foal is gives-birth-to and applying

this relationship to cow to obtain calf. These and other such

matrices of stimuli have a common form symbolized by the

expression a : b : : c : d, where the semicolon corresponds to

relationships in one (say, vertical) direction and the double

semicolon to relationships in the other (horizontal) direction.

This situation is analogous to a commutative square (Figure 3),

which naturally extends to matrices with more rows and

columns (cf. Figure 2B). Such comparisons afford a perspicuous

way of bootstrapping intuitions about category theory concepts

(Section 2) for potential applications in cognitive science

(Section 3) to complement other conceptualizations (see, e.g.,

Phillips, 2021a, and the references therein).

Some readers may ponder the need for detailed explanations

of basic category theory concepts given the many introductions

that already exist. However, category theory introductions

typically presume a style of thinking that can bedevil those

outside the target audience seeking intuition (see Lawvere and

Schanuel, 2009, for a general readership). For those readers, the

theory can appear as a bridge to nowhere. Yet mathematics is

arguably as much a reflection of thinking as it is about the world

(Mac Lane, 1986; Lakoff and Núñez, 2000). The purpose here

is to present category theory concepts to cognitive scientists

in a way that enables thinking about thinking, categorically.

Accordingly, this presentation departs from the usual style of

relegating technical details to an appendix in favor of a side-by-

side comparison to facilitate understanding—the devil is in the

comparable details—which affords a novel synthesis of concepts

for the purpose of doing cognitive science.

2. Some formal and conceptual
comparisons

The formal basis of comparison employed here is the

concept of natural transformation, which depends on the

concept of functor, which in turn depends of the concept

of category. Accordingly, categories are introduced first

(Section 2.1), followed by functors (Section 2.2), and then

natural transformations (Section 2.3).

2.1. Categories and compositional
structure

Both category theory and cognitive science are concerned

with modeling the (compositional) structure of some “domain”

of interest, that is, the entities, the entity relationships, and the

way that combinations for those relationships are themselves

related. (The term domain is used in two senses: informally,

as a topic of interest and, formally, as the source object of an

arrow, Section 2.1.2). In cognitive science, for example, one

may regard a cognitive process as consisting of a chain of

subprocesses, a cognitive system as composed of subsystems, or

a cognitive representation of some complex entity as constructed

from representations of constituent entities. Category theory

also considers a wide variety of compositional forms, including

composition of functions, relations, algebraic structures, and

spaces. All forms are based on a concept of compositionality,

introduced here, that also pertains to situations of interest to

cognitive scientists.

The concept of a category depends on several constituent

concepts. Briefly, a category consists of a collection of objects

and arrows (Section 2.1.1) where each arrow is directed

from its domain object to its codomain object (Section 2.1.2),

including self-directed identity arrows (Section 2.1.3), that

combine as arrows by a composition operation satisfying certain

properties (Section 2.1.4). A formal definition of category

(Section 2.1.5) captures the notion of structure as an arrow:

The collection of such structures is a category of such

arrows (now objects), and the arrows between these objects

are structure-preserving maps given as commutative squares

(Section 2.1.6).
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FIGURE 3

A comparison of proportional analogy, matrix reasoning, and natural transformation: (A) “Mare is to foal as cow is to calf” and (B) “+ is to ⊞ as ×

is to ⊠” in matrix form, and (C,D) in the form of a natural transformation. Algebraic relations, for example, (E) the power function are also

instances of natural transformations, whose general form is given as (F) a commutative square of arrows.

2.1.1. Elements are related as objects and
arrows

A domain of interest (such as a group of people) is typically

considered in terms of its elements and relationships between

those elements. An ordered set is a simple example of how

one might model a domain this way. Suppose, for instance,

three people of interest, Ann, Bob, and Cal, and that Ann is

shorter than Bob and Bob is shorter than Cal. This domain

can be modeled as an ordered set, that is, the set of people

P = {Ann,Bob,Cal} together with their order relationships

Ann < Bob and Bob < Cal. These elements and their order

relationships correspond to instances of two basic kinds of

constituents for a category, that is, each element corresponds

to an instance of an abstract notion of entity, called object, and

each order relationship to an instance of an abstract notion of

relation between entities (objects), called arrow or morphism or

map. So, for instance, the element Ann is now an object and the

relationship Ann < Bob is now an arrow Ann → Bob in some

category corresponding to an ordered set.

Element is to relationship as object is to arrow.

The simplicity of this example belies several important

subtleties with the move from sets to categories that are

elaborated here and in subsequent sections. First, notice that

the less-than symbol “points” to the shorter person whereas the

arrow points to the taller person. Relationships are directed.

Direction is captured syntactically (diagrammatically) by the

direction of each arrow and semantically by two additional

relations (maps) between objects and arrows, introduced in the

next section (Section 2.1.2).What matters is that the relationship

between syntax and semantics is consistent. Compare, for

instance, the correspondence between order relationship Ann >

Bob and arrow Ann← Bob.

Second, in general, order relationships are expressed using

the “less-than or equals” symbol, ≤, rather than the less-than

symbol. So, for instance, Ann is shorter than or the same height

as Bob, now written Ann ≤ Bob, means that Ann is not taller

than Bob. The significance of this interpretation is thatAnn is not

taller than Ann, that is, the self-directed relationship Ann ≤ Ann
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which corresponds to the arrow Ann → Ann. Order relations

that are strictly less-than, that is, a < b but not a ≤ b (whence,

a � a), are called strict orders. For example, parent-of is a strict

order. The relevance of this distinction to category theory will be

elaborated shortly (Section 2.1.3).

Third, there may be more than one relationship between

entities, in general, hence more than one arrow between a pair

of objects. Notation referencing the arrow and the pair of objects

serves to distinguish arrows in a category. Suppose, for instance,

Ann is younger than or the same age as Bob is expressed by the

order relationship Ann ⊑ Bob, that is, Ann is not older than

Bob. The arrows corresponding to the two order relationships

betweenAnn and Bob are referenced in full as≤AB :Ann→ Bob

and ⊑AB :Ann → Bob, that is, different symbols or identifiers

are used to distinguish different arrows between the same pair of

object.

Fourth, and finally, category theory often affords more than

one way to model a domain of interest. For instance, a (binary)

relation R between setsA and B can be modeled as a collection of

arrows between objects corresponding to the elements partaking

in that relationship, as in the Ann-Bill-Cal example: there is

an arrow a → b for each element a ∈ A that is in an R

relationship with an element b ∈ B. For this reason, such arrows

are referred to as relationships, rather than relations. Or, as we

will see later (Section 2.1.5, example 2), R can be modeled as

a single arrow between those sets, A → B. The term relation

is used when a distinction between relation and relationship is

not essential.

2.1.2. Relations are directed as domains before
codomains

As mentioned earlier, the direction of each relationship is

depicted by the direction of each arrow: e.g., ≤AB :Ann→ Bob

is directed from object Ann to object Bob, which says that Ann

comes before Bob and Bob comes afterAnn. The objectsAnn and

Bob are called the domain and the codomain of the arrow ≤AB,

respectively.

Before is to after as domain is to codomain.

Expressions ≤AB :Ann → Bob and ≤AB :Bob ← Ann

identify the same arrow, whose directionality is determined

by two maps between objects and arrows. In general, for a

category C, the collection of C-objects is denoted C0 and

the collection of C-arrows is denoted C1. Two maps from

arrows to objects dom :C1 → C0 and cod :C1 → C0

determine the domain and codomain object of each arrow,

respectively. In the Ann-Bob-Cal example, the corresponding

category, denoted ABC, consists of the set of objects ABC0 =

{Ann,Bob,Cal}, the set of arrows ABC1 = {≤AB,≤BC , . . . }

and mappings that include dom : ≤AB 7→ Ann and

cod : ≤AB 7→ Bob.

Notice that nothing is said about the nature of object and

arrow beyond their relationship to each other. How one is

supposed to interpret these formal concepts depends on context,

that is, the category in which they reside. For instance, in

the context of sets and functions, an object is a set and an

arrow is a function. Category theory can been seen as an

abstraction of set theoretical constructions; hence, the notation

and nomenclature are often taken from there: e.g., arrows

(morphisms, maps) are generally written f :A→ B even though

objects need not be sets and arrows need not be functions

(homomorphisms, mapping elements in a way that preserves

their relationships).

2.1.3. Self-directed relations as identity arrows

As also mentioned earlier, order relationships are typically

expressed using the≤ symbol. Thus,A ≤ B says thatA comes no

later than B. For the Ann-Bob-Cal example, this situation means

that each person is ordered with respect to themselves: e.g.,

Ann ≤ Annmeans that Ann is not taller than herself. Hence, the

set of arrows for the corresponding category, ABC, includes the

self-directed arrows Ann → Ann, Bob → Bob and Cal → Cal.

A relation R on A is called reflexive (has the reflexivity property)

if every element a ∈ A is related to itself. Reflexivity of order

corresponds to an arrow ≤A :A→ A for each object A in some

ordered set as a category. The arrow ≤A :A → A is called the

identity arrow at A.

Relationship is to reflexivity as arrow is to identity.

Every object A in a category is associated with an identity

arrow, written 1A :A → A. For example, in the context of sets

and functions, the identity arrow at set A is the identity function

1A : a 7→ a. The reason for denoting the identity arrow as 1A is

by analogy to multiplication of a number by 1 (Section 2.1.4). A

self-directed arrow need not be an identity arrow. For instance,

the constant function on a set A sending every element a ∈ A

to the same element k ∈ A, that is, f :A → A; a 7→ k, is

self-directed but not an identity function. The composition of

two compatible arrows is an arrow (Section 2.1.4). The rules for

composition imply that every object in a category is associated

with one and only one identity arrow. Thus, for a category C,

there is another relation between objects and arrows that is given

by the map id :C0 → C1;A 7→ 1A.

The implication that every object is associated with one

identity arrow may seem too restrictive for cognitive science

in situations where the entities do not have self-directed

relationships and thus lack a meaningful interpretation in terms

of the identity arrows of a category. However, as explained

later (Section 2.1.6), these situations can be modeled by other

categories.

2.1.4. Transitivity of relations as composition of
arrows

Order relationships are themselves related to each other in

a way that is called transitivity. For instance, Ann is shorter
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than Bob and Bob is shorter than Cal implies Ann is shorter

than Cal. All triples of ordered elements are related this way,

that is, the transitivity property of order relations. Formally, a

relation R between two sets A and B is a subset of the set of

all pairs of elements with the first element of each pair drawn

from A and the second element of each pair drawn from B,

called the Cartesian product of A and B, that is, the set R ⊆

A × B = {(a, b)|a ∈ A, b ∈ B}. If the pair (a, b) is in R,

then we say that a is R-related to b, or write aRb to indicated

this relationship. A relation R on A, that is, a subset of A × A,

is called transitive (has the transitivity property) if aRa′ and

a′Ra′′ implies aRa′′ for all triples of elements a, a′, a′′ in A.

Transitivity of order corresponds to conjunction of arrows: If

there is an arrow A → B and an arrow B → C, then there is a

composite arrow A → C. This conjunction of arrows is a form

of composition.

Relationship (order) is to transitivity as arrow is to

composition (conjunction).

In any category C, if f :A → B and g :B → C are a

pair of compatible arrows, that is, the codomain of the first

arrow, f , is the domain of the second arrow, g, then there is

a composite arrow from A to C in C, written g ◦ f :A →

C, where ◦ denotes the composition operation, simply called

composition. Composition is a (partially defined) map sending

each pair of compatible arrows to their composition, that is,

the map comp :C1 × C1 → C1; (f , g) 7→ g ◦ f , also denoted

◦(−,−), cf. expressions+(1, 2) and 1+2. For sets and functions,

composition of compatible functions f :A→ B and g :B→ C is

the composite function g ◦ f :A → C; a 7→ g(f (a)) mapping

each element a ∈ A to the element g(f (a)) ∈ C, read g of

f of a, hence the notational order. Note that in this context

(category) of sets and functions, composition is a function on

functions sending f and g to some function h in that category,

that is, g ◦ f = h, cf. 1 + 2 = 3. The corresponding

form for composition of order arrows ≤AB :A → B and

≤BC :B → C is ≤AC = ≤BC ◦ ≤AB :A → C, where

composition takes on the role of conjunction. In this context

(ordered set as a category), composition is a function on order

relationships. This situation compares with transitive inference

as the logical rule of replacement aRb ∧ bRc ⇒ aRc, where ∧ is

conjunction.

Composition of orders and functions satisfy two

important properties that are required of a composition

operation on the collection of arrows in any category,

generally: associativity (Section 2.1.4) and unity

(section 2.1.4).

2.1.4.1. Composition is associative: Composition order

is commutative

Suppose the Ann-Bob-Cal example is extended to include

a fourth person, Dan, and the order relationship Cal is shorter

than Dan. Transitive inference can be applied twice in two ways

to infer than Ann is shorter than Dan: (1a) Ann ≤ Bob and

Bob ≤ Cal implies Ann ≤ Cal and (1b) Ann ≤ Cal and

Cal ≤ Dan implies Ann ≤ Dan, or (2a) Bob ≤ Cal and

Cal ≤ Dan implies Bob ≤ Dan and (2b) Ann ≤ Bob and Bob ≤

Dan implies Ann ≤ Dan. Compare this logical equivalence

with the equality of the corresponding arrows, that is, a

comparison of

• aRb ∧ (bRc ∧ cRd)⇔ (aRb ∧ bRc) ∧ cRd and

• ≤CD ◦(≤BC ◦ ≤AB) = (≤CD ◦ ≤BC)◦ ≤AB.

The order of compositions does not affect the result, that is,

conjunction is associative. Associativity is also a property of

addition, that is, x+ (y+ z) = (x+ y)+ z.

Associativity is to addition as associativity is to composition.

In any category C, the composition operation is associative,

that is, h ◦ (g ◦ f ) = (h ◦ g) ◦ f for all triples of compatible

arrows f , g, h in C. Brackets can be omitted, since the result

is not affected by order of composition—cf. h ◦ g ◦ f and

x+ y+ z.

Associativity of composition is essentially commutativity

of composition order (Figure 4). The “commutativity” of

commutative squares is analogous to the commutativity of

addition given as a square of arrows corresponding to

numbers (Figure 4A). Addition can also be expressed as

a square of operations between numbers (Figure 4B) or

set of numbers (Figure 4C). A commutative composition

operation is analogous to the commutativity of addition

(Figure 4D), but composition is generally not commutative.

However, associativity of composition can be expressed

as a commutative square (Figure 4E), which in turn is

expressed as a commutative square of operations on (hom-

)sets of arrows (Figure 4F). Thus, the order of composition

is commutative, hence the analogy between associativity

and commutativity.

Commutativity is to addition as associativity is to order of

composition.

2.1.4.2. Composition with identity arrows is unital

Identity arrows, introduced earlier (Section 2.1.3), play a

special role with respect to composition just like the number 1

plays a special role with respect to multiplication.

One is to multiplication as identity is to composition.

Self-directed order arrows, ≤A, also play an analogous role.

Compare

• x× 1 = x = 1× x,

• ≤AB ◦ ≤A = ≤AB = ≤B ◦ ≤AB and

• f ◦ 1A = f = 1B ◦ f .

For any category C, the composition operation has this

property, called unity, that is, f ◦ 1A = f = 1B ◦ f for all arrows

f in C.
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FIGURE 4

Commutativity and associativity properties are expressed as commutative squares: (A) commutativity of addition, (B,C) associativity of addition,

(D) commutative composition operation, and (E,F) associativity of composition operation.

2.1.5. Formal constructions formalized as
categories

The previous sections introduced all the basic concepts

that make up a formal definition of category (Definition 1),

that is, the concepts of object, arrow, domain, codomain, identity

arrow, composition operation and the associativity, and unity

properties for composition. A formal definition of category is

introduced next followed by examples that further exercise this

concept.

Definition 1 (category). A category C =

(C0,C1, dom, cod, id, ◦) consists of

• a collection of objects, C0 = {A,B,C, . . . },

• a collection of arrows, C1 = {f , g, h, . . . }—an arrow f is

directed from an object A to an object B, written f :A→ B,

called the domain and codomain of f , respectively,

• two maps dom, cod :C1 → C0 sending each arrow f :A →

B to its domain and codomain object, respectively, that is,

dom(f ) = A and cod(f ) = B,

• a map id :C0 → C1 assigning to each object A an arrow

1A :A → A, called the identity arrow at A, that is, id(A) =

1A, and

• a composition operation, ◦, sending each pair of compatible

arrows f :A→ B and g :B→ C, that is, cod(f ) = dom(g),

to the arrow g ◦ f :A→ C that is

– associative: h ◦ (g ◦ f ) = (h ◦ g) ◦ f , and

– unital: f ◦ 1A = f = 1B ◦ f

for all compatible arrows f , g, h ∈ C1. The collection of arrows

in C with domain A and codomain B is called a hom-set, written

HomC(A,B), C(A,B), or [A,B] when the category is clear from

context.

Several examples of categories were already given in the

previous section to illustrate the basic concepts. These and

closely related examples are listed for comparison (Example 2).

Example 2 (sets, functions, relations). The following are

categories.

1. The category Set has sets for objects and (total) functions

between sets for arrows. The identity arrows are the identity

functions. Composition is composition of functions.

2. Restricting the collection of functions to be inclusions, A ⊆ B,

yields another category, denoted Set⊆. The identity arrows are

A ⊆ A.

3. Every set S corresponds to a category whose objects are the

elements s ∈ S and only arrows are the identity arrows 1s : s→

s. Categories with only identity arrows are called discrete

categories. Composition is trivial: 1s ◦ 1s = 1s. Certain sets

play an important role, such as the empty set, ∅, singleton set,

written {∗} when the identity of the only element is not needed,

and the set of natural numbers, N. These sets correspond to

important categories.

(a) The empty category, denoted 0 (or 0), has no objects or

arrows. Composition is the empty map, that is, ∅ × ∅ → ∅.

Likewise, dom, cod and id are empty maps.

(b) The singleton category, denoted 1 (or 1), has one object and

one (identity) arrow.

(c) An index category, denoted I ⊆ N, has a subset of the

natural numbers as objects.

4. An ordered set (P,≤) corresponds to a category whose objects

are the elements p ∈ P with an arrow p→ q whenever p ≤ q.
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Identity arrows correspond to reflexivity and composition to

transitivity.

5. The category Rel has sets for objects and relations between

sets for arrows. The identity arrows are the identity relations,

that is, 1A = {(a, a)|a ∈ A}. The composition of arrows is

defined by the join of the corresponding relations, that is, the

join of relations R ⊆ A × B and S ⊆ B × C is the relation

R 1 S = {(π́(r), π̀(s))|r ∈ R, s ∈ S, π̀(r) = π́(s)}, where

π́(a, b) = a and π̀(b′, c) = c, that is, π́ and π̀ return the left

(first) and right (second) elements of each pair, respectively. In

other words, a pair (a, c) is in the join of R and S whenever

there exists a pair (a, b) in R and a pair (b′, c) in S such that

b = b′.

Functions and relations are closely connected. Every

function corresponds to a relation, and every relation

corresponds to a set-valued function (Remark 3). Relations can

be used to model non-determinism: Each element is sent to a set

of possible outcomes.

Remark 3. The graph of a function f :A → B is the relation

Ŵ(f ) = {(a, f (a))|a ∈ A)} ⊆ A × B. A relation R ⊆

A × B corresponds to the set-valued (partial) function fR : a 7→

{b|(a, b) ∈ R} defined on the subset of R-related elements of A.

The join of two relations is analogous to compatibility of

arrows. Accordingly, composition can be defined as a total

function on the pairs of compatible arrows (Remark 4).

Remark 4. For a category C, the collection of pairs of compatible

arrows is given by a constrained product on the collection of

arrows, that is,C1×C0C1 = {(f , g)|cod(f ) = dom(g), f ∈ C1, g ∈

C1}. In this case, composition is the (total) map comp :C1 ×C0

C1 → C1.

Another alternative defines composition as a family of (total)

maps indexed by triples of objects in the category (remark 5).

Remark 5. For a category C, the composition of arrows can be

defined for each triple of objects A,B,C in C as the total function

◦ABC :[A,B]× [B,C]→ [A,C]; (f , g) 7→ g ◦ f .

Notice that if the triple of objects is (A,A,A), then

composition is just composition of self-directed arrows, that is,

◦AAA :[A,A] × [A,A] → [A,A]; (a, a′) 7→ a′ ◦ a. And since

composition is associative and unital, we also have a◦ (a′ ◦a′′) =

(a ◦ a′) ◦ a′′ and a ◦ 1 = a = 1 ◦ a where 1 is the identity

arrow atA. As we have already seen, this situation is analogous to

multiplication for numbers: e.g.,×N :N×N→ N; (x, y) 7→ x·y.

Multiplication is also associative and unital: x · (y · z) = (x · y) · z

and x · 1 = x = 1 · x. This situation corresponds to an important

algebraic structure, called a monoid. Restricting the category

to just a single object introduces another example of category,

where the self-directed arrows play the role of the elements,

such as numbers, and composition plays the role of the binary

operation, such as multiplication (Example 6).

Example 6 (monoid). A monoid (M, ·, e) consists of a set M, a

binary operation ·, and an element e ∈ M satisfying

• associativity: a · (b · c) = (a · b) · c and

• unity: a · e = a = e · a

for all elements a, b, c ∈ M. For instance, the set of real

numbers together with elementary multiplication and 1 constitute

a monoid, (R,×, 1). The binary operation is called multiplication,

and e is called the unit. These concepts are abstract notions. Any

set and binary operation satisfying these axioms is a monoid,

which includes the real numbers together with elementary

addition as the “multiplication” operation and 0 as the “unit”

element, (R,+, 0). Every monoid corresponds to a one-object

category whose elements a ∈ M correspond to the arrows a : ∗ →

∗ and binary operation to the composition operation, that is,

a · b corresponds to the composite b ◦ a : ∗ → ∗. The unit, e,

corresponds to the identity arrow.

2.1.6. Categories of structures as objects and
structural relations as arrows

The examples introduced so far involved categories of

objects that were elements or sets of elements with no other

“internal” structure, that is, there were no relationships between

the constituents of the objects themselves. However, an entity

may have additional internal structure that requires modeling.

For instance, similarity judgments may be regarded as a map

on a set of related perceptual states so that similar stimuli

evoke similar responses. One approach to this situation is to

model the internal structure of an entity in the same way as

domains are modeled, that is, as categories that are now objects

in a “larger” category. Yet, this approach can be too restrictive

as a collection of objects that are not categories individually

may still constitute a category collectively. An alternative

approach is to consider a weaker notion of structure, where the

relations between constituents need not be reflexive (identity

arrows are not required) or transitive (composition of arrows

is not required). For instance, parent-of is neither reflexive,

nor transitive. An efficient way of constructing categories for

such situations is to use the internal structure of an existing

category, which can circumvent the need to prove that the

new construction satisfies the requirements of a category. A

prototypical example is to construct the category of graphs

and graph homomorphisms from the category of sets and

functions, Set (Section 2.1.6). Constructing categories from a

progenitor category, such as Set, can also be employed to

model structural relations between domains of interest: If the

constructed object is also a category, then maps between such

objects correspond to maps between categories. A prototypical

example of this situation is the category of monoids and

monoids homomorphisms (Section 2.1.6). When the target

object is a general category, this approach leads to a definition

Frontiers in Psychology 08 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.1048975
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Phillips 10.3389/fpsyg.2022.1048975

of map between category, called functor, which is taken up later

(Section 2.1.6).

2.1.6.1. Internal structure

A weaker notion of structure is directed graph, simply called

graph hereafter, which consists of a set of vertices, a set of directed

edges between vertices, and two maps determining the source

and target vertex of each edge (Definition 7). Since a graph is

given by sets and functions, graphs can be constructed from the

internal structure of Set. A graph need not have a loop for each

vertex (i.e., an edge whose source and target are the same vertex),

or an edge for each (connected) path. A relation R on a set A

corresponds to a graph with a vertex for each element a ∈ A and

an edge from a to a′ for each relationship aRa′. Hence, graphs

correspond to relations that need not be reflexive or transitive.

Definition 7 (graph). A (directed) graph G = (G0,G1, src, tgt)

consists of

• a set of vertices, G0 = {v,w, . . . },

• a set of edges, G1 = {e, f , . . . }—an edge e is directed from a

vertex v to a vertex w, written e : v → w, called the source

and target of e, respectively, and

• two maps, src, tgt :G1 → G0 sending each edge e : v→ w to

its source and target vertex, respectively, that is, src(e) = v

and tgt(e) = w.

A comparison of the definitions for graph and category

makes clear that graph is indeed a weaker notion of structure

than category—every category corresponds to a graph by

regarding the objects as vertices and the arrows as edges;

however, not every graph can be interpreted as a category,

because a graph may not have a loop for each vertex

corresponding to an identity arrow for each object, or an edge

for each path corresponding to an arrow for each composition

of arrows.

Perhaps less clear is whether a collection of graphs (as

objects) constitutes a category. To clarify this point, we need

to specify the relations between graphs (as arrows), how

those relations compose (as the composition operation), and

whether composition satisfies associativity and unity. (The other

relations are usually easy to provide, that is, dom, cod and

id maps.) The archetypal relation between graphs is graph

homomorphism, that is, a pair of maps (h0, h1) :G→ G′ sending

each vertex v in G to the vertex h0(v) in G′ and each edge

e : v → w in G to the edge h1(e) : h0(v) → h0(w) in G′ (see

Remark 8). The identity arrows are pairs of identity maps on

the sets of vertices and edges. To show that this arrangement

constitutes a category is straightforward, albeit tedious, as one

needs to show composition produces a graph homomorphism

satisfying associativity and unity.

A more efficient approach is to construct the graph from

another category, which carries over the needed properties of

associativity and unity, that is, to use the internal structure of

another category. Observe that a graph is given by a pair of

sets and a pair of functions. Thus, graphs are constructed from

the internal structure of the category of sets and functions, Set

(Remark 8).

Remark 8. A graph G = (G0,G1, src, tgt) can be expressed as

a pair of arrows (Figure 5A). Hence, a graph homomorphism

h :G → G′ is expressed by the pair of commutative squares

(Figure 5B), that is, a pair of maps (h0, h1) such that h0 ◦ src =

src′ ◦ h1 and h0 ◦ tgt = tgt′ ◦ h1.

This approach can be generalized further by making use of

the analogy between vertices/edges and objects/arrows, that is,

an arrow corresponds to a graph with domain and codomain

objects corresponding to source and target vertices. We just

saw how a graph is an object and an arrow between graphs

(as objects) is a graph homomorphism. Accordingly, an arrow

is now an object and an arrow between such objects is now

an arrow homormorphism given by a commutative square of

arrows in some category (example 9).

Example 9 (arrows). The category Arr(C) has for objects the

arrows α :As → At of C and for arrows the arrow

homomorphisms f :α → β, that is, pairs of arrows (fs, ft) of C

such that the corresponding diagram commutes (Figure 5C). The

identities 1α in Arr(C) are the pairs of identity arrows (1As , 1At ).

Composition in Arr(C) is composition of commutative squares,

which follows from the associativity and unity properties of the

composition operation, ◦, in the original category C.

This approach also applies to ordered sets. Recall

(Section 2.1.3) that a strictly ordered set is not a category

because it lacks reflexivity, hence the corresponding identity

arrows. However, a collection of strictly ordered sets is a

category in the same way as for graphs. A strictly ordered set

is a special case of a graph that lacks loops or cycles, that is,

edges or paths from/to the same vertex v corresponding to the

relationship v ≤ v, and at most one edge from each source to

each target. The objects are strictly ordered sets and the arrows

are monotonic functions, that is, a function f : P → Q such

that p < p′ implies f (p) < f (p′) for all elements p ∈ P. For

comparison, a monotonic function on a non-strict ordered set,

(P,≤), satifies p ≤ p′ implies f (p) ≤ f (p′) for all p ∈ P.

2.1.6.2. External structure

If the object of interest is already a category, then the maps

between these objects constitute a notion of “external” category

structure, that is, maps between categories, taken up in the

next section (Section 2.2). For example, a monoid can also be

expressed in terms of sets and functions (Example 10).

Example 10 (monoids). Suppose monoids (M, ·M , eM) and

(N, ·N , eN ). A monoid homomorphism is a function h :M → N

that preserves the
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FIGURE 5

(A) Graphs, (B) graph homomorphisms, and (C) arrow homomorphisms are expressed as arrows.

• binary operation: h(a ·M b) = h(a) ·N h(b) and

• unit: h(e) = eN .

A monoid (M, ·, e) is equivalently given as the triple (M,µ, η),

where µ :M × M → M is the binary operation expressed as a

bivariate function, that is, µ :(a, b) 7→ a · b, and η : 1→ M is the

unit expressed as a nullary function, that is, η : ∗ 7→ e. Thus, a

monoid corresponds to a sum of arrows µ+η :M×M+1→ M,

where the addition symbol signifies disjoint union of sets and

functions, that is, A + B = {(1, a)|a ∈ A} ∪ {(2, b)|b ∈ B} with

the corresponding sums of functions (Figure 6A), and a monoid

homomorphism h :M→ N corresponds to a commutative square

(Figure 6B). The associativity and unity conditions for a monoid

are also expressed as commutative diagrams.

2.2. Functors and representation

Like compositionality, some notion of representation is

central to category theory and cognitive science. A cognitive

representation is usually taken to mean a mental state that

stands in some correspondence relation to a state of the world,

which can include other mental states, and a compositional

(cognitive) representation means that the relationships between

constituent mental states correspond to relationships between

the constituent states of the world. Suppose, for example, a state

of the world that has John is to the left ofMary. Viewing cognition

as a language of thought (Fodor, 1975), for instance, supposes at

least a symbol for John, John, and a symbol for Mary, Mary,
that are juxtaposed in such a way that the spatial relationship

between John andMary is expressed by the syntactic relationship

between their corresponding symbols: e.g., the pair of symbols

(John,Mary). These symbolic representations are supposed to

map to corresponding brain states by a physical instantiation

mapping that likewise preserves the corresponding relations

(see, e.g., Fodor and Pylyshyn, 1988, footnote 9). Category

was introduced as a form of compositionality. A map between

categories is called a functor preserving categorical structure.

Functors afford a category theory notion of compositional

cognitive representation and instantiation.

The value of casting the definition of category as collections

of objects and arrows and their structural relations in terms of

maps between those collections now becomes apparent. A map

between categories, that is, a functor, is straightforwardly just a

homomorphism preserving those structural relations, specified

by equality conditions (Definition 11).

Definition 11 (functor). Suppose categories C and D. A functor

F :C → D is a pair of maps (F0, F1) :(C0,C1) → (D0,D1) that

preserves

• domains and codomains: dom(F1(f )) = F0(dom(f )) and

cod(F1(f )) = F0(cod(f )),

• identities: F1(1A) = 1F1(A) and

• compositions: F1(g ◦ f ) = F1(g) ◦ F1(f )

for all objects A ∈ C0, arrows f ∈ C1 and pairs of compatible

arrows (f , g) ∈ C1 × C1.

The equivalent commutative diagrams for the equality

conditions (in definition 11) make plain that a functor is simply

a (homo)morphism of the maps that constitute the structure of

a category (remark 12).

Remark 12. The conditions for a functor are equivalently given

by commutative diagrams. The conditions for domains and

codomains are given by commutative squares, where dom1 = id◦

dom and cod1 = id ◦ cod (Figure 7A). The conditions for identity

(Figure 7B), and composition (Figure 7C) are likewise expressed

this way. So, a category is given as the sum of four maps that

specify: (1) the composition operation, comp :C1 ×C0 C1 → C1,

(2) the domain of each arrow in the category as the associated

identity arrow, dom1 :C1 → C1, (3) the codomain of each arrow

in the category as the associated identity arrow, cod1 :C1 → C1,

and (4) the identity arrow associated with each object in the

category, id :C0 → C1. The sum of these four arrows is the arrow

struct = comp + dom1 + cod1 + id, where the addition symbol

expresses alternative maps (see Example 14), that is, struct :C• →

C1, where C• denotes C1 ×C0 C1 + C1 + C1 + C0. (C1 + C1 is

also written 2C1.) Categories C andD are given by arrows structC

and structD, respectively, and a map from structC to structD is a

commutative square (Figure 7D). Hence, a functor is a category

homomorphism.
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FIGURE 6

(A) Monoid and (B) monoid homomorphisms are expressed as arrows.

FIGURE 7

Functors as commutative squares preserving (A) domains/codomains, (B) identities, and (C) compositions, that is, (D) category structure.

Since functors are expressed as commutative squares, they

also compose in a way that satisfies associativity and unity

conditions, that is, categories, functors, and functor composition

constitute another category (Remark 13).

Remark 13. Commutative squares compose as commutative

squares, hence composition of functors F :C→ D and G :D→ E

is a functor, G ◦ F :C → E. So, (small) categories, functors,

and functor composition constitute another category, Cat. (In this

context, small means that the collections of objects and arrows are

sets, not proper classes.)

A simple way of composing representations is to take

products. Products are constructed from product functors

(Example 14). For instance, assuming a set of symbols for John

andMary, S = {John,Mary}, the product functor constructs the
set of symbol pairs S × S = {(John, John), (John,Mary), . . . },
which can be used for to represent the John is to the left of Mary

situation.

Example 14 (product/coproduct functors). The product and

coproduct functors send pairs of objects and arrows to their

products and coproducts, respectively, that is, 5 :(A,B) 7→ A ×

B, (f , g) 7→ f × g and ∐ :(A,B) 7→ A + B, (f , g) 7→ f + g.

In the category of sets and functions, Set, the product of two

sets is (designated as) their Cartesian product and the product

of two functions f :A → C and g :B → D is the product

function, f × g :(a, b) 7→ (f (a), g(b)). The coproduct of two sets

is (designated as) their disjoint union, and the coproduct of two

functions f and g is the coproduct function, f + g :A + B →

C; (1, a) 7→ f (a), (2, b) 7→ g(b). The coproduct for sets and

functions acts like alternation: if a is an element from set A, then

apply function f :A→ C, otherwise apply function g :B→ C.

A product functor takes objects in a category C to

(product) objects in C. In this way, constructions can be

reiterated to generate compositional representations whose

constituents are themselves compositional as is supposed for

a language of thought. For instance, Sue is to the left of

John who is to the left of Mary may be represented by

a construction that involves the pair (Sue, (John,Mary))
capturing a hierarchical relationship, that is, Sue is to the

left of both John and Mary. A general approach to this

situation involvesmonoidal categories (Mac Lane, 1998; Leinster,

2014), that is, a generalization of monoid where the set

is replaced with a category and the binary operation with

a functor. In this context, the functor is a kind of tensor

product (Example 15), which affords a categorical (symbolic-

vectorial) form of compositional representations (Coecke et al.,
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2010). Connectionist (neural network) models employing tensor

product networks (Smolensky, 1990) essentially involve such

functors for a category of vectors spaces and linear functions.

Example 15 (tensor product). A tensor product is a functor of

the form F :C× C→ C, also written⊗(−,−) with the action on

a pair of objects (A,B) and a pair of arrows (f , g) written A ⊗ B

and f ⊗ g, respectively. Associativity and unity conditions need

only hold up to natural isomorphism (see Definition 16), that is,

A ⊗ (B ⊗ C) ∼= (A ⊗ B) ⊗ C and A ⊗ I ∼= A ∼= I ⊗ A, where

I is a special object in C whose role is analogous to the role of the

unit element, e, of a monoid. For instance, product and coproduct

functors (Example 14) are tensor products: in regard to Set, now

seen as a monoidal category, the Cartesian product and disjoint

union with any one-element set and the empty set as the unit

objects, respectively.

Entities and their representations are also naturally regarded

as residing in different domains and so involve functors between

different categories. For instance, the aforementioned notion

of a physical instantiation mapping of symbolic expressions

to brain states is likened to a functor that preserves syntactic

relations as relations between brain states, that is, a mapping

F that satisfies the equality F[P&Q] = B(F[P], F[Q]), where

B is a function combining the corresponding brain states for

expressions P and Q (see Fodor and Pylyshyn, 1988, footnote

9). This condition compares with the composition condition for

functors, F1(g ◦C f ) = F1(g) ◦D F1(f ), where & corresponds

to composition operation ◦C in domain category C and B

corresponds to composition operation ◦D in codomain category

D. The expressions P and Q and their corresponding brain

states, F[P] and F[Q], are arrows in their respective categories.

Alternatively, the expressions and brain states can be regarded as

objects in a monoidal category, whence the mapping is seen as a

monoidal functor (Mac Lane, 1998), that is, a functor preserving

the structure of a monoidal category.

Much more can be said about a functorial approach

to cognitive representation by specializing to functors with

additional properties. For instance, an adjoint functor (Mac

Lane, 1998; Leinster, 2014) is a functor F :C → D that comes

with an opposing functor G :D → C acting as a pseudo-

inverse in the sense that the composition G ◦ F sends objects

and arrows in C to objects and arrows in C that are closely

related but not necessarily the same as the original objects and

arrows. (Likewise, the composition F ◦ G sends objects and

arrows in D to closely related objects and arrows in D.) That

relationship is a natural transformation, which we turn to next

(Section 2.3). This form of bidirectionality has applications, for

example, in regard to the round-trip relationship between states

of the world and brains states (see Ellerman, 2016; Awodey

and Heller, 2020). Another example of this adjoint situation in

the context of cognitive representations and processes involves

presheaves (Mac Lane and Moerdijk, 1992) that are set-valued

functors on topological spaces as categories, where the round-

trip relationship acts like a generalization process in the sense

that learning a training set extends (generalizes) to correct

responses on a test set (Phillips, 2018, 2020). Adjoint situations

involve additional category theory concepts, that is, universal

constructions (Mac Lane, 1998; Leinster, 2014), that go beyond

the detailed comparisons presented here (see Section 3).

2.3. Natural transformations and
comparison

Cognitive processes are generally regarded as computational

processes over (cognitive) representations. Natural

transformations are maps between functors, functors were

interpreted as representations, so natural transformations can

be interpreted as computational processes on representations.

As we shall see in this section, however, natural transformations

also afford a closely related interpretation as comparisons of

representations.

Definition 16 (natural transformation, isomorphism).

Suppose F,G :C → D are a pair of functors. A natural

transformation η : F
.
→ G is a family of D-arrows

{ηA : F(A) → G(A)|A ∈ C0} such that G(f ) ◦ ηA = ηB ◦ F(f )

for all arrows f :A → B in C, which can be expressed as a

commutative square (Figure 2). Arrow ηA is called the component

of η at A. If every component ηA is an isomorphism—arrow

f :A → B is an isomorphism if there exists an arrow g :B → A

such that f ◦ g = 1B and g ◦ f = 1A—then the transformation is

called a natural isomorphism.

The definition says that a natural transformation is

composed of a family of maps from the image of one

functor to the image of another functor. Hence, a natural

transformation can be interpreted as a computational process

for transforming representations. However, the family of maps

is also required to satisfy the commutativity condition involving

a square of arrows. This condition means that the transformed

representations must also be comparable to the original

representations. Two simple examples illustrate this situation

(Example 17).

Example 17 (natural projections/injections). The projection

functors send pairs of objects and arrows to their components: e.g.,

5́ :(A,B) 7→ A, (f , g) 7→ f . Product, coproduct, and projection

functors are related by natural transformations: e.g.,

• natural projection π́ :5
.
→ 5́ (Figure 8A) and

• natural injection ί : 5́
.
→∐ (Figure 8B).

Projections and injections are conceptualized by analogy to

instances of matrix reasoning (Figures 8C,D), which highlights
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FIGURE 8

Two natural transformations: (A) natural projection and (B) natural injection as progressive matrices (C,D), respectively.

the interpretation of natural transformation as a comparison of

representations.

Recall (Section 1) that composition operates at all levels:

composition of arrows (between objects), functors, and natural

transformations. These levels also pertain to another notion of

dimensionality that is illustrated with a series of progressive

matrices (Figure 9). Identity arrows are interpreted as zero-

dimensional in terms of variation, that is, the domain and

codomain objects are the same object. Hence, there is a

corresponding sense of dimensionality with progressivematrices

in terms of stimulus variation along rows and columns of the

matrix. For instance, when all cells contain the same stimulus

(Figure 9A), the number of dimensions of variation is zero. This

situation corresponds to an identity natural transformation on

a constant functor, that is, a functor sending every object and

every arrow to the same object and its identity arrow. A single

dimension of stimulus variation along columns (Figure 9B)

corresponds to an identity natural transformation on a functor

that is not a constant functor. Alternatively, a single dimension

of stimulus variation along rows corresponds to a non-identity

natural transformation on a constant functor. Two dimensions

of stimulus variation, along rows and columns (Figure 9C),

correspond to a (non-identity) natural transformation of (non-

constant) functors. Three dimensions of stimulus variation,

one dimension along columns and two dimensions along rows

(Figure 9D), correspond to composition of a functor with

a natural transformation, which is a natural transformation.

Composition of a functor with a natural transformation is

also called star composition to distinguish this form from

composition of natural transformations and composition of

functors.

Natural transformations mark a significant departure from

functors in terms of dimensionality. A functor also involves a

square of arrows (see Figure 2A), hence looks like a natural

transformation. Indeed, every functor F :C→ D is equivalent to

a natural transformation between functors intoC+D comparing

the domain and codomain of F (Figure 10), that is, the natural

transformation φF : ι0
.
→ ι1 ◦ F, where ι0 :A 7→ (0,A), f 7→

(0, f ) and ι1 ◦ F :A 7→ (1, F(A)), f 7→ (1, F(f )). However,

the injection of the domain is effectively an identity map,

hence involves no variation of objects and arrows along this

direction. Thus, in general, natural transformations involve an

extra dimension of variation compared to functors.

The examples of progressive matrices involve geometrical

shapes, which highlight another aspect of category theory—

generality. Up to this point, the examples have been about orders

or simple algebraic structures. However, categories also exist

for other kinds of structures including topological, metrical,

and geometrical spaces. For instance, the category Vec has

Frontiers in Psychology 13 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.1048975
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Phillips 10.3389/fpsyg.2022.1048975

FIGURE 9

Dimensions of variation in matrix reasoning: (A) zero, (B) one, (C) two, and (D) three.

vector spaces for objects and linear maps for arrows. Thus,

we can think of the shapes in terms of vector spaces and the

transformations as linear maps such as dilation and rotation.

The correspondence to categories, functors, and natural

transformations is analogous, that is, the columns are functors

from some category into Vec with shapes corresponding to

vectors and arrows to linear transformations; likewise for the

components of a natural transformation.

3. Discussion

What is category theory to cognitive science? In a broad

sense, category theory like cognitive science is about the

(re-)representation and comparison of compositional structure

via maps that preserve that structure. Category theory may

appear as a bewildering array of abstract definitions, examples,

and theorems, but a substantial amount of this theory organizes

around a simple idea, that is, the (typed) commutative

square, in various contexts and forms, that comports with

the view of cognition as a system of computational processes

over (cognitive) representations, that is, some version of a

representational/computational theory of mind (Wilson, 1999).

Representational (mental) states are supposed to capture

the structure of the world, or other mental states by structural

correspondence, that is, the relations between entities in the

domain being represented are supposed to map in some

consistent way to relations between entities in the domain

of representations (cf. Frege’s compositionality principle, or

Gentner’s structure mapping theory). A commutative square

embodies this idea in geometric-algebraic form, that is, a

“vertical” arrow is a structural relation in one domain that

is transported, or transformed to a vertical arrow as a

structural relation in another (possibly identical) domain by

“horizontal” arrows that maintain structural consistency—the

action on some (re-)representation is essentially the same as a

(re-)representation of an action. The conditions for being a

category, functor, or natural transformation mean that not

any square of typed entities constitutes a commutative square.

Category theory provides a vast formal generalization of this

simple idea in a way that is unique among formal frameworks.

Category theory differs from other frameworks in regard

to the notion of compositionality. The classical form of

compositionality turns on the notion of tokening, that is,

the representations of an entity’s constituents are tokened

(instantiated, activated, or inscribed) whenever the entity’s

representation is tokened (Fodor and Pylyshyn, 1988). For

instance, a classical representation of red circle involves the

tokening of corresponding representations for constituents red

and circle. A composition operation need not token arrows
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FIGURE 10

Functor as natural transformation.

in this way, as illustrated in the case of monoids where the

composition of arrows 1 and 2 is their addition 3, because

composition is a function that sends a pair of arrows to an arrow.

A category theory analog of tokening is the free monoid on a set

of characters (alphabet)A which consists of the set of all strings

of zero or more characters, A∗, that is, the monoid (A∗, ·, ǫ),

where · is concatenation and ǫ is the empty (length zero) string:

e.g., composition of strings (arrows) “a” and “b” is the string “ba”

(Walters, 1991).

Other (related) notions of compositionality were alluded

to in the form of products and coproducts of objects and

arrows: e.g., the product functor applied to two objects A and B

constructs the product object A× B. What that means precisely

depends on the categories involved and the specific choice of

object. For instance, in Set, a product of sets and A and B

is designated as their Cartesian product, also written A × B,

and two functions affording the retrieval of the constituents of

each pair (a, b), that is, a and b. There may be more than one

product for a pair of objects, for example, B× A also constitutes

a product for A and B. These examples seem to suggest that

this form of categorical compositionality is a version of classical

compositionality in that the constituent objects A and B are

“tokened” with the composite object A × B. However, other

products of sets exist that do not involve constructing pairs of

constituent elements. This difference is starker in the context of

ordered sets as categories where the product of two objectsA and

B is the infimum, that is, the greatest object less than both A and

B. For example, in an ordered set as a category of divisors (e.g.,

2 → 6 says two is a divisor of six), the categorical product of 12

and 9 is the greatest common divisor, that is, 3. Category theory

provides a precisely defined and vastly generalized notion of

this form of composition that involves the concepts of limit and

universal construction (Mac Lane, 1998; Leinster, 2014). A limit

is a kind of “optimal” construction, that is, the best one can do

in the given context and also a universal construction expressing

a property common to all instances in that context (see Phillips,

2021a, for an introduction in the context of cognition). Though

not taken up here, systematicity (Fodor and Pylyshyn, 1988),

that is, the co-existence of cognitive abilities, is seen as a

consequence of a (categorical) universal construction (Phillips

and Wilson, 2010).

The import of category theory concepts to cognitive science

does not end there. Base concepts of category, functor, and

natural transformation constitute the starting point for category

theory like the concepts of composition, representation and

computation (comparison) constitute a starting point for a

science of cognition. Natural transformations afford inference

as do comparisons of representations. An analogy to perception

provides an illustration. Inferring distance to an object is

afforded by comparison of images obtained from binocular

vision. A category theory analog is the Tannakian reconstruction

theorem affording reconstruction of an object from its category

of representations (NLAB, 2010). Underpinning this theorem

is the Yoneda lemma (Mac Lane, 1998; Leinster, 2014), a

fundamental result in category theory (Riehl, 2016) that relates

the structure of an object to its afferent/efferent arrows. The

reconstruction theorem was applied to the relational schema

induction paradigm (Halford et al., 1998a) to account for

learning transfer (Phillips, 2021b). Reconstruction involves a

higher dimensional form of comparison, called a dinatural

transformation between bifunctors, which are functors on two

categories (cf. bivariate function). Inference is afforded by

a duality—two opposing relations—between schemas (more

generally algebras) and their representations that is analogous

to a well-known duality in geometry: Two points determine

a line; dually, two (intersecting) lines determine a point. For

comparison, source and detection determine line of sight; dually,

intersecting lines of sight determine the source. Reconstruction
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involves computing the end of a (bi)functor (Mac Lane, 1998),

that is, the “best” (universal) higher dimensional comparison.

Higher dimensional constructions relate to higher cognitive

capacities, as alluded to in the comparison of matrix reasoning

examples. Matrix reasoning is generally more difficult when the

stimuli vary along more dimensions (Carpenter et al., 1990;

Kroger et al., 2002) corresponding to a notion of cognitive

complexity as the number of dimensions of task variation

(Halford et al., 1998b), which has been interpreted in terms of

categorical products (Phillips et al., 2009). Note that category,

functor and natural transformation also have corresponding

geometrical interpretations as points, lines, and sheets, hence

as zero-dimensional, one-dimensional, and two-dimensional

objects, respectively. Indeed, these concepts unify in higher

category theory as instances of n cells: e.g., a 2-category that has

(small) categories as 0 cells (objects), functors as 1 cells (arrows

between 0 cells), and natural transformations as 2 cells (arrows

between 1 cells). This notion of dimensionality is akin to the

order of a function or relation—a second-order relation is a

relation between (first-order) relations—as another measure of

cognitive complexity (Zelazo and Frye, 1998).

The import of category theory to cognitive science may

seem obscured by the many technical details that could be

relegated to a secondary source. However, what counts as the

primary focus of attention depends on the task at hand. Moving

to higher constructions is not about simply affording more

general generalizations (abstractions), but rather reconciling

a seemingly opposed need for concreteness. This situation

is exemplified with the associativity and unity conditions

for composition, which seem innocuous when viewed as

counterparts in elementary algebra, but are of fundamental

importance to category theory and by comparison cognitive

science. For instance, the associativity condition is recovered

from a natural transformation between hom-functors (Mac Lane,

1998; Leinster, 2014), which determine the afferent/efferent

arrows for a given object in the category of interest. The

clockwise and anticlockwise traversals of the commutative

square for the natural transformation between hom-functors

correspond to the two alternative orders of composition, that is,

h ◦ (g ◦ f ) vs. (h ◦ g) ◦ f . A cognitive counterpart concerns dual-

route theories (Kahneman, 2011; Evans and Stanovich, 2013),

simply illustrated here by the relative difficulty of calculating

(13 × 47) × 0 vs. 13 × (47 × 0), which affords a category

theory way of thinking about and empirically investigating

dual-route cognitive processes (Phillips et al., 2016, 2017). The

identity arrows for the unity condition are also of fundamental

importance despite appearances as the “do nothing” arrows.

Tannakian reconstruction depends on the Yoneda lemma which

in turn depends on having identity arrows. The identity arrows,

appearing as elements in a hom-set of arrows for the proof

of the lemma (see, e.g., Leinster, 2014), essentially ground the

abstraction, cf. Frege’s principle of contextuality, whereby the

meaning of a word is determined in the context of other words

(Janssen, 2001). For instance, the Yoneda lemma is seen as

a way of assessing a subjective experience by its relationships

to other subjective experiences (Tsuchiya and Saigo, 2021).

This Yoneda/Tannaka perspective suggests an addendum to the

import of category theory to cognitive science as self-referential

comparison.
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