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In recent years, the utility and efficiency of automated procedures for cognitive 

assessment in psychology and neuroscience have been demonstrated in non-

human primates (NHP). This approach mimics conventional shaping principles 

of breaking down a final desired behavior into smaller components that can 

be  trained in a staircase manner. When combined with home-cage-based 

approaches, this could lead to a reduction in human workload, enhancement 

in data quality, and improvement in animal welfare. However, to our 

knowledge, there are no reported attempts to develop automated training and 

testing protocols for long-tailed macaques (Macaca fascicularis), a ubiquitous 

NHP model in neuroscience and pharmaceutical research. In the current 

work, we present the results from 6 long-tailed macaques that were trained 

using an automated unsupervised training (AUT) protocol for introducing 

the animals to the basics of a two-alternative choice (2 AC) task where they 

had to discriminate a conspecific vocalization from a pure tone relying on 

images presented on a touchscreen to report their response. We found that 

animals (1) consistently engaged with the device across several months; (2) 

interacted in bouts of high engagement; (3) alternated peacefully to interact 

with the device; and (4) smoothly ascended from step to step in the visually 

guided section of the procedure, in line with previous results from other NHPs. 

However, we also found (5) that animals’ performance remained at chance 

level as soon as the acoustically guided steps were reached; and (6) that the 

engagement level decreased significantly with decreasing performance during 

the transition from visual to acoustic-guided sections. We  conclude that 

with an autonomous approach, it is possible to train long-tailed macaques 
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in their social group using computer vision techniques and without dietary 

restriction to solve a visually guided discrimination task but not an acoustically 

guided task. We provide suggestions on what future attempts could take into 

consideration to instruct acoustically guided discrimination tasks successfully.

KEYWORDS

psychophysics, long-tailed macaque (Macaca fascicularis), primate learning, 
machine learning, home-cage training

Introduction

Training non-human primates (NHP) in various husbandry 
and veterinary procedures is essential to animal behavior 
management in most captive settings. Positive reinforcement 
training (PRT) (Skinner, 1938) is the most efficient and ethical 
technique to train a wide variety of behaviors as it rewards the 
animals for desired behaviors while ignoring unwanted ones 
(Westlund, 2015). The standard procedure in PRT training is to 
break down a desired final behavior into small pieces that can 
be  gradually and sequentially taught to the animal. However, 
training behaviors required to perform typical experimental tasks 
in sensory-motor systems research and cognitive neuroscience 
represent a more significant challenge for classical PRT training. 
First, most PRT protocols need human trainers to start and end 
each session and, in some cases, each trial (manual shaping). 
Besides the time cost—namely that a human trainer can only 
handle a single animal at a time—there is an unavoidable diversity 
of training strategies that trainers apply for different animals, 
ultimately making comparisons across animals and replicability 
of results challenging (Berger et  al., 2018). Finally, in 
neuroscientific laboratories, NHPs are usually taken from the 
home cages to insulated experimental setups where they are 
trained in isolation, potentially reducing the training time and the 
natural species-specific behavioral repertoire that an animal 
can express.

Therefore, we would like to argue that the optimization of 
training protocols has the potential to enhance animal welfare 
while increasing the standardization of training and ultimately 
broadening the scope of scientific research. Toward such aims, 
several studies have already reported various optimization of 
behavioral training (Calapai et al., 2017, 2022; Berger et al., 2018; 
Butler and Kennerley, 2019; Walker et al., 2020; Sacchetti et al., 
2021) across two important NHP models used in neuroscience, 
rhesus macaques (Macaca mulatta), and common marmosets 
(Callithrix jacchus). However, to the best of our knowledge, there 
is a lack of reported attempts to develop automated training and 
testing protocols for long-tailed macaques (Macaca fascicularis), 
a ubiquitous NHP model in neuroscience and—in particular—
pharmaceutical research. Long-tailed macaques are 38–55 cm 
large cercopithecine primates native to Southeast Asia. Animals 
of this species live in complex social groups—multi-male/

multi-female, 6 to 40 individuals—with a dominance hierarchy 
among females that can be  passed through generations of 
matrilines (Van Noordwijk and Van Schaik, 1985; van Noordwijk 
and van Schaik, 1999). Due to their close physiological proximity 
to humans, long-tailed macaques represent a valuable model for 
biomedical research, especially for basic research studies in 
disease pathology and treatment, vaccine development, 
immunology, and neuroscience. Hence, the refinement of 
protocols to evaluate cognition and behaviors in long-tailed 
macaques is highly important for phenotyping in treatment 
development and understanding cognition, affection, and 
social processes.

In this study, we describe a computerized, automated protocol 
for training and testing captive long-tailed macaques in their 
social group. Our approach achieves self-paced, step-wise, 
individualized training employing picture-based animal 
identification at the beginning of each trial, which is instrumental 
in adjusting the training based on the animals’ trial-by-trial 
proficiency. With this approach, no human interaction with the 
animals is needed, and only minimal maintenance and supervision 
are required, with presumed positive repercussions on the data 
quality and the results’ replicability. Furthermore, we also argue 
that removing physical constraints while also keeping the animals 
in their housing environment with their social group opens the 
possibility of investigating a broader range of more complex 
behaviors, including social interactions. Home-cage training also 
enables the opportunity to record neural activity for extended 
periods by using wireless recording technologies (Chestek et al., 
2009; Borton et al., 2013; Zhou et al., 2019 ).

Here, we  report the results from 6 long-tailed macaques 
navigating an Automated Unsupervised Training (AUT) 
procedure to reach a visuo-acoustic two-alternative choice (2 AC) 
task. We show that our animals can successfully navigate an AUT 
procedure to learn a visually guided 2 AC on a touchscreen but fail 
to do the same based on acoustic information.

Results

In this study, 6 female long-tailed macaques (Macaca 
fascicularis) housed in two groups, see Table  1, were given 
access to a touchscreen device attached to their home cage. At 
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the same time, solid food and fluid were provided ad libitum. 
All animals had previous exposure to a similar device during a 
separate experiment a year prior to this study and were already 
familiar with the basics of touchscreen interaction. Sessions 
were mainly autonomously conducted with sporadic human 
supervision (except for animals R and F trained by an 
experimenter in 4 and 2 shaping sessions, respectively; see 
below). Upon the initiation of each trial, throughout the 
autonomous and unsupervised training procedure, a machine 
learning algorithm identified the animals from a picture taken 
by a camera placed on top of the screen (Figure 1A). In this way, 
animals could progress in step-wise training between and 
within sessions [see methods: Automated unsupervised 
training (AUT)].

General engagement across sessions

Animals’ engagement varied within and between sessions, 
with a median of 32 trials (IQR = Q3-Q1 = 90) per session across 
50 and 30 sessions per Group  1 and Group  2, respectively 
(Figure 1B). Animals R and F underwent individualized shaping 
sessions to improve touching accuracy (for 4 and 2 sessions, 
respectively). The total number of sessions is the number of times 
the device was offered to the group, regardless of the number of 
interactions. Except for animal R, which did not perform a single 
trial across all the sessions, the mean number of sessions with 0 
trials per animal is 6 (Figure 1C). The session duration ranged 
from 1.3 to 7 h with a median of 2 h and 45 min (starting and 
ending at 10:34 h and 13:25 h, respectively  − Figure  1D). To 
describe potential habituation effects, we statistically evaluated 
whether the number of trials per animal varied as a function of 
session duration or session number and whether the number of 
trials per hour varied across consecutive sessions. Initial sessions 
during which solely pictures (see methods) were taken were 
excluded from this analysis as they were designed to be longer in 
duration and easier to solve by the animals. We found a significant 
positive correlation between the number of trials each animal 
performed and the session duration (partial Pearson’s correlation, 
n  = 135, r  = 0.213, CI95% = 0.05, 0.37, p  = 0.01; Figure  1F), 
suggesting that longer sessions lead to more trials. On the other 
hand, we found no significant correlation between the number of 
trials performed and the session number (partial Pearson’s 

correlation, n = 135, r = 0.00008, CI95% = −0.17, 0.17, p = 0.99); as 
well as between the session duration and the sessions number 
(partial Pearson’s correlation, n = 59, r = 0.0088, CI95% = −0.25, 
0.27, p  = 0.94), suggesting that animals did not lose interest  
in the experiment across consecutive sessions while access to the 
device remained consistent. Finally, by looking at the distribution 
of trials across all sessions and all animals, we  found that  
animals mostly engaged during the first 2 h of the sessions, 
performing 50% of the trials within the first 53 min  
(Figure 1E).

Visuo-acoustic automated unsupervised 
training

In this study, we  adapted a visuo-acoustic automated 
unsupervised training protocol (AUT) we previously used to train 
marmoset monkeys (Calapai et  al., 2022). Here, 5 long-tailed 
macaques belonging to 2 groups underwent an AUT comprised 
49 training steps. The AUT protocol was designed to (1) improve 
touch precision (milestone size), (2) spatial touch precision and 
tolerance to acoustic stimuli (milestone location-sound), and (3) 
train a 2 alternative audio-visual association (milestone distractor). 
Training data for animal R are not available as the animal never 
interacted with the device.

An algorithm that monitored the animals’ hit rate within a 
sliding window of 10 trials loaded the subsequent step when 8 
out of 10 trials were correct or the previous step when 2 out of 
10 trials were correct, modulating the task difficulty as a function 
of the animal’s performance. Although the design of the AUT 
aimed to individualize and smoothen the transition between 
steps according to the animals’ learning progress, certain 
milestones required more trials to be  acquired. Therefore, 
different hit rates can be  observed across AUT steps and 
milestones (Figure  2A). An important feature to note is the 
consistent decrease in performance starting with the last 
milestone, during which a visual distractor was added. Except 
for animal F, which did not overcome the milestone size (with 
250 trials and 54 sessions), 4 out of 5 animals reached the 
distractor milestone (B, L, K, G) and successfully acquired the 
visual part of the last milestone. In contrast, none successfully 
acquired the acoustic part. To visualize the learning progress 
through the milestones of the AUT across animals with 

TABLE 1 Metadata and summary statistics.

Group Name Sex Age [years] Sessions [total] Individual 
sessions Trials [total] Sessions with 0 

trials

1 Renate f 22 54 4 0 54

1 Bella f 20 50 0 1,672 3

1 Leni f 21 50 0 1,438 2

1 Kuemmel f 10 50 0 4,303 2

2 Granny f 10 30 0 1,596 5

2 Fenja f 17 32 2 264 20
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potentially different engagement levels, we  quantified the 
number of trials as a function of the total trials performed 
(Figure 2B). The animals needed an average of 200, 304, and 
1,141 trials; and 9, 4, and 25 sessions to overcome the size, 
location-sound, and distractor milestones, respectively 
(Figure 2C). This suggested that two of these milestones (size and 
position-sound) were easier to solve than the final milestone 
(distractor), which might have needed a smoother training set of 
steps than the one used in the current study. To assess whether 
individual animals’ performance influenced subsequent task 
engagement, we analyzed the likelihood of initiating a trial after 
a correct or wrong response within the first 30 s following a 
response. We found that the likelihood of starting a trial after a 
correct response remained stable during the first two milestones 
(size and location-sound). In contrast, it consistently changed in 
the milestone distractor, decreasing from 90 to 55%. This pattern 
is mirrored by the likelihood of initiating another trial after a 

wrong trial, going from 25% in the initial milestones to 40% in 
the distractor (Figure  2D). The same was observed when 
controlling for the non-uniform number of trials across steps by 
recomputing the likelihood based on an equal number but 
randomly selected sample of trials belonging to all steps (see 
methods). We found a significant positive correlation between 
the hit rate and the likelihood of initiating a trial (Figure 2E), 
suggesting that the animals’ engagement is heavily dependent on 
short-term performance as lower hit rates over time tend to 
promote similar trial initiation for correct and wrong trials.

Two-alternative visuo-acoustic 
discrimination

From steps 31–49, the AUT protocol attempted to train the 
animals to discriminate between a target and distractor 

A

B

C

D

E

F

FIGURE 1

General engagement across sessions. (A) Pictures of animal L interacting with the LXBI device. The left picture shows the view from the side 
camera used for surveillance during sessions. The right picture shows the view from the frontal camera used for animal identification. (B) Left 
panel shows the number of trials per session across animals. The right panel shows the distribution across all animals, with a median of 32 trials 
per session (IQR = 90 trials). (C) Left panel shows the number of sessions across animals. Red indicates the amount of manual training sessions 
conducted in separation from the rest of the group. Black indicates the amount of sessions with no trials. The right panel shows the mean across 
animals. (D) Distribution of all session durations. The dashed line indicates the median of the distribution. (E) Distribution of trial initiation across 
session duration. The dashed line indicates the median of the distribution. (F) From right to left. Distribution of number of trials per animal as a 
function of session duration, shows a significant positive correlation (partial Pearson’s correlation, n = 135, r = 0.213, CI95% = [0.05, 0.37], p = 0.01). 
Distribution of number of trials per animal as a function of session number, shows non-significant correlation (partial Pearson’s correlation, n = 135, 
r = 0.00008, CI95% = [−0.17, 0.17], p = 0.99). Distribution of session duration as a function of session number shows no significant correlation (partial 
Pearson’s correlation, n = 59, r = 0.0088, CI95% = [−0.25, 0.27], p = 0.94).
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simultaneously presented on the screen (Figure 3A) based on 
two cues: a visual cue, the difference in the size of the visual 
stimuli; and an acoustic cue, the specific sound played 
throughout the trial. Animals could use either cue to determine 
the target of a given trial. However, from step 50 onward, only 
the acoustic cue was present as the target and distractor had the 
same size. While 4 out of 5 animals reached step 50, none had a 
performance above chance at this stage of the training. This 
suggests that animals did not use the acoustic cue to identify the 
target of a given trial but relied exclusively on the stimuli’s size 
difference. A psychometric estimation based on the proportion 
of correct trials across steps 31 to 50 revealed that the minimum 
detectable size differences between the target and distractor are: 
22.94 cm2, 25.79 cm2, 40.87 cm2, and 37.08 cm2 for animals B, L, 
K, and G, respectively (Figure 3B). In addition, animals showed 
a stable hit rate (around the chance level) once the difference 
between the target and the distractor was around 0.8 cm2 

(step 44; Figure 3C). After step 44, animals B, and G, showed a 
bias for the vocalization and animal K for the simple train 
(Figure  3D). Also, no significant difference in the response 
latency between the two stimuli was found (Kruskal–Wallis, 
Bonferroni corrected B p = 0.19, G p = 0.17, K p = 0.18, L p = 0.09.

Face identification performance

In order to individualize the automatized training protocol 
for each animal, we trained a convolutional neural network 
with a structure optimized for object categorization (LeCun 
et al., 2015), to identify the animals at the start of each trial. 
We manually labeled all pictures offline to assess the neuronal 
network’s animal identification performance. We  observed 
stable animal identification performance of the network across 
consecutive sessions for both groups (Figure 4A). The network 

A B C

D E

FIGURE 2

Performance through the Automated Unsupervised Training (AUT) protocol. (A) Hit rate as a function of AUT steps per animal. Gray shade 
represents 95% confidence interval of the mean across animals. (B) Animal progress through the steps of the AUT protocol. Background colors 
indicate the milestones. (C) From top to bottom, number of trials and number of sessions as a function of milestones across animals. 
(D) Distribution of the likelihood of trial initiation as a function of hit rate in blocks of 100 randomly selected trials across animals. The upper panel 
shows the number of trials per step. (E) Highly significant positive correlation between the hit rate and the likelihood of initiating a trial when 
controlling for the non-uniform number of trials across steps (partial Pearson’s correlation, n = 840, r = 0.98, CI95% = [−0.98, 0.98], p =5e-18).
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was retrained after sessions: 5, 29, and 35 for Group 1, and 
after session 4 for Group 2 (indicated with stars in Figure 4A) 
to expand the training set and potentially prevent drops in 
identification accuracy. Session 36 of Group 1 was removed 
from the analysis due to a technical problem with the training 
of the network (the animals’ labels were swapped 
inadvertently). Figure  4B shows that individual animal 
identification accuracies for Group 1 were around 90%, while 
for Group  2, animal G held an identification accuracy of 
almost 100% and animal F of 70%. The accuracy for a given 
animal was calculated as the number of times labels from the 
network-matched manual labels divided by the total number 
of network labels for that animal. Furthermore, we computed 

a more general measure of accuracy for each animal by 
dividing the number of times labels from the network-
matched manual labels by the total amount of manual labels 
for that given animal. We found this general accuracy above 
90% in Group  1 and between 77 and 89% in Group  2 
(Figure 4C). Finally, to avoid that wrongly identified animal’s 
influenced a given animals’ progress within the AUT, we took 
and fed to the network a second picture at the end of each trial 
before computing the AUT progression. This allowed online 
identification of trials with different labels from start and end 
to prevent potential problems with the AUT progression. In 
addition, this prevented 319 wrong assignments of the trial 
outcome out of a total of 8,784 trials.

A B

C D

FIGURE 3

Visually guided discrimination task. (A) Visual and acoustic stimuli used across the AUT (milestones position-sound and distractor) and in step 50. 
Visual stimuli are shown on the left, and the spectro-temporal information of the acoustic stimuli is shown on the right. The pure tone train was 4 
kHz. (B) Psychometric curves for the minimum size difference between distractor and target, calculated as the proportions of correct trials across 
steps of the AUT. 95% confidence intervals (CI) are indicated with black horizontal lines (Animal B: threshold 22.94 cm2; CI between 15.7 and 26.7; 
L: 25.79 cm2, CI between 19.4 and 28.9; K: 40.87 cm2, CI between 12.6 and 46.4; G: 37.08 cm2, CI between 24.4 and 43.3). (C) Hit rate as a function 
of the percentage of trials performed by each animal (after step 44 where all animals mostly performed below 60% hit rate), grouped into bins of 
10%. The thickness of the lines represents the number of trials. The dashed line at 0.5 represents the chance level. (D) Letter-value plots show the 
reaction times for each stimulus across animals after step 44. The central box represents the 1st quartile, 2nd quartile and 3rd quartile. No 
statistical difference was found between the response latencies between stimuli at a Bonferroni post-hoc-corrected Kruskal–Wallis Test (B p = 0.19, 
G p = 0.17, K p = 0.18, L p = 0.09).
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Animal turn-taking

The online animal identification algorithm, allowing for 
individualized training and testing of our animals living in social 
groups, allowed for assessment of the animal-device interaction 
from a group-level perspective. First, we observed that the level of 
engagement with the device (taken as the number of interactions 
as a function of time within a session) is consistently higher at the 
beginning and lower toward the end (Figure 5A). Specifically, in 
Group 1, we found that within each session, animal B was often 
the first to interact with the device, followed by animal L, and later 
by animal K. Moreover, within and across sessions, we observed 
463 total transitions from a given animal to a different animal, 
with a median interval of 101.53 s (Figure 5B). We found that 
transitions from L to K occurred the most (112), while L to B the 
least (44), in contrast with other transitions that occurred 
relatively evenly (B to L and B to K with 63 and 68 transitions, 
respectively; K to B and K to L with 87 and 88 transitions, 
respectively). To graphically describe the transition probability 
among animals, we  calculated a Markov transition matrix for 
Group 1 (Figure 5C) and statistically assessed whether transitions 
were due to random transitions between animals. Toward this, 
we quantified the probability of obtaining similar results with 
shuffled data (1,000 repetitions) while keeping the same amount 
of interactions as in the original data. Except for transitions of 
animal K to L (two-sided permutation test; p = 0.123) and K to B 
(two-sided permutation test; p = 0.123), none of the transitions 
can be explained by chance alone (two-sided permutation test; B 
to K p  = 0.055, B to L p = 0.055, L to B p  = 0.001, and L to K 

p = 0.001). These results suggest a preferred turn-taking order with 
which animals interacted with the LXBI. Such structure cannot 
be explained by chance, and is likely the product of complex social 
dynamic interactions within the group. It remains unclear whether 
the LXBI created such structure or whether the structure existed 
before and the animals used it as it would naturally happen in 
naturalistic foraging situations.

Discussion

Non-human primates (NHP) play an essential role in 
biomedical research due to their physiological, psychological, and 
cognitive proximity to humans. However, the requirement to 
manually train NHPs to understand complex rules and perform 
complex behaviors bears several caveats. Among them are the 
inter-experimenter variability of training, the difficulty in 
generalizing the results, the time and personnel needed, as well 
as ethical considerations related to the animals’ well-being. In an 
effort to address these issues, we designed a touchscreen-based, 
autonomous, individualized experimental protocol to train and 
test long-tailed macaques directly in their home enclosure 
without fluid/food control or social separation that integrates 
trial-by-trial animal identification employing a convolutional 
neural network. Six female long-tailed macaques, across two 
separate captive groups, underwent daily training sessions 
(Monday to Friday) for around 3 h on a touchscreen device 
attached to their home cage. Our results suggest that: (1) captive 
long-tailed macaques successfully learn a visually guided 

A B C

FIGURE 4

Animal identification accuracy. (A) Animal identification accuracy across sessions for Group 1 on the upper right panel and Group 2 on the lower 
right panel. The right panels show a count histogram for both groups. (B) Individual animal identification accuracies were calculated as the 
number of times labels from the network-matched manual labels, divided by the total number of network labels for that animal. Accuracies for 
Group 1 were around 90%. At the same time, for Group 2, animal G held an identification accuracy of almost 100% and animal F of 70%. 
(C) General measure of accuracy for each animal, calculated by dividing the number of times labels from the network-matched manual labels by 
the total amount of manual labels for that given animal. Again, accuracies were above 90% in Group 1 and between 77 and 89% in Group 2. An 
additional animal label, called null, was assigned to those pictures where the animal’s identity was unclear (animals triggering a trial by accident, 
e.g., with their back). Numbers inside the heatmap represent the number of trials from which the hit rate was calculated.
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discrimination task with autonomous protocols, but 
demonstrated that more sophisticated approaches than the 
gradual implicit sound-to-stimulus association we employed are 
needed for acoustically guided discrimination; (2) animals 
engage with the device without the necessity of food/fluid control, 
but such engagement strongly correlates with success rate, as 
interactions decrease as the task becomes more difficult; (3) 
picture-based animal identification through machine learning 
was stable across several months and animals, making it a reliable 
and non-invasive technique for animal tagging to achieve 
individualized training without social separation; and (4) it is 
possible to assess group-level dynamics (such as turn-taking) in 
socially housed non-human primates.

Visuo-acoustic automated training

Our home-cage, automated training protocol was designed 
based on similar experimental protocols developed for NHPs 
across the last two decades (Mandell and Sackett, 2008; Bullock and 
Myers, 2009; Tulip et al., 2017; Butler and Kennerley, 2019; Walker 
et al., 2020; Bala et al., 2020; Wither et al., 2020; Sacchetti et al., 
2021). Specifically, it shared the structural design of the apparatus 
described for Rhesus macaques (Berger et al., 2018) while replacing 
costly hardware (Apple computers) with an open-source system 
(Raspberry Pi computers), allowing for more straightforward 
modification and expansion of the system by others. It additionally 
used a visuo-acoustic protocol developed for common marmosets 

A

B C

FIGURE 5

Turn-taking. (A) Event plot showing each animal’s individual trial initiation as a function of session proportion. Left panel for Group 1 and right 
panel for Group 2. Marginal plots show the density histograms of trial initiation instances across sessions on the ordinate and within sessions on 
the abscissa. (B) The upper panel shows the time distribution between animal transitions across all animals. The lower panel shows the distribution 
when merging all animals. The marginal plot is a count histogram for the number of transitions. (C) Markov transition matrix, showing the 
probability of transitions among animals.
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(Calapai et al., 2022). Furthermore, our protocol relies on computer 
vision technology for the identification of subjects on a trial basis, 
which could, in principle, allow for testing subjects in natural 
settings. Our results suggest that long-tailed macaques can 
be  trained in an automated manner to perform basic visually 
guided tasks using a touchscreen system but failed to generalize to 
an acoustically guided 2 AC task. These findings are in line with 
previous reports that showed that long-tailed macaques could 
perform a stimulus-directed touch behavior using a touchscreen 
system engaging consistently over several sessions (Bullock and 
Myers, 2009; Rice et al., 2017). However, previous reports have 
shown that macaques (Macaca fascicularis, Macaca fuscata, and 
Macaca nemestrina) are indeed able to solve acoustic discrimination 
tasks (Kuhl and Padden, 1983; Petersen et al., 1984; Brosch et al., 
2004; Furuyama et al., 2017). However, differences in stimulus type 
(human vocalizations versus conspecific vocalizations), setup 
conditions (attenuated sound chamber versus animal colony, lever 
versus touchscreen), and testing paradigms (Go No-Go versus 
2 AC) might account for differences in performance (Waskom 
et al., 2019), preventing direct comparison across studies. When 
comparing our results to those reported for common marmosets 
using a similar system (Calapai et al., 2022) where 9 out of 11 
marmosets learned to discriminate conspecific vocalizations from 
pure tone trains using a 2 AC or 3 AC paradigm, we  found a 
substantial difference in the engagement of the animals when low 
hit rates are observed. Our analysis showed that even though the 
number of trials performed per animal remained relatively constant 
over sessions (engagement), the likelihood of performing more 
trials in a row depended on the performance. We argue that this 
change in engagement dynamics might have contributed to the 
failure to acquire the visuo-acoustic 2 AC from the long-tail 
macaques because it hindered the necessary exposure time 
required to learn the discrimination. Regardless of this change, our 
aim was to elicit an implicit audio-visual association during the 
later steps of an automated training protocol. Instead, animals 
ignored or discounted the acoustic information presented and 
focused exclusively on the visual information (i.e., the difference in 
stimulus size). Finally, from the necessity to train one long-tailed 
macaque in the current study and personal communication with 
the authors that previously exposed the same group of long-tailed 
macaques to a similar touchscreen device in the context of a 
different study (Cassidy et al., 2021), we would argue that naïve 
long-tailed macaques could be trained to interact with our device.

Level of engagement with automatized 
training protocols

Five out of six animals interacted consistently with the device 
across several months, in sessions of 3 h duration during which 
fluid and food were available ad libitum. This was presumably due 
to the sugary fluid reward delivered by the device in combination 
with the provision of an activity that provided a form of cognitive 
enrichment (Murphy et al., 2003; Tarou and Bashaw, 2007; Clark, 

2017, 2022; Calapai et al., 2022). On the other hand, we found that 
engagement strongly depended on short-term performance levels 
as the likelihood of initiating a trial decreased with an increase in 
difficulty and throughout the training section in which the task 
gradually moved from visuo-acoustic to acoustic only. This 
dependency should be  considered for future experiments, 
especially when generalizations across sensory modalities are 
needed for experimental purposes. Interestingly, a similar 
dependence was observed for some individuals at the same stage 
of the AUT protocol in a previously published marmoset study 
(Calapai et  al., 2022). Finally, while our animals were aged 
between 10 and 22 years old, considered already “aged” animals 
(Veenema et  al., 1997, 2001), the reported marmosets were 
significantly younger (2–7 years old), marmosets are often referred 
to as “aged” at 8 years of age (Abbott et al., 2003). Because the 
cognitive decline in aging NHPs is well-demonstrated and 
particularly relevant for translational neuroscientific research 
(Herndon et al., 1997; Smith, 2004; Nagahara et al., 2010; Gray and 
Barnes, 2019; Sadoun et  al., 2019; Lacreuse et  al., 2020), our 
approach could be  helpful to assess and describe aspects of 
cognitive decline in captive NHPs in a standardized way.

Animal recognition with machine 
learning and computer vision

Reliable identification of individuals in socially housed 
settings and operating device for automated training and cognitive 
assessment represents a necessity to establish successful high-
throughput pipelines [as argued before (Calapai et al., 2022)] and 
is still a significant challenge. A common approach is to employ 
tracking devices for animals, such as colored jackets, collars, and 
a combination of video monitoring or electronic devices such as 
RFID chips; to allow identification (Andrews and Rosenblum, 
1994; Fagot and Bonté, 2010; Rose et al., 2012; Gazes et al., 2013; 
Ballesta et al., 2014; Maddali et al., 2014; Tulip et al., 2017; Calapai 
et al., 2022). Due to a combination of physiological and technical 
issues related to implanting and reading RFID chips in large 
animals such as macaque monkeys (Fagot and Bonté, 2010), 
we  opted for a picture-based identification algorithm that 
employed a convolutional neuronal network (Witham, 2018; 
Butler and Kennerley, 2019; Schofield et al., 2019; Jacob et al., 
2021). With our network, the classification accuracy for individual 
animals was in line with the reported accuracy achieved for rhesus 
macaques using similar methods (Witham, 2018; Butler and 
Kennerley, 2019) to allow individualized autonomous training. 
However, we found that running the recognition algorithm twice 
(at the beginning of each trial) only marginally improved the 
network performance compared to running the algorithm once 
per trial. With trials longer than a few seconds (in contrast to our 
experiment) this strategy could more significantly improve 
recognition accuracy. We finally suggest that taking a picture from 
multiple vantage points would improve recognition significantly. 
Overall, this technique revealed to be reliable in efficiency and 
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easy to implement in a python-based task control. Nonetheless, 
we believe that further optimizations are needed to establish for 
example: (1) an unsupervised and automatic updating of the 
network as well as (2) an internal quality control system to 
evaluate tagging accuracy. Based on the rapid advancements in 
machine learning, this technique will continue to improve to 
be  suited for non-invasive real-time animal classification in 
social groups.

Insights into turn-taking and social 
dynamics

It is essential to note that due to the low number of animals 
and the low engagement of animal F in Group 2, the following 
analysis will focus mainly on Group  1, and it is intended to 
be  taken as a proof of concept. We  observed no fighting or 
substantial behavioral alteration in our animals throughout the 
experiment. All animals who interacted with the device across 
several sessions (5 out of 6) could do so by taking turns. In the 
early steps of our automated protocol, there were strong 
differences in the level of engagement across animals, presumably 
as a result of social dynamics present in a small captive group of 
primates. Previous reports have shown that the social rank of 
animals affects their access to resources (Barton and Whiten, 
1993; Boogert et al., 2006), with lower-ranked individuals having 
the least access. Since a trainer (or training device) may be seen as 
a resource by the animals, engagement in training might 
be  influenced by the social rank of the animals (Prescott and 
Buchanan-Smith, 2003). However, it has also been suggested that 
low-ranking individuals performed better at cognitive tasks than 
higher-ranked individuals when isolated from the rest of the 
members (Bunnell and Perkins, 1980; Drea and Wallen, 1999; 
Reader and Laland, 2001), indicating that a failure to learn a 
specific task in low ranked individuals might be a consequence of 
personality rather than social ranking (Wergård et  al., 2016). 
While a comparison between individually trained animals when 
separated from their social group and our group-based training 
would have helped us to elucidate the difference in performance 
relative to the social context, we decided not to focus on such 
comparison as temporary social isolation could have negatively 
impacted the welfare of the animals. Finally, as a detailed 
ethological assessment of group hierarchy was not available for 
our groups, an in-depth comparison with previous studies is not 
possible. Our analysis revealed a specific non-random structure in 
the animal turn-taking that was stable across several months. This 
proof of concept represents an encouraging step forward toward 
the development of efficient and standardized techniques to assess 
NHPs’ social states and dynamics.

In summary, we described a study with 6 captive long-tailed 
macaques (across two groups) who were given access to a 
touchscreen device equipped with a step-wise automated training 
protocol and picture-based, real-time animal identification. 
Across 3 months of daily 3 h sessions (Monday to Friday, 10:00 to 

13:00), animals successfully learned the basics of a visually guided 
discrimination task. Still, they failed to generalize to an acoustic-
only discrimination task. Furthermore, in structured turns, 
animals interacted with the device in a self-paced manner, without 
fluid/food control nor social separation, with the likelihood of 
initiating a trial getting independent from the trial outcome as the 
performance drops to chance.

Materials and methods

All animal procedures of this study were approved by the 
responsible regional government office [Niedersächsisches 
Landesamt für Verbraucherschutz und Lebensmittelsicherheit 
(LAVES), protocol number: 33.19-42,502-04-16/2278] and were 
in accordance with all applicable German and European 
regulations on husbandry procedures and conditions.

Animals

Six female long-tailed macaque monkeys (Macaca fascicularis) 
housed in two groups were involved in this study (Group 1 with 
four animals: B, K, L, and R and Group 2 with two animals: G and 
F; see Table 1 for more details about the animals). The animals 
were group-housed in the facilities of the German Primate Center 
(DPZ) in Goettingen, Germany, equipped with an enriched 
environment including a multitude of toys and wooden structures, 
natural as well as artificial light and exceeding the size 
requirements of the European regulations, including access to 
outdoor space. The animals’ psychological and veterinary welfare 
was monitored by the DPZ’s staff veterinarians, the animal facility 
staff, and the lab’s scientists, all specialized on working with 
non-human primates. During the testing sessions, animals were 
fed their regular diet and water ad libitum. Training sessions took 
place mostly in the morning before the feeding time, with a single 
session taking place in the afternoon. The regular duration of a 
session was around 2 to 3 h, where the system was attached to the 
cage for animals to interact with at their own pace. Animal R (4 
sessions) and F (2 sessions) were separated for individual training, 
while all remaining sessions were conducted with all animals 
having access to the device as a group.

Apparatus

Data were collected with a custom-made, autonomous, 
touchscreen device tailored toward macaque monkeys (Calapai 
et al., 2017) and based on two python-based computers [Raspberry 
Pi; adapted from Calapai et al. (2022)]. The device was modified 
to deliver acoustic stimulation via two speakers located at the 
upper left and right corners of the device. The Long-tailed 
Experimental Behavioral Instrument, in short LXBI (50 × 57 × 
30 cm  − HxWxD) operates as an unsupervised, standalone, 
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waterproof device that can be  attached directly to the home 
enclosure of the animals via a custom-made frame (Figure 1). The 
device comprises two Raspberry Pi single-board I/O computers 
(Raspberry Pi 3B+, raspberry.org) to control the experiment and 
provide real-time video monitoring; a camera module attached to 
the task controller for animal identification (Raspberry Pi wide-
angle camera module RB-Camera-WW Joy-IT); a capacitive 
touchscreen (15-inches touchscreen, ELO 1537 l SecureTouch); 
two peristaltic pumps (Verderflex OEM-Schlauchpumpe M025 
DC, 10-30 V, 6,5 W) and a custom-made reward tube (placed at 
25 cm distance from the screen); and two speakers (Visaton FR58, 
8 Ω, 120–20,000 Hz). All components operated at low voltage—
between 5 and 12 v—at a maximum of 2.5 A (touchscreen).

Picture-based animal identification

During AUT experimental sessions, when an animal triggered 
the start stimulus, a picture was taken from the front camera (left 
panel of Figure 1A), downsampled to 300 × 300 pixel, converted 
to gray values, and fed into a custom-made, convolutional neural 
network optimized for object categorization (inspired by LeCun 
et al., 2015), to label the picture with one of the animals’ identities. 
A second picture was taken (in later sessions) to increase the 
robustness of the identification of a given animal. This second 
picture followed the same processing of the first picture 
described above.

Structure of the network

The network was designed, trained, and used during the 
experiment through the TensorFlow module (Abadi et al., 2016), 
version 2.0; under Python 3.7. The network consisted of 9 layers 
in total, from input to output: an Average Pooling input layer (6 × 3 
pooling size); 3 convolutional layers (3 × 3 kernel, ‘relu’ activation 
function, with 64, 16, 32 neurons, respectively); 3 pooling layers 
(MaxPool 2 × 2; Dropout; Flatten); 1 Dense layer (with a ‘relu’ 
activation function); and a final Dense output layer (with a 
‘softmax’ activation function). The network was compiled with an 
‘adam’ optimizer, a sparse categorical ‘crossentropy’ function, and 
‘accuracy’ as metrics. The fitting was done in 10 epochs and with 
a batch size of 32. The output layer, representing the animals in 
each group, contained an additional neuron, here called null, that 
was trained on pictures triggered by the animals by accident (e.g., 
with their back). Parameters include the size of the average 
pooling kernel; the number of neurons in the three convolutional 
hidden layers; and the number of neurons in the hidden dense 
layer; they were all bootstrapped beforehand on the platform 
Google Colab.1 Here, with a test dataset of 3,000 pictures of two 
male macaque monkeys taken with the same device and in the 

1 https://colab.research.google.com/

same facility, we  trained and tested 46 combinations of the 
parameters mentioned before. Finally, we  compared the 
performances of the 46 resulting networks and handpicked the 
combination of parameters of the network with the highest 
accuracy (98.7%). This combination was used as the final 
configuration for the network used during the experiment.

Training and maintenance of the network

The initial training set was collected in 2 weeks (10 sessions) 
during the experiment’s first phase and consisted of 300 pictures 
per animal. The network was retrained again after 5, 29, and 32 
sessions for Group 1; and 4 sessions for Group 2, to account for 
possible changes in environmental factors from day to day. Every 
picture collected in both phases of the experiment was labeled by 
one of the experimenters, which was already very familiar with the 
animals, with a custom-made python interface. Labels were used 
to train and assess the network throughout the study.

Procedure

The following training procedure is an adaptation of a 
protocol already described for common marmosets (Calapai et al., 
2022). However, substantial changes regarding the dimensions 
and the identity of the stimulus were made. Therefore, the 
following description aims at highlighting the differences from the 
marmoset study. In order to run a session, a LXBI device was first 
attached to the animal’s cage and then turned on; leading to 
automatic starts of a local camera server for remote monitoring 
and video recording; the mount of a local network server for 
recursive data logging; and the loading of custom-made graphical 
user interface that allowed the experimenter to set up the 
parameters of the session (if needed) and launch the experiment. 
During this time, the reward (Pineapple, banana, or grape juice at 
25% dilution with water) was loaded on the bottles of the reward 
system and manually pumped along the tubes that led to the 
mouthpiece (with a custom circuit operated by a momentary 
switch). Once the device was ready, the experimenter granted 
access to the device to the animals by removing a panel that 
divided the LXB from the group’s cage. The LXBI was left in the 
cage while remote surveillance took place every 15–20 min. At the 
end of the session, the panel was placed back, allowing the 
experimenter to open the device from one side (via dedicated 
hinges) and clean it thoroughly. Pumps were left to run for 30 min 
with hot water to clean debris, and if needed, the device was 
removed from the animal’s cage and stored for the next session.

Sessions

Most of the sessions took place in the morning from 10:00 to 
14:30 with two exceptions that extended until the afternoon (10:00 
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to 17:00). Food was provided at 14:00 by facilities’ caretakers, and 
water was available ad libitum throughout the session. For most 
sessions, videos of the animals working on the LXBI were recorded.

Manual training sessions

Even though all animals had prior interaction with 
touchscreen devices, animals R and F underwent individual 
training sessions after we noticed that they did not adequately 
interact with the touchscreen. These animals were separated from 
the group for 4 (animal R) and 2 (animal F) sessions, during 
which, through PRT shaping techniques, they were manually 
trained to touch the screen to receive the reward.

Experimental paradigm

Across and during all the sessions, animals never left their 
home cage. Except for animals R and F, which underwent 4 and 2 
manual training sessions, the remaining 4 animals did not require 
manual training to operate the device. All animals underwent a 
series of picture-taking sessions (10 sessions) necessary to collect 
training pictures for the identification network. After this phase, 
all animals underwent an autonomous, unsupervised training 
protocol (AUT) comprised preconfigured training steps to acquire 
basic proficiency in a standard 2 AC discrimination task. It is 
essential to highlight that all sessions for both groups were 
gathered with a single LXBI device, and the data collection 
occurred in successive order, first for Group  1 followed by 
Group 2.

Picture taking

A total of 10 sessions per group were designed to collect as 
many pictures from the animals as possible to train the picture-
based identification algorithm. A simple behavioral task was built 
for this purpose. The animals were presented with a white screen, 
and every time a touch was registered, a picture was taken, labeled, 
and stored, while the reward pump delivered 1.5 ml of juice during 
the first session to attract the attention of the animals and then 
reduced to 0.5 ml. The animals had to wait for 2 to 3 s between one 
trial and the next.

Automated unsupervised training

After the picture-taking sessions, all animals started an 
automated training procedure comprised of 50 steps. During the 
first 49 steps, an algorithm would gradually guide the animals 
according to their performance (Berger et  al., 2018), while in 
step 50 no change in the task occurred (Calapai et al., 2022). In the 
AUT section (steps 1–49), animals had to learn the basic rules of a 

visuo-acoustic 2 AC, in which the proficiency of an animal was 
assessed at step 50. Specific parameters, such as size, location, and 
time delays, were adjusted during the AUT. Animals could step up 
when 8 or more out of 10 trials were correct and step down when 
2 or less out of 10 were correct. During and across sessions, the 
progress of every animal was stored and retrieved every time an 
animal started to perform a trial. In this way, animals could 
individually navigate the total series of steps resuming after pauses 
or end of sessions at the same step they left in the last interaction. 
As mentioned above, the present training protocol is an adaptation 
from an AUT developed for marmosets (Calapai et al., 2022), with 
the main differences found in the stimuli’s identity and stimuli 
configuration. The AUT was comprised 49 steps, grouped into 3 
milestones that aim at training long-tailed macaques on the basics 
of touchscreen interactions within the context of a visuo-acoustic 
2 AC task. (1) Size milestone (steps 2–15) aimed to train animals to 
execute precise touches by decreasing the size of the visual stimulus 
that triggered the reward. A white circle embedded in a blue 
rectangle (called trigger) placed in the center of the screen had to 
be touched to obtain the reward (0.5 ml). Throughout the steps, the 
trigger gradually decreased from 20 cm × 20 cm to 6 cm × 6 cm. 
Touching outside the trigger resulted in a 5–7 s long inter-trial 
interval signaled by a gray screen, during which screen touches 
were ignored and resulted in a reset of the inter-trial interval. In 
contrast, touching inside the trigger would allow a new trial 
initiation after a randomized inter-trial interval of 2–4 s. (2) 
Location-sound milestone (steps 16–30). Here the AUT attempted 
to train animals to associate a sound with a visual target while also 
improving the spatial precision touch behavior. Throughout the 
steps, the trigger appeared at the center of the screen, and upon 
touch, an acoustic stimulus (either a repeated infant long-tailed 
macaque vocalization; or a pure tone train of 4 kHz at variable 
loudness – see below) was presented for 1–1.5  s before a visual 
target appeared, at step 16 (the first of this milestone) the visual 
target appeared in the center of the screen, but gradually moved 
away, to either side of the screen, by 1 cm on each step until 
reaching the edge. In contrast, the side randomly changed from left 
to right on a trial-by-trial basis. The visual targets consisted of a 
picture of an infant long-tailed macaque face (6.5 × 6.5 cm), or an 
abstract geometric pattern (6.5 cm × 6.5   cm; Figure  2A). The 
vocalization was matched with the long-tailed macaque face while 
the pure tone trained with the geometric pattern. Along the steps 
of the location-sound milestone, the intensity of the sound was 
gradually increasing (in steps of 10 dB) from 30 ± 2 dB SPL on 
step 16 to a final loudness of 72 ± 2 dB SPL on step 22. (3) Distractor 
milestone (steps 31–49). Here, the AUT trained the animals to 
discriminate the two visual targets by introducing a second visual 
target as a distractor with a smaller size than the target. A second 
visual target (distractor) was displayed together with the first target 
but on the opposite side of the screen, at the same eccentricity. In 
the case of a ‘vocalization’ trial, the visual distractor was the 
geometric pattern and vice versa. The distractor was gradually 
increased in size on each step from 0.3  cm × 0.3  cm in step 31 up 
to 6.5  cm × 6.5 cm in step 50 (step:size – 31:0.9 cm2, 32:1.8 cm2, 33: 
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2.56 cm2, 34: 4.84 cm2, 35: 8.41 cm2, 36: 11.55 cm2, 37: 13.69 cm2, 38: 
15.21 cm2, 39: 17.64 cm2, 40: 20.25 cm2, 41: 22.09 cm2, 42: 25 cm2, 43: 
28.09 cm2, 44: 32.49 cm2, 45: 34.81 cm2, 46: 36 cm2, 47: 38.44 cm2, 48: 
39.69 cm2, 49: 40.96 cm2, 50:42.25 cm2) at which point it reached the 
same size as the target. Throughout the protocol, the lack of further 
interaction within 8 s after trial initiation resulted in an aborted 
trial, and the trial outcome was labeled as ‘ignored.’ The AUT aimed 
to instruct the animals in a visuo-acoustic discrimination 
experiment. They had to distinguish two different sounds and 
select the corresponding visual stimulus to indicate their choice.

Acoustic-only discrimination task

After having completed the AUT protocol, and therefore having 
reached step 50, animals were presented with an acoustic-only 2 AC 
task in which they had to discriminate a vocalization from a pure 
tone train and report their choice by touching the correspondent 
visual target on the screen. As mentioned earlier, the vocalization 
was associated with the picture of an infant long-tailed macaque, 
whereas the pure tone train with a geometric pattern. This 
association was instructed during the AUT protocol (steps 1–49). In 
contrast to the AUT protocol, in step 50, animals were required to 
rely solely on acoustic cues to identify the target of a given trial and 
thus obtain the reward above chance. A trial was counted as correct 
when an animal could respond to the sound with the correct visual 
target on the screen and rewarded with 0.5 ml of juice, followed by 
a 1–2 s timeout. When the animal chose the wrong visual target, the 
screen turned gray for 8 s, during which interactions with the 
touchscreen were ignored. Throughout this task, the lack of further 
interaction within 8 s after trial initiation resulted in an aborted trial, 
and the trial outcome was labeled as ‘ignored.’

Data treatment and statistics

Data acquisition, formatting, and analysis were performed 
using Python 3.5.3 and 3.7.7. All figures, means, and medians were 
calculated using the Python libraries Numpy, Pandas, Seaborn, and 
Matplotlib. Double-sided Pearson’s correlations were calculated 
using the module pingouin. Psychometric functions for obtaining 
thresholds in size difference were calculated using the module 
psignifit (Schütt et  al., 2016) and setting the fit to cumulative 
normal sigmoid function, with all parameters free and with 95% 
confidence intervals. This resulted in the following function:

 
ψ λ γ γ λ γx m w S x m w; , , , ; ,( ) = + − −( ) ( )1

Where m represents the threshold (the level at 0.5), w 
represents the width (difference between levels 0.5 and 0.95), λ 
and γ represent the lower and upper asymptote, respectively.
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