AUTHOR=Bartoň Marek , Rapcsak Steven Z. , Zvončák Vojtěch , Mareček Radek , Cvrček Václav , Rektorová Irena TITLE=Functional neuroanatomy of reading in Czech: Evidence of a dual-route processing architecture in a shallow orthography JOURNAL=Frontiers in Psychology VOLUME=13 YEAR=2023 URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2022.1037365 DOI=10.3389/fpsyg.2022.1037365 ISSN=1664-1078 ABSTRACT=Introduction

According to the strong version of the orthographic depth hypothesis, in languages with transparent letter-sound mappings (shallow orthographies) the reading of both familiar words and unfamiliar nonwords may be accomplished by a sublexical pathway that relies on serial grapheme-to-phoneme conversion. However, in languages such as English characterized by inconsistent letter-sound relationships (deep orthographies), word reading is mediated by a lexical-semantic pathway that relies on mappings between word-specific orthographic, semantic, and phonological representations, whereas the sublexical pathway is used primarily to read nonwords.

Methods

In this study, we used functional magnetic resonance imaging to elucidate neural substrates of reading in Czech, a language characterized by a shallo worthography. Specifically, we contrasted patterns of brain activation and connectivity during word and nonword reading to determine whether similar or different neural mechanisms are involved. Neural correlates were measured as differences in simple whole-brain voxel-wise activation, and differences in visual word form area (VWFA) task-related connectivity were computed on the group level from data of 24 young subject. Trial-to-trial reading reaction times were used as a measure of task difficulty, and these effects were subtracted from the activation and connectivity effects in order to eliminate difference in cognitive effort which is naturally higher for nonwords and may mask the true lexicality effects.

Results

We observed pattern of activity well described in the literature mostly derived from data of English speakers – nonword reading (as compared to word reading) activated the sublexical pathway to a greater extent whereas word reading was associated with greater activation of semantic networks. VWFA connectivity analysis also revealed stronger connectivity to a component of the sublexical pathway - left inferior frontal gyrus (IFG), for nonword compared to word reading.

Discussion

These converging results suggest that the brain mechanism of skilled reading in shallow orthography languages are similar to those engaged when reading in languages with a deep orthography and are supported by a universal dual-pathway neural architecture.