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Several studies highlight the importance of the order of different instructional 

methods when designing learning environments. Correct but also erroneous 

worked examples are frequently used methods to foster students’ learning 

performance, especially in problem-solving. However, so far no study 

examined how the order of these example types affects learning. While the 

expertise reversal effect would suggest presenting correct examples first, the 

productive failure approach hypothesizes the reversed order to be learning-

facilitating. In addition, congruency of subsequent exemplified problems was 

tested as a moderator of the effect of order on learning. For example, with 

arithmetic tasks, congruent problems target exactly the same calculation while 

incongruent problems refer to different calculations. Following cascade theory, 

a model of cognitive skill acquisition, presenting correct examples first should 

be more effective when the subsequent exemplified problems are different. To 

test the (conflicting) hypotheses, 83 university students were assigned to one 

of the four conditions in a 2 (correct vs. erroneous example first) × 2 (same vs. 

different exemplified problems) between-subject design. Learners navigated 

through a slideshow on the topic of Vedic mathematics consisting of explicit 

instruction, worked examples differing in terms of the experimental condition, 

and transfer problems. Although no main or interaction effects were found 

regarding students’ learning performance, mediational analysis offered support 

for the expertise reversal effect, as it indicated that there is a significant indirect 

effect of order via mental load on learning. Presenting correct examples first 

and erroneous examples second resulted in a lower mental load, which in 

turn was associated with better learning performance. In contrast, presenting 

erroneous examples first and correct examples second resulted in a more 

accurate self-assessment of learning performance. These findings offer first 

insights into the question of how the presentation order of different example 

types impacts learning and provide practical recommendations for the design 

of educational media. Results are discussed in light of the ongoing debate 

regarding the question if less guided instructional methods should precede or 

succeed more guided methods.
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Introduction

A learning unit that aims to teach problem-solving skills such 
as algebra is typically composed of multiple teaching methods that 
can differ regarding their level of instructional guidance 
(Kirschner et al., 2006). More guided methods include for example 
the presentation of explicit instructional text or correct worked 
examples, which provide structure and direct the learner in the 
process (Sweller et  al., 1998; Loibl et  al., 2017). Less guided 
methods, on the other hand, include for example embedding 
problem-solving tasks or erroneous worked examples, which have 
more of an explorative character and ask learners, at least partly, 
to develop solutions by themselves (Große and Renkl, 2007; 
Kapur, 2008). Various studies have already confirmed the 
conduciveness of each of these teaching methods for deeper 
learning processes (e.g., Sweller and Cooper, 1985; Kalyuga, 2007; 
Booth et al., 2013). In addition, research has investigated the order 
in which those methods should be delivered for effective learning 
(e.g., Van Gog et al., 2011; Kapur, 2014). The results show that 
order can be a decisive factor for learning success. However, no 
experimental study has yet investigated if and how the order of 
correct and erroneous worked examples affects learning-related 
variables such as learning success, cognitive load, and 
metacognitive variables such as the judgment of learning (JOL). 
Given the effects of order in the context of other instructional 
methods and findings that underline the value of using both types 
of examples in the educational process, this question is of great 
importance (e.g., Durkin and Rittle-Johnson, 2012; Heemsoth and 
Kleickmann, 2018). The present work aims to close this research 
gap and to further examine whether a potential effect of order is 
dependent on the congruency of the subsequent exemplified 
problems (i.e., whether the correct worked example represents the 
solution for the erroneous worked example or the solution for a 
different problem).

Worked examples

Based on the cognitive load theory (CLT) by Sweller et al. 
(1998), the worked example effect postulates that interspersing 
already worked-out solutions in a learning unit instead of solely 
presenting problem-solving tasks can be beneficial for knowledge 
acquisition (Sweller and Cooper, 1985). CLT understands learning 
as a process in which schemata (i.e., associative knowledge 
structures) are either constructed by linking new information 
elements with prior knowledge in working memory or they get 

automated through repeated recall. A central assumption of CLT 
is that the capacity of working memory, in contrast to long-term 
memory, is severely limited in terms of the amount that can 
be processed simultaneously. Another important assumption of 
CLT is the distinction between different types of cognitive load, 
which have an additive character concerning the capacity of 
working memory. Recent conceptions of the CLT distinguish 
between the intrinsic cognitive load and the extraneous cognitive 
load (Sweller, 2010; Kalyuga, 2011; Kalyuga and Singh, 2016; 
Sweller et al., 2019; Jiang and Kalyuga, 2020). The intrinsic load is 
caused by the complexity of the subject at hand for the learner and 
by that, it is considered to be  essential or productive for 
understanding. The complexity is in turn caused by the element 
interactivity (i.e., the number of information elements that have 
to be processed simultaneously) and the domain-specific prior 
knowledge. High prior knowledge lowers the number of the to-be-
processed elements in working memory as the learner is familiar 
with the topic and recognizes the meaning of the given 
combination of information elements automatically. By that, 
several subordinate information elements are structured into a few 
superordinate elements which reduces the total complexity. For 
the design of learning materials, CLT thus suggests that the 
intrinsic load should be  sensibly controlled and successively 
adapted to the learner’s expertise (Sweller et al., 1998; Kalyuga, 
2007). The extraneous load, on the other hand, is not caused by 
the learning subject itself, but by the design of the learning 
environment, and by that it is considered to be unessential or 
unproductive for understanding the subject. For example, 
unimportant additions or awkward wording can increase the 
extraneous load. The CLT thus suggests that the extraneous load 
should be reduced in the design of learning materials so that the 
cognitive resources are not wasted (Sweller et al., 1998; Kalyuga, 
2007). Therefore, the CLT generally supports guided teaching 
methods through which learners are directed and supported in 
their learning process. In contrast, strategies such as discovery 
learning are rejected (Kirschner et al., 2006).

Regarding worked examples, the CLT (Sweller et al., 1998) 
predicts a learning-promoting effect compared to problem-
solving tasks since the former exerts a lower extraneous load 
(Sweller and Cooper, 1985). Sweller and Cooper (1985) argue 
that pure problem-solving is associated with a heavy load 
because cognitive resources are expended on solving the task at 
hand. The learner has to perform a means-ends analysis to find 
appropriate operators for transforming an actual state into the 
desired state. This analysis or search requires the maintenance 
of many elements of information, is usually very unsystematic, 
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and proceeds slowly, in particular for novices with a low 
domain-specific prior knowledge (Renkl, 2014). However, 
according to Sweller and Cooper, the goal of the learning 
process is not the solution of a concrete task, but the 
construction of generalized problem-solving schemata by the 
learner, which can be  applied after the learning phase. The 
means-ends analysis during problem-solving thus can be seen 
as an additional extraneous load that interferes with the 
learning process. In general, worked examples have the 
advantage of eliminating the need for a means-ends analysis 
during learning. The individual solution steps and operators are 
already given so that the learner can concentrate solely on 
deriving general patterns for problem-solving from the example. 
In this respect, worked examples are generally regarded as a 
comparatively guided and structure-preserving instructional 
method (e.g., Sweller et al., 1998; Kapur and Bielaczyc, 2012).

Many studies have empirically confirmed that a mixture of 
worked examples and problem-solving tasks is better than 
problem-solving only regarding learning performance (e.g., 
Sweller and Cooper, 1985; Cooper and Sweller, 1987; Paas, 1992; 
Carroll, 1994; Paas and Van Merrienboer, 1994; Nievelstein et al., 
2013), cognitive load (e.g., Sweller and Cooper, 1985) and learning 
efficiency when learning performance is related to time 
expenditure (McLaren et  al., 2008, 2016). The effect was also 
replicated in studies in which the control group received additional 
assistance (Cooper and Sweller, 1987; Schwonke et al., 2009) and 
in studies in which the experimental group received worked 
examples only instead of a mixture of worked examples and 
problem-solving tasks (Paas, 1992). Overall, Crissman (2006) 
reported a meta-analytically determined mean effect size of 
d = 0.57 of worked examples versus problem-solving tasks 
concerning learning performance.

Erroneous worked examples

Traditional research on the worked example effect has 
mainly focused on completely correct examples (e.g., Paas, 
1992; Sweller et al., 1998). Over time, however, a branch of 
research has emerged that investigates the learning 
effectiveness of erroneous worked examples (e.g., Joung et al., 
2006; Große and Renkl, 2007). These can be  described as 
worked examples that contain at least one incorrect solution 
step. In this respect, worked examples can be  divided into 
correct examples (CE) and erroneous examples (EE). In the 
literature, various explanations are given for the learning-
promoting effect of EE compared to CE (Bransford and 
Schwartz, 1999; VanLehn, 1999; Siegler, 2002; Joung et  al., 
2006; Barbieri and Booth, 2016). One widely cited explanation 
is offered by cascade theory (VanLehn, 1999) which describes 
the learning or problem-solving process as a continuous 
sequence of impasses, reflections, and repairments. An 
impasse is a kind of dead end, which means the learner finds 
themselves at a state during the problem-solving in which they 

lack the correct operators to transform the actual state into the 
target state. According to cascade theory and contrary to CLT 
(Sweller et al., 1998), such impasses are valuable for generating 
problem-solving schemes because they encourage reflection. 
Reflection expands previous knowledge. In the best case, the 
learner finds the correct operator and can free himself or 
herself from the impasse. EE may be more likely to provoke 
such impasse situations than CE (Große and Renkl, 2007; 
Heemsoth and Heinze, 2014). The assignment to comprehend 
why a correctly applied problem-solving operator is correct 
probably does not stimulate as much reflection on the valid 
rules and limits of this operator as the assignment to 
comprehend why an incorrectly applied operator is incorrect 
(Siegler and Chen, 2008). In the first case, it is obvious to 
simply rely on the given answer. In the second case, the person 
must delve deeper into the subject matter to generate an 
answer (Siegler and Chen, 2008).

Overall, empirical studies show that EE compared with CE 
may indeed have a positive impact on learning (Joung et al., 
2006; Kopp et  al., 2008; Booth et  al., 2013; Heemsoth and 
Heinze, 2014). For example, Booth et al. (2013) showed that 
students presented with multiple EE on algebra developed 
better conceptual understanding after the intervention than 
those presented with multiple CE. However, some studies 
found either no learning advantage (Wang et  al., 2015; 
McLaren et al., 2016; Heemsoth and Kleickmann, 2018) or, in 
line with the contrasting CLT framework, even a learning 
disadvantage compared to CE (Große, 2018). This suggests 
that, as with most design principles, there are factors that 
moderate the learning effect of EE compared to CE.

Furthermore, it was investigated how effective a mix of CE 
and EE is for learning. Some studies compared the effectiveness of 
such a condition with the exclusive presentation of EE (Booth 
et al., 2013; Heemsoth and Kleickmann, 2018). Heemsoth and 
Kleickmann (2018) found a significant difference in favor of the 
mixed condition, while Booth et al. (2013) found no difference. 
Other studies compared the effectiveness of a mixed condition 
with CE presentation only (Große and Renkl, 2007; Durkin and 
Rittle-Johnson, 2012; Booth et al., 2013; Zhao and Acosta-Tello, 
2016; Huang, 2017; Heemsoth and Kleickmann, 2018; Loibl and 
Leuders, 2019). Here, only one of the studies found no significant 
differences (Huang, 2017). In the remaining studies, however, 
especially those which explicitly prompted the learner to compare 
both solution attempts, the mixed condition consistently proved 
to be more conducive to learning than the presentation of CE 
alone (Große and Renkl, 2007; Durkin and Rittle-Johnson, 2012; 
Booth et al., 2013; Zhao and Acosta-Tello, 2016; Heemsoth and 
Kleickmann, 2018; Loibl and Leuders, 2019). Overall, these 
studies indicate that implementing both types of examples in a 
learning process can be useful. However, the question remains 
unclear whether the order of presentation (i.e., the order of 
cognitive processing) is decisive for learning success and, if so, 
whether CE should be  presented first or EE should 
be presented first.
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Theories on order effects

In the following, two theoretical perspectives are presented 
which allow deriving assumptions on the question of whether 
more guided instructional methods such as CE or less guided 
instructional methods such as EE should take place first in a 
learning environment.

Expertise reversal effect
The expertise reversal effect can be classified as a form of 

aptitude-treatment interaction (Kalyuga, 2007). This is a class of 
interaction effects in which a person’s dispositional characteristics 
influence how certain instructional interventions affect the 
person’s learning success (e.g., Cronbach and Snow, 1977). The 
expertise-reversal effect refers to the characteristics of prior 
knowledge and postulates that the expertise can moderate the size 
as well as the direction of several learning effects such as the 
worked example effect (Kalyuga et al., 2000; Chen et al., 2017). In 
its original formulation, the concept does not specify in which way 
expertise changes these effects as it merely states that the 
redundancy and thus the learning hindrance of content results 
from the ratio of information content to prior knowledge 
(Kalyuga, 2007). In general, though, studies hypothesize expertise 
reversal effects in such a way that guiding and structuring teaching 
methods such as direct instruction are predicted to be  more 
effective for novices (Kalyuga, 2007). For experts, the same 
methods are predicted to be  less effective or to even inhibit 
learning compared to reduced or challenging learning materials 
such as problem-solving (e.g., Kalyuga et al., 1998; Tuovinen and 
Sweller, 1999; Kalyuga and Sweller, 2004; Kalyuga, 2007).

That prior knowledge influences the effect size of certain 
instructional methods can be theoretically derived from CLT 
(Kalyuga et  al., 1998; Sweller et  al., 1998; Kalyuga, 2007). 
Accordingly, a poorly structured learning text with complex 
content exerts not only a high extraneous load but also a high 
intrinsic load on a person with little prior knowledge in the 
subject area leading to an overload of the working memory 
capacity. For example, signaling keywords can help to improve 
the learner’s orientation and thus at least reduce the extraneous 
load caused by poor structuring. This brings the learner’s overall 
load back into an acceptable range. If the same text is read 
without signaling but by a person with more prior knowledge 
in the subject area, the extraneous load is still high but the 
intrinsic load of the text is lower. The total cognitive load for the 
learner remains acceptable. Consequently, signaling is less 
important for the experienced learner.

That prior knowledge influences the direction of effect of 
certain instructional methods (i.e., it has a reversing influence) is 
theoretically justified in different ways depending on the given 
method of instruction (Kalyuga et al., 1998; Sweller et al., 1998; 
Renkl and Atkinson, 2003; Kalyuga, 2007). A reversing influence 
of prior knowledge on instructional methods that affect learner 
activation, just like problem-solving or EE, is explained in two 
ways, among others (Sweller et  al., 1998; Renkl and 

Atkinson, 2003). On the one hand, according to Sweller et al. 
(1998), it can be problematic from a motivational point of view if 
a learning environment is based exclusively on examples. This can 
lead to learners processing the material only superficially, as their 
participation is not essential for completing the learning 
environment. Therefore, in later learning phases, when learners 
already have differentiated and largely automated solution 
schemes and problem-solving activities no longer provoke a large 
extraneous load, problem-solving tasks can be  effective for 
learning by stimulating thinking and keeping motivation high. On 
the other hand, Renkl and Atkinson (2003) argue that problem-
solving tasks are useful in later learning phases since the learning 
goal at this point is not schema construction but schema 
automation. This is promoted through the repeated recall of 
already constructed schemata. The independent solving of tasks 
in problem-solving likely promotes schema-recall more than 
worked examples. In this respect, concrete problem solving does 
not represent a learning-irrelevant, but rather a learning-relevant 
burden, not in early but later learning phases.

The expertise reversal effect was first empirically investigated 
and confirmed in a series of longitudinal studies by Kalyuga et al. 
(1998, 2000, 2001a,b). Since then, several studies have replicated 
the effect in the context of different methods or operationalizations 
of the construct of expertise and design principles (e.g., Rey and 
Buchwald, 2011; Nievelstein et al., 2013; for an older review see 
Kalyuga, 2007). Most importantly, expertise has been shown to 
moderate the learning facilitation of CE compared to problem-
solving tasks (Tuovinen and Sweller, 1999; Kalyuga et al., 2001a,b; 
Kalyuga and Sweller, 2004). These studies showed that especially 
in early learning phases CE rather than problem-solving, and in 
later learning phases problem-solving rather than CE are more 
effective for learning.

It has also been investigated whether expertise influences the 
learning facilitation of EE or a mixture of EE and CE compared to 
CE. A few studies could not find an expertise-reversal effect 
(Durkin and Rittle-Johnson, 2012; Zhao and Acosta-Tello, 2016; 
Heemsoth and Kleickmann, 2018). However, these results might 
also be  explained by methodological artifacts. Some studies 
applied median splits based on a pretest when operationalizing 
prior knowledge to divide the subjects into novices and experts 
(Zhao and Acosta-Tello, 2016; Heemsoth and Kleickmann, 2018). 
This is problematic because the methodology of the median split 
can be accompanied by a reduction in test strength (Cohen, 1983) 
and also because it may happen that the variance concerning prior 
knowledge is not particularly high in the sample (Heemsoth and 
Kleickmann, 2018). Some studies were able to confirm an 
expertise reversal effect, though (Große and Renkl, 2007; 
Heemsoth and Heinze, 2014; Barbieri and Booth, 2016; Beege 
et al., 2021). Barbieri and Booth (2016) showed that EE were only 
more conducive to learning for subjects with lower prior 
knowledge. No differences were found for subjects with higher 
prior knowledge. However, in this analysis, the authors did not 
compare the effect of EE with the effect of CE but with the overall 
effect of CE and problem-solving only. This makes it impossible 
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to say whether EE is better than CE or better than problem-solving 
tasks for learners with low prior knowledge. Heemsoth and 
Heinze (2014) found an opposite pattern in their data. Learners 
with very low prior knowledge learned significantly better with 
CE. Learners with very high prior knowledge, on the contrary, 
learned significantly better with EE. However, it must be critically 
noted here that no interaction effect was tested and that only 
extreme groups (25%-percentile vs. 75%-percentile) were 
compared. A regression analysis with the condition and the 
continuous prior knowledge variable could not confirm any 
significant interaction. Große and Renkl (2007) also included 
prior knowledge, measured by a pretest, as a continuous variable 
in their regression model and did find a significant interaction 
effect. They found the same pattern as Heemsoth and Heinze 
(2014). Learners with low prior knowledge learned better with 
material that contained only CE. Learners with higher prior 
knowledge, on the other hand, learned better with material that 
consisted of half CE and half EE. Similarly, Beege et al. (2021) 
found an interaction effect in that EE improved test performance 
for high-prior knowledge learners, while it had no effect for 
low-prior-knowledge learners. In line with the expertise-reversal 
effect, these studies may explain the somewhat inconsistent 
findings on the effect of EE vs. CE by suggesting that prior 
knowledge is a reversing moderating factor in learning with either 
CE or EE.

Productive failure
Contrary to expertise reversal, productive failure is a 

learning concept developed by Kapur (2008). It classifies as a 
minimally-guided approach that predicts learning advantages 
of less structured and less directive learning environments 
(Kirschner et al., 2006). More specifically it relates to concepts 
that Loibl et  al. (2017) termed PS-I approaches (problem-
solving first, instruction second). These do not reject the use 
of directive instructions but suggest using them rather in later 
than earlier phases of skill and knowledge acquisition 
(Schwartz and Bransford, 1998; Schwartz and Martin, 2004; 
Kapur, 2008). As to productive failure, learners should 
be  confronted with complex, for the learner probably 
unsolvable problems at the very beginning of a learning 
process, and in the absence of any supportive instruments or 
assistance. Kapur calls this first phase the exploration and 
generation phase since the learner should independently 
search for working solution strategies and apply them on a 
trial-and-error basis. After the learner has presumably worked 
through the tasks unsuccessfully, he or she is then taught the 
correct problem-solving strategies in a well-structured and 
guided learning environment. This second phase is called the 
direct instruction or consolidation phase (Kapur, 2010; Kapur 
and Bielaczyc, 2012). In this phase, further practice tasks are 
also presented following the instruction. The basic assumption 
of productive failure is thus that the problem-solving – 
instruction order is more conducive to learning than the 
reverse order. Kapur and Bielaczyc (2012) have formulated 

three design principles for learning environments that 
promote the occurrence of productive failure effects: Firstly, 
an appropriate medium level of difficulty must be chosen for 
the learning tasks. It must be possible to draw on certain prior 
knowledge and to work on or solve the tasks in different ways. 
Secondly, the decisive features of the correct solution strategies 
must be explained and elaborated. Thirdly, learners should 
be  enabled to compare the independently developed and 
incorrect solution strategies with the correct ones.

In deriving assumptions for learning, the productive failure 
approach, like the expertise-reversal effect, adopts a cognitive 
perspective. Kapur (2008) presumes a learning advantage of 
productive failure settings primarily in the preparatory character 
of the exploration phase, which makes better use of the 
instructional phase. He cites several explanations for this (Kapur, 
2008, 2010, 2014). Firstly, relevant prior knowledge is identified 
and activated by the learner during the exploration phase (Kapur, 
2010). This makes it more cognitively available in the subsequent 
instructional phase and the new information can be  better 
classified and understood. Secondly, the learner can familiarize 
himself with the problem structure through the preliminary 
exercise, which makes orientation easier during the instruction 
phase (Kapur, 2010). Thirdly, the anticipated failure makes the 
learner aware of his knowledge gaps (Kapur, 2014). This enables 
the learner to direct his or her attention toward these gaps in the 
subsequent instructional phase. Fourth, in a productive failure 
condition, the learner is most likely to be confronted with his or 
her own erroneous solutions from the exploration phase which 
provides the opportunity to compare and contrast this kind of EE 
with CE presented in the consolidation phase (Kapur, 2014). This 
process can be very helpful in clarifying the crucial features of 
correct solution schemes. Fifth, the exploration phase trains the 
learner to be flexible in his problem-solving strategy in the long 
run when confronted with new problems and to continuously 
adapt the model to new information and circumstances 
(Kapur, 2008).

Several empirical studies have already been conducted to 
test these claims (e.g., Kapur, 2008, 2010, 2012, 2014; Kapur 
and Bielaczyc, 2012; Loibl and Rummel, 2014). All these 
studies showed significant learning differences as assumed by 
the productive failure approach. However, it must be critically 
noted that in these studies not only the order of the exploration 
and instruction phase but also other characteristics (may) 
varied between the conditions, and confounding is therefore 
possible (see also Ashman et al., 2020, for this reasoning). For 
example, one study, as a quasi-experiment, did not randomly 
assigned the experimental conditions but compared whole 
classes of students (Loibl and Rummel, 2014). In another 
study, group work was only facilitated in the productive failure 
condition (Kapur and Bielaczyc, 2012). Further studies used 
different teachers for carrying out the direct instruction phase 
or this phase was even carried out completely different in 
terms of content or format (Kapur, 2010, 2012; Kapur and 
Bielaczyc, 2012).
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Empirical findings on order effects

In the following, experimental studies that exclusively 
manipulated the order of more (e.g., explicit instruction or CE) 
and less guided (e.g., problem-solving) instructional methods will 
be discussed. The findings of these studies are quite inconsistent. 
Many findings support the expertise reversal effect as well as CLT 
and thus suggest that more guided instructional methods should 
be implemented first (Renkl et al., 2000, 2004; Atkinson et al., 
2003; Renkl and Atkinson, 2003; Salden et al., 2010; Van Gog 
et al., 2011; Fyfe et al., 2014; Leppink et al., 2014; Hsu et al., 2015). 
For example, several studies investigated the guidance fading 
principle (Renkl et al., 2000, 2004; Atkinson et al., 2003; Renkl and 
Atkinson, 2003; Salden et al., 2010). In fading guidance conditions, 
learners receive only CE at the beginning of the learning phase, 
then they proceed with so-called completion tasks in which 
individual solution steps are missing, and at the end, they receive 
problem-solving tasks without any assistance. In all studies, this 
method proved to be more conducive to learning than a control 
group, which received multiple CE – problem pairs. Further 
studies indicate that CE should be  presented before problem-
solving tasks in the learning process rather than the other way 
around (Van Gog et al., 2011; Leppink et al., 2014). This order was 
found to lead to both better learning performance and lower 
mental effort. In addition, the study by Fyfe et al. (2014) indicates 
that conceptual instruction should be presented before problem-
solving tasks as this order led to better problem-solving 
performance on a post-test.

However, there are also contradictory findings that 
support the productive failure approach and suggest that less 
guided methods should be  implemented first (DeCaro and 
Rittle-Johnson, 2012; Kapur, 2014; Rittle‐Johnson et al., 2016; 
Lai et al., 2017; Weaver et al., 2018). Kapur (2014) investigated 
the effect of sequencing an instructional phase in which a 
teacher presented CE and problem-solving tasks on the topic 
of standard deviation and provided feedback on the latter and 
a pure problem-solving phase in which students were 
individually asked to collect as many solutions as possible. In 
the subsequent learning test, there were no differences 
between the groups in terms of problem-solving performance. 
However, students from the problem-solving – instruction 
condition performed better in terms of conceptual knowledge. 
Further studies confirm this finding concerning the expansion 
of conceptual knowledge (DeCaro and Rittle-Johnson, 2012; 
Lai et al., 2017; Weaver et al., 2018) but also partly concerning 
problem-solving performance (Lai et al., 2017), even though 
the two learning phases were sometimes presented differently 
in these studies. Sometimes, additional guiding aids were 
implemented in the problem-solving phase, such as the 
opportunity for collaborative exchange with classmates 
(Weaver et  al., 2018) or corrective feedback (DeCaro and 
Rittle-Johnson, 2012). In another study, the direct instruction 
phase was made less guiding and more challenging by 
embedding several test questions (Lai et al., 2017).

Furthermore, several studies have been conducted examining 
the order of more and less guided methods in interaction with 
prior knowledge or topic complexity (Reisslein et al., 2006; Hsu 
et  al., 2015; Ashman et  al., 2020). Ashman et  al. (2020) 
manipulated the sequence of explicit instruction and problem-
solving. During instruction, a teacher explained to students how 
to calculate the energy efficiency of light bulbs. The students were 
also allowed to perform the calculations themselves and then 
participate in a discussion in which the teacher addressed, among 
other things, common erroneous solutions (comparable to EE). 
The first experiment showed that students from the explicit 
instruction – problem-solving order performed better on near 
transfer tasks in a delayed learning test a few days later. In a second 
experiment, the same design and learning topic was used again, 
but with more complex problem-solving. Here, the positive 
learning effect was confirmed with regard to the near transfer 
tasks and the same effect also occurred concerning the far transfer 
tasks. In the study by Hsu et al. (2015), a similar pattern emerged. 
They manipulated the order of CE and problem-solving and found 
an overall learning-promoting effect of the CE – problem-solving 
order. Subjects in this condition also reported lower mental effort. 
Furthermore, there was an interaction effect between order and 
expertise. The positive effect was only found for subjects who were 
classified as novices. In contrast, there was no difference for 
subjects who were classified as experts. Reisslein et  al. (2006) 
found that expertise even reversed the direction of the order effect. 
Globally, there was no effect of order. However, subjects who were 
classified as novices benefited from the CE problem-solving order 
in a transfer test, in line with the previously discussed results. 
Subjects who were classified as experts, on the contrary, benefited 
from the problem-solving – CE order. These studies indicate that 
the contradictory findings on the effect of order described above 
may be  explained by different levels of prior knowledge or 
element interactivity.

However, three research gaps emerge from the overall review 
of the literature on the order effects of more and less guided 
instructional methods. Firstly, while the order effects of explicit 
instruction and problem solving as well as of CE and problem-
solving have been empirically investigated several times, there is 
no investigation of an order effect of CE and EE on learning 
performance and cognitive load. Secondly, apart from the 
variables of prior knowledge or element interactivity, no other 
moderating variables have yet been investigated that may change 
the influence of the order of more and less guided methods. 
Thirdly, no study has yet investigated whether the order of more 
and less guided instructional methods affects metacognitive 
variables such as the JOL. JOL refers to one’s self-assessment of the 
level of knowledge related to a particular learning topic and is 
thought to be  a relevant factor in long-term learning success 
because it controls the future allocation of resources during self-
regulated learning activities (Nelson and Dunlosky, 1991; 
Dunlosky and Hertzog, 1998; Zimmerman, 2008; Metcalfe, 2009). 
For example, the discrepancy-reduction model proposes that 
more learning resources are used for topics that are perceived as 
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more difficult or for which a learner’s understanding is estimated 
to be lower (Dunlosky and Hertzog, 1998; Metcalfe, 2009). In this 
sense, JOL accuracy is considered decisive for self-regulated 
learning (Thiede et  al., 2003; Zimmerman, 2008; Baars et  al., 
2017). If the JOL controls the distribution of resources, then it is 
most conducive if learner neither underestimate nor overestimate 
in their JOL, but correctly allocate the required resources for each 
subtopic (Thiede et al., 2003; Metcalfe, 2009). The present study 
aimed at these three research gaps described above.

Hypotheses and research questions

Since CE can generally be classified as a guided instructional 
method and EE as a comparatively less guided instructional 
method, two theoretical perspectives were presented, which allow 
for the derivation of (contrasting) hypotheses regarding the 
question of whether more or less guided methods should be used 
first in the learning process. First of all, both, the expertise reversal 
effect and the productive failure approach assume that presenting 
less guided instructional methods first and more guided methods 
second exerts higher cognitive load than vice versa (Kalyuga, 
2007; Kapur, 2014). This is empirically supported by studies that 
manipulated the order of explicit instruction and problem-solving 
tasks as well as those that manipulated the order of CE and 
problem-solving tasks (Van Gog et  al., 2011; Kapur, 2014). 
Therefore, the following hypothesis was formulated:

H1: Learners in the CE-EE condition experience a lower 
cognitive load than learners in the EE-CE condition.

However, the two theoretical frameworks have contrasting 
suggestions for the effect of order on learning achievement. On 
the one hand, the expertise reversal effect (Kalyuga, 2007), 
following CLT (Sweller et  al., 1998), claims that it is more 
conducive to learning if more guided instructional methods take 
place before less guided instructional methods. This assumption 
is supported by various findings (e.g., Van Gog et  al., 2011). 
Moreover, studies show that expertise moderates the EE effect, 
and CE is more preferable when prior knowledge is low and EE 
is more preferable when prior knowledge is high (e.g., Große and 
Renkl, 2007). Therefore, according to the expertise reversal effect, 
it can be inferred that learners benefit from a CE-EE sequence. 
On the other hand, the productive failure approach (Kapur, 2008) 
predicts that it is more conducive to learning when less guided 
instructional methods precede more guided instructional 
methods. This assumption is also supported by several findings 
(e.g., Kapur, 2014). Therefore, according to the productive failure 
approach, it can be inferred that learners benefit from an EE-CE 
sequence. Due to the conflicting theoretical approaches and 
findings, the following research question was formulated:

RQ1: How does the order of CE and EE affect learning  
performance?

Furthermore, the two theories differ in their assumption 
about an indirect effect of order via cognitive load on learning 
achievement. On the one hand, the expertise reversal effect 
assumes that cognitive load caused by the design (e.g., order of 
methods) has a negative effect because the capacities of the 
working memory are strongly limited and thus can lead to an 
overload for some learners (Kalyuga, 2007). The productive failure 
approach, on the other hand, assumes that higher load after the 
entire learning phase should mainly be  attributed to the high 
demands in the initial exploration and generation phase. Although 
this presents a difficulty for the learner, it can also be  helpful 
because it supports schema assembly and helps the learner make 
better use of the subsequent instruction phase (Kapur, 2014). Due 
to the conflicting theoretical assumptions, following research 
question was formulated:

RQ2: Does cognitive load mediate the effect of the order of 
examples on learning performance?

Few studies examined the question of whether the influence 
of order is moderated by different variables (Reisslein et al., 2006; 
Hsu et al., 2015; Ashman et al., 2020). So far, these studies only 
identified prior knowledge and element interactivity as such 
variables. The present study aimed to investigate whether 
congruency between subsequent exemplified problems also 
interacts with the effect of order. According to cascade theory 
(VanLehn, 1999), EE are effective because they provoke impasses 
in which the learners are confronted with problems that they 
cannot solve immediately. If they first receive a CE and then an EE 
that exemplifies a different problem, they are likely to be prepared 
by the CE in finding and correcting the error and to do so more 
quickly. But the learners are still faced with an impasse as there is 
a problem that has to be solved first. However, if they first receive 
a CE and then an EE that exemplifies the very same problem the 
solution is already clear. Therefore, the learners will probably not 
deal with the EE in more depth. The beneficial reflection processes 
of EE according to the cascade theory are thus weakened. 
Therefore, the following hypothesis was formulated:

H2: The learning effectiveness of CE-EE order compared to 
EE-CE order is better if both examples exemplify different 
problems instead of the same problem.

As previously described, it has not yet been investigated 
whether the order of more and less guided instructional methods 
influences the metacognitive variables JOL and JOL accuracy, 
although these are very important for self-regulated learning. 
Social-cognitive accounts on self-regulated learning suggest that 
academic achievement under these circumstances is determined 
by the quality of self-observation, self-judgment, and self-
reaction (Zimmerman, 1989; Bandura, 1991; Broadbent and 
Poon, 2015). Accordingly, people monitor their own 
performance and compare them with certain standards. 
Depending on the result, they form judgments about their 
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performance and possibly regulate their learning activities in 
order to meet those standards. When working on different types 
of examples, learners should therefore observe how well they are 
understanding the exemplified procedures, thereby gathering 
information about their own abilities and forming a more or less 
accurate self-judgment. Moreover, the belief-adjustment model 
(Hogarth and Einhorn, 1992) proposes that the order in which 
different belief-relevant information is processed is crucial for 
belief formation. Depending on consistency, complexity, and 
length of information sets as well as response mode, primacy or 
recency effects can occur. JOL can be seen as one kind of belief 
formation as someone forms an opinion of one’s own state of 
learning. The learning experience with different instructional 
methods itself can be seen as relevant information for this belief 
formation. However, it is impossible to use the belief-adjustment 
model as a guiding framework for concrete hypotheses in the 
case of this study. One might determine a priori the length of the 
information set and the response mode but it is difficult to 
suggest if CE and EE are consistent in the information that they 
convey for JOL and to determine beforehand how complex the 
processing of these examples is. Furthermore, due to the lack of 
research, it is unclear which information CE and EE themselves 
convey for JOL and its accuracy. But since the model suggests 
that there might be any effect of order at all the following two 
research questions were formulated:

RQ3: How does the order of CE and EE influence JOL?

RQ4: How does the order of CE and EE influence 
JOL accuracy?

Materials and methods

Design and sample

The experiment followed a 2×2 between-subject design. The 
first factor represents the order (CE-EE vs. EE-CE) in which the 
CE and EE are presented. The second factor represents the 
congruence between the exemplified problems (same problems vs. 
different problems). Table 1 shows an overview of all experimental 
conditions. Before the study, an a priori power analysis was 
conducted using the software G*Power (Faul et al., 2007) for a 
2 × 2 analysis of variance with a test power of 1-ß =0.80 and an 
alpha level of α = 0.05. Since no study has yet examined the effect 
of the order of CE and EE, the weighted average effect of the two 
studies that manipulated the order of CE and problem-solving 
tasks was taken as the estimated effect size: f = 0.34 (Van Gog et al., 
2011; Leppink et al., 2014). The calculation resulted in a minimum 
sample size of n = 70.

The subjects were recruited via an e-mail distribution list of 
the Chemnitz University of Technology intended for study 
promotion. Current enrolment at a university was defined as a 
participation requirement to keep the sample as homogeneous as 
possible. Either eight euros or course credit was offered as 
compensation. A total of 86 students took part in the study. Two 
students were removed from the data set before the evaluation 
because they stated that they were not or no longer studying. 
Another student was removed because of technical difficulties 
during the survey that prevented the completion of one of the 
three learning units. The final sample size was therefore 83 
students (72.0% female; age: M = 23.15; SD = 3.12). 89.15% of the 

TABLE 1 Descriptive statistics for all experimental conditions.

Variable Unit Experimental condition

Same problem Different problems

CE-EE (N = 21) EE-CE (N = 21) CE-EE (N = 21) EE-CE (N = 20)

M (SD) M (SD) M (SD) M (SD)

Learning (%) 1 52.38 (36.87) 58.57 (41.14) 61.67 (37.13) 46.50 (41.46)

2 45.24 (40.08) 41.67 (34.98) 48.81 (37.08) 43.25 (29.92)

3 42.14 (41.55) 28.81 (35.63) 32.14 (37.97) 51.50 (36.82)

Mental load Overall 30.76 (7.99) 34.19 (6.00) 31.38 (5.30) 33.80 (5.43)

Mental effort Overall 36.14 (5.84) 34.57 (6.71) 35.19 (4.57) 34.90 (6.50)

JOLimmediate (%) 1 21.95 (19.82) 31.10 (27.84) 26.29 (22.23) 30.35 (28.65)

2 41.33 (30.20) 30.71 (29.41) 26.67 (27.36) 35.60 (27.28)

3 27.33 (28.43) 24.00 (24.72) 13.71 (16.33) 19.60 (18.43)

JOLdelayed (%) Overall 24.67 (21.93) 31.24 (26.85) 20.71 (13.72) 27.20 (22.98)

JOL accuracyimmediate (%) 1 −34.24 (26.72) −30.81 (31.65) −37.52 (35.68) −25.65 (28.19)

2 −4.86 (25.12) −13.57 (23.96) −22.86 (29.67) −8.90 (38.33)

3 −12.67 (28.16) −5.52 (22.91) −19.62 (34.73) −34.40 (30.92)

JOL accuracydelayed (%) Overall −21.05 (18.12) −9.56 (17.88) −25.48 (22.61) −15.47 (24.24)

The maximum value for mental load and mental effort was 42. Overall means that the variable did not ask for a single unit but the whole learning session. CE, correct example; EE, 
erroneous example; JOL, judgment of learning.
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students came from the [blinded for review]. 46.90% were enrolled 
in the Media Communication program, 29.62% in the Media and 
Instructional Psychology program, and 23.48% in other programs. 
Concerning the allowance, 69.88% opted for the course credit as 
compensation. Prior knowledge of the learning material of Vedic 
Mathematics was basically nonexistent. Only two participants 
stated that they had heard of the subject before, but were just like 
any other participant unable to solve any of the tasks in the 
subsequent pretest. Students were randomly assigned to one of the 
four conditions. There were no significant differences between the 
four conditions with regard to gender (p = 0.873), age (p = 0.649), 
university affiliation (p = 0.490), study program (p = 0.766), or 
prior knowledge (p = 0.585).

Learning environment

The learning environment in this study consisted of a 
slideshow on Vedic Mathematics. Vedic Mathematics is an 
alternative calculation method invented by Tirthaji (1965), which 
can be  used to solve rather complex mathematical problems 
relatively quickly without using a calculator. Three of these 
methods, also called rules, were selected as learning topics for this 
study and each formed an independent learning unit within the 
learning environment. The rule of the first unit was called “Vertical 
of powers of 10 and crosswise,” which concerned the multiplication 
of multi-digit numbers near powers of 10. The rule of the second 
unit was called “Vertical and crosswise,” which concerned the 
multiplication of any two-digit numbers. Lastly, the rule of the 
third unit was called “Division by 9 with remainder,” which 
concerned tasks where any number needs to be divided by nine.

The learning material contained a total of nine slides. Each 
unit contained three slides, one with direct instruction on the field 
of application and the methodology of the respective rule (see 
Appendix A), one slide with a CE, and one slide with an EE. The 
examples constituted the stimulus material. Which example was 
presented first and if the exemplified problems were the same or 
different was therefore dependent on the experimental condition. 
In addition, self-explanation prompts (“Try to understand why the 
examples are correct or incorrect and try to remember the correct 
solution steps for the test”) were inserted above the examples, as 
studies show that these are crucial for the learning effect of CE and 
EE (e.g., Chi et al., 1989; Große and Renkl, 2007; Hilbert and 
Renkl, 2009).

CE vs. EE
Except for the subheadings that marked the solutions as 

correct or erroneous, the CE and EE differed only in the errors 
implemented (see Figures 1, 2). Since each of the three vedic rules 
can be roughly divided into two sub-steps, each EE contained two 
errors. Two criteria were applied in the selection of the errors. 
Firstly, to tie in with most other studies on EE, there should 
be conceptual errors instead of random calculation errors (e.g., 
Siegler, 2002; Große and Renkl, 2007). Secondly, the errors should 

not affect the comprehensibility of the rest of the solution steps so 
that the examples remained comparable apart from the errors. For 
example, this excluded errors such as the omission of a digit-rich 
calculation step, which might have led to the example becoming 
clearer overall. For example, the first error in the EE of the second 
learning unit was that the middle number only contained one 
crosswise product instead of the sum of both crosswise products 
(see Figure  1). The second error was that the tens were not 
correctly transferred from the right to the middle number and/or 
from the middle number to the left number as they were added to 
the respective tens instead of the respective ones (see Figure 1).

Same vs. different exemplified problems
The same and different problems conditions differed in terms 

of the correspondence between the two exemplified calculation 
problems presented. While in the same problems condition the 
numbers in the problems were identical and the CE thus 
represented the solution for the EE (see Figure 1), the numbers in 
the different problems condition differed (see Figure  2). Two 
different problems were therefore created for each learning unit. 
The numbers were so different under the two versions that the 
solution process was also slightly structurally different. As a 
consequence, it was not enough for the learner to simply replace 
numbers in the solution. When creating the different versions, 
further care was taken that the examples did not differ too much 
from each other in terms of difficulty, to avoid an unnecessary 
increment in variance within the groups. Since the difficulty of the 
selected calculation problems still could ultimately differ despite 
these considerations, the use of the two problems per unit was 
randomized within the four conditions to exclude this potentially 
confounding variable. For example, the two problems of the 
second unit “Vertical and Crosswise” were 61 × 26 =? and 48 × 
34 =? The structural difference between the versions was that the 
former produced a one-digit number with the second vertical 
multiplication instead of a two-digit number as in the latter. This 
meant that, according to the vedic rule (see Figure  1), in the 
former only the tens of the middle sum had to be transferred while 
in the latter the tens of the right sum, as well as the tens of middle 
sum, had to be transferred.

Measures

Cognitive load
To check the cognitive load, mental load and mental effort 

were recorded. The mental load (α = 0.80) and mental effort 
(α = 0.87) scales by Krell (2015) were used as a basis and adapted 
for the context of learning with examples (see Appendix B). 
Both scales consist of six items each, which must be rated on a 
seven-point Likert scale (1–do not agree at all and 7–agree 
completely). The mental load scale records the subjective 
assessment of the complexity and difficulty of the learning topic. 
For example, one item was “The examples were difficult to 
understand.” The mental effort scale, on the other hand, records 

https://doi.org/10.3389/fpsyg.2022.1032003
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Wesenberg et al. 10.3389/fpsyg.2022.1032003

Frontiers in Psychology 10 frontiersin.org

the subjective assessment of the cognitive effort made by the 
learner. One item, for example, read “I have made an effort 
when working with the examples.”

The choice of scales considered recent conceptions of CLT 
(Sweller, 2010; Kalyuga, 2011; Sweller et  al., 2019), which 
differentiate between several levels of analysis of cognitive 
processing: First, the analysis of cognitive load, which describes 
the theoretical demand of a learning environment and includes 

intrinsic load and extraneous load. On the other hand, the analysis 
of cognitive resources, which are actually used for processing and 
includes germane and extraneous processing. A differentiation of 
intrinsic load and extraneous load was not made, since the 
intrinsic load is independent of the learning design according to 
the CLT (Sweller et  al., 1998) and thus any change in the 
extraneous load as a result of the manipulation should also 
be reflected in the level of the total load.

FIGURE 1

Slides with CE and EE in the same problem condition. The left example represents the CE and the right example represents the EE. Translated from 
German to English. Note that both examples were presented subsequently in the experiment.

FIGURE 2

Slides with CE and EE in the different problems condition. The left example represents the CE and the right example represents the EE. Translated 
from German to English. Note that both examples were presented subsequently in the experiment.
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Learning achievement
For the assessment of learning achievement, a total of six 

problem-solving tasks were created, for each of which five 
points could be achieved. One point was awarded for each 
successfully completed step. Each unit was targeted by two 
problems, one problemimmediate which was presented 
immediately after the unit, and one problemdelayed which was 
presented delayed at the end of the experiment together with 
the two tasks which targeted the other units. The problems of 
the tasks always followed the problems of one of the respective 
exemplified problems of the unit. The internal consistency 
between all three problemsimmediate (α = 0.32) and all three 
problemsdelayed (α = 0.42) was very low. This can probably 
be explained by the different complexity of the learning units. 
On average, significantly different percent of the points were 
achieved for the test problems of the first learning unit, 
M = 54.88, SD = 54.88, of the second learning unit, M = 44.76, 
SD =  35.22, and of the third learning unit, M = 38.49, 
SD = 38.41 [F(2,82) = 4.93, p = 0.008, ηp

2 = 0.06]. The both 
problems for each unit had good internal consistencies among 
themselves (α = 0.89; α = 0.88; α = 0.95). By respecting the 
internal consistency values and allowing a differentiated view 
of the effects with regard to the element interactivity, in the 
evaluation the learning achievement is considered separately 
by unit instead of point of presentation. For this purpose, the 
points from both corresponding problems were added 
together for each learning unit and divided by 10 (maximum 
number of points) to reach a percent value.

Metacognitive variables
A total of four scales were created to measure JOL. Three 

scales captured the JOLimmediate concerning one of each of the three 
learning units immediately after its completion: “What percentage 
of points do you  think you  would score in the following test 
item?.” The fourth scale recorded the JOLdelayed in relation to all 
three learning units after completion of the whole learning phase: 
“In your estimation, what percentage of points would you achieve 
in the following test on the application of the three vedic rules?”

JOL accuracy can be differentiated into relative and absolute 
JOL accuracy (Rhodes, 2016). In this study, absolute JOL accuracy 
was recorded because it indicates not only accuracy but also 
whether a learner underestimates or overestimates his or her own 
performance (Rhodes, 2016). Analog to JOL, four variables were 
calculated to measure JOL accuracy. Three variables represented 
the JOL accuracyimmediate concerning each of the three learning 
units. For this purpose, the percentage achieved in the immediate 
test task was subtracted from the corresponding JOLimmediate. 
Positive values indicate overestimation and negative values 
underestimation. The fourth variable measured the JOL 
accuracydelayed in relation to all three learning units after completion 
of the whole learning phase. For this purpose, the percentage 
achieved on the problemsdelayed was subtracted from the JOLdelayed. 
Positive values also indicate self-overestimation and negative 
values self-underestimation.

Procedure

The study was conducted via an online conference system. 
After a short welcome and introduction, the participants were 
distributed into separate conference rooms and asked to share 
their browser windows with the investigator. This was to ensure 
that the subjects were exclusively engaged in the study and that no 
attempts at deception could take place. The participants accessed 
the learning environment via a link. Figure  3 illustrates the 
procedure with all important stages for all four conditions. After 
some demographic information, they were asked about their 
previous knowledge. On the next page, they were introduced in a 
few sentences to the topic of Vedic Mathematics and informed 
about the procedure of the study. Then the learning phase 
according to the experimental condition began. First, the unit 
“Vertical of powers of 10 and crosswise,” then the unit “Vertical 
and crosswise” and finally the unit “Division by 9 with remainder” 
were completed. Each unit contained a total of five pages. On the 
first three pages, the learning material was presented, first one 
page with explicit textual instruction and then two pages with one 
example each. If the CE or EE was presented first and also if the 
second example exemplified the same problem as the first example 
depending on the condition. For these three learning pages, the 
processing time was limited to 2 min per page. First, to ensure a 
high level of difficulty and variance in the results, and second, to 
avoid subjects spending so much time on a slide that they struggle 
to understand and consequently skip the rest of the slides. In the 
run-up to the study, the 2  min proved to be  sufficient for 
independent testers to receive and elaborate on all the information 
on the slides at their leisure. Learners had the option to move on 
to the next page before the 2 min elapsed by pressing buttons 
labeled “Next” or “I have understood everything.” On the fourth 
page, the JOLimmediate for the respective rule was collected and on 
the last page, the problemsimmediate for the respective rule was 
presented. After going through all three units, participants 
reported their mental load and mental effort. Then the JOLdelayed 
was collected. Finally, a block with the problemsdelayed followed. 
After that, the experiment was finished.

Results

Multivariate analyses of variance (MANOVA), univariate 
analyses of variance (ANOVA) as well as mediation analyses were 
conducted to test the hypotheses and research questions. If the 
MANOVAs produced at least marginally significant F-values, 
separate ANOVAs were then conducted to test the individual 
variables. In MANOVA and ANOVA, the experimentally 
manipulated variables order and congruency were included as 
factors. According to several authors (e.g., Glass et al., 1972; Ito, 
1980), analyses of variance are robust to violations of the 
univariate and multivariate normal distribution and also robust to 
violations of variance homogeneity if the groups are similar in 
size, which is the case for this study. Therefore, we do not report 
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these test requirements. Only in the case of MANOVA, violations 
of multicollinearity (r > 0.80; see Pituch and Stevens, 2019) would 
be reported, if existent. The descriptive statistics are presented for 
all four experimental conditions in Table  1. For mediational 
analysis (confidence interval = 95%, bootstrap resamples = 5,000), 
Preacher and Hayes (2008) indirect bootstrapping method was 
used. For all mediational models, order of examples was set as 
independent variable and either mental load or mental effort as 
mediating variable. Following recent analyses (e.g., Rucker et al., 
2011; Loeys et  al., 2015), a correlation between predictor and 
dependent variable, that means a significant total effect, was not 
considered as a prerequisite for testing indirect effects. To enhance 
clarity, single paths are not reported when the indirect effect was 
non-significant.

Effects on cognitive load

A MANOVA with mental load and mental effort as 
dependent variables showed a marginally significant main 

effect for the factor order, Wilk’s Λ = 0.94, F(2,78) = 2.52, 
p = 0.087, ηp

2 = 0.06. However, there was neither a main effect 
for the factor congruence, Wilk’s Λ > 0.99, F(2,78) = 0.03, 
p = 0.968, ηp

2 < 0.01, nor an interaction effect, Wilk’s Λ > 0.99, 
F (2,78) = 0.19, p = 0.827, ηp

2 = 0.01. Separate ANOVAs were 
then conducted for the factor order. There was a significant 
medium effect on mental load, F (1,79) = 4.50, p = 0.037, 
ηp

2 = 0.05. The EE-CE group (M = 34.00, SD =  5.66, N = 41) 
reported higher mental load on average than the CE-EE group 
(M = 31.07, SD = 6.70, N = 42). There was no significant effect 
on mental effort, F (1,79) = 0.51, p = 0.479, ηp

2 = 0.01.

Effects on learning achievement

A MANOVA with learning performance from the first, 
second, and third learning unit as dependent variables showed 
neither a main effect for the factor order, Wilk’s Λ = 0.99, F 
(3,77) = 0.29, p = 0.836, ηp

2 = 0.01, nor a main effect for the factor 
congruence, Wilk’s Λ = 0.99, F(3,77) = 0.21, p = 0.887, ηp

2 = 0.01. 

FIGURE 3

Flowchart for the four different experimental conditions. Dark boxes represent learning material, bright boxes represent measures. CE, correct 
example; EE, erroneous example; JOL, judgment of learning.
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Furthermore, there was no interaction effect, Wilk’s Λ = 0.93, 
F(3,77) = 2.05, p = 0.117, ηp

2 = 0.07.

Indirect effects via cognitive load on 
learning achievement

In total, six mediational analyses were conducted with two 
different mediators (mental load or mental effort) and three 
different dependent variables (problemdelayed for Learning unit 1, 2 
or 3). Different from the other analyses, only the problemdelayed 
score was set as dependent variable to ensure antecedence in time 
of measurements since the immediate problem score was collected 
before the measurement of mental load and mental effort.

Mental load as mediator
For the first learning unit, the mediation analysis showed a 

significant partially standardized indirect effect of order via 
mental load on problemdelayed, β = −0.22; SE = 0.11; 95% CI [−0.44, 
−0.03]. Overall, there was no significant total effect of order on 
problemdelayed, β = −0.19; p = 0.398. Although, when mental load 
was added to the model the effect decreased, β = 0.03; p = 0.875. 
More specifically, presenting EE first and CE second resulted in 
higher mental load, β = 0.46; p = 0.035. Higher mental load in turn 
was associated with lower scores of problemdelayed, β = −0.47; 
p < 0.001.

For the second learning unit, the mediation analysis showed 
a significant partially standardized indirect effect of order via 
mental load on problemdelayed, β = −0.20; SE = 0.10; 95% CI [−0.39, 
−0.02]. Overall, there was no significant total effect of order on 
problemdelayed, β = −0.15; p = 0.503. Although, when mental load 
was added to the model the effect decreased, β = 0.05; p = 0.819. 
More specifically, presenting EE first and CE second resulted in 
higher mental load, β = 0.46; p = 0.035. Higher mental load in turn 
was associated with lower scores of problemdelayed, β = −0.42; 
p < 0.001.

For the third learning unit, the mediation analysis showed a 
non-significant partially standardized indirect effect of order via 
mental load on problemdelayed, β = −0.10; SE = 0.08; 95% CI 
[−0.29, 0.01].

See Figure 4 for graphical visualizations of all mediational 
models with mental load as mediator.

Mental effort as mediator
For the first learning unit, the mediation analysis showed a 

non-significant partially standardized indirect effect of order via 
mental effort on problemdelayed, β = −0.03; SE = 0.05; 95% CI 
[−0.14, 0.07].

For the second learning unit, the mediation analysis showed 
a non-significant partially standardized indirect effect of order via 
mental effort on problemdelayed, β = −0.03; SE = 0.05; 95% CI 
[−0.13, 0.07].

For the third learning unit, the mediation analysis showed a 
non-significant partially standardized indirect effect of order via 

mental effort on problemdelayed, β = −0.04; SE = 0.06; 95% CI 
[−0.17, 0.09].

Metacognitive variables

For JOLimmediate, a MANOVA was conducted with the 
corresponding variables for the first, second, and third learning 
unit. There was no effect for the factor order, Wilk’s Λ = 0.98, 
F(3,77) = 0.54, p = 0.659, ηp

2 = 0.02. An ANOVA was performed for 
the JOLdelayed. It showed no effect for the factor order, F(1,79) = 1.85, 
p = 0.178, ηp

2 = 0.02.
For JOL accuracyimmediate, a MANOVA was conducted with 

the corresponding variables for the first, second, and third 
learning unit. There was no effect for the factor order, Wilk’s 
Λ = 0.98, F(3,77) = 0.59, p = 0.625, ηp

2 = 0.02. An ANOVA was 
conducted for the JOL accuracydelayed. There was a small, 
significant main effect for the factor order, F(1,79) = 5.52, 
p = 0.021, ηp

2 = 0.02. As indicated by confidence intervals, both 
the CE-EE (M = −23.26, SD = 20.37, N = 42, 95% CI [−29.67, 
−16,86]) and the EE-CE group (M = −12.44, SD = 21.16, N = 41, 
CI [−18.99, −6,03]) underestimated their performance on the 
problemsdelayed. However, the EE-CE group underestimated their 
performance to a lesser extent and their estimation was closer 
to the actual performance.

FIGURE 4

Path models with standardized β-coefficients and factor order of 
example types (correct example first vs. erroneous example first) 
as predictor, mental load as mediator, and problemdelayed as 
criterion for all three learning units. The total effect is reported in 
parentheses. *p < 0.05; ***p < 0.001.
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Discussion

This study aimed to empirically test the opposing assumptions 
of the expertise reversal effect and the productive failure approach 
concerning the (indirect) effect of the order of CE and EE on 
learning performance. In addition, the aim was to investigate 
whether congruency between exemplified problems moderates 
the potential effect of order. Research questions and hypotheses 
on learning achievement, cognitive load (mental load, mental 
effort), and metacognitive assessment of learning performance 
(JOL and JOL accuracy) were formulated.

Summary and implications

Findings on cognitive load and learning 
achievement

H1 could be partially supported. Contrary to the hypothesis, 
the order did not influence mental effort. However, subjects in the 
EE-CE conditions rated their mental load significantly higher than 
subjects in the CE-EE conditions. This result is consistent with 
studies that manipulated the order of other guided and less guided 
instructional methods (Van Gog et al., 2011; Kapur, 2014). It also 
confirms both the expertise reversal effect and the productive 
failure approach, both of which assume that the presentation of 
less guided measures at the beginning of the learning phase is 
associated with higher cognitive load (Kalyuga, 2007; Kapur, 2014; 
Ashman et al., 2020).

Concerning RQ1, the analysis showed no significant main 
effect of the order of the two types of examples on learning 
performance. However, concerning RQ2, the mediational analysis 
offered a more precise picture of the relationship between order of 
examples, cognitive load and learning as it indicated for two of 
three learning units that order may have no total or direct but an 
indirect effect via mental load on learning. In all three units, 
presenting EE first and CE second resulted in higher mental load. 
Additionally, higher mental load, in turn, was associated with 
lower scores on the problem-solving tasks for the first two learning 
units. As CE can be considered as a guided type of instruction and 
EE as a comparatively less guided type of instruction since at least 
one solution step has to be  solved autonomously, this finding 
touches on the ongoing debate about the effectiveness of 
minimally guided and PS-I learning concepts (problem-solving 
first, instruction second) such as productive failure (e.g., Kirschner 
et al., 2006; Kapur, 2014; Loibl et al., 2017; Ashman et al., 2020). 
The non-significant total effect of order is in line with the so far 
inconsistent findings in this regard (e.g., Van Gog et al., 2011; 
Kapur, 2014). Nonetheless, the mediational analysis indicates that 
there are indeed pathways through which PS-I might have 
detrimental effects on learning, thereby supporting the CLT and 
the expertise reversal effect and challenging the idea of 
productive failure.

Contrary to mental load and the derivations from both, the 
expertise reversal effect and productive failure approach, mental 

effort neither acted as mediator nor was it significantly influenced 
by order. While both scales are used as indicators for cognitive 
load, mental load represents the perceived complexity of the 
learning material and mental effort represents the cognitive 
resources that have been actually devoted to learning the material. 
Therefore, it might be that the time limit during the learning phase 
was long enough to form an impression of difficulty but too short 
to offer variance in actual mental effort, thereby preventing 
significant effects.

H2 could not be confirmed. Congruency between examples 
had no moderating influence on learning performance. This result 
argues against cascade theory as an explanation for the learning 
effect of EE, which assumes that EE is effective in that it confronts 
learners with impasses where the correct solution step is not 
immediately recognizable, and thus reflection processes are being 
promoted (VanLehn, 1999). Following this explanatory approach, 
the positive effect would have been mitigated if, in a pair of 
examples that target the very same problem, the EE is presented 
after the CE (i.e., after the solution). However, this was not the case 
in this study and is possibly an indication that rather other 
mechanisms, such as the expansion of negative knowledge 
(knowing which solution strategies are wrong), are responsible for 
the learning-promoting effect of EE (Oser et al., 1999; Siegler, 
2002; Große and Renkl, 2007).

For the practical design of learning environments, the findings 
suggest to present CE first and EE second in order to make the 
learning experience more cognitively pleasant and less exhausting 
for the learner. If EE have to be presented in early learning phases 
though, teachers should be cautious that the implemented errors 
are not too difficult to find and correct to prevent possible 
cognitive overload. When considering the actual learning 
achievement instead of learning experience though, the results of 
this study do not allow clear-cut recommendations for the order 
of CE and EE. On first glance, it seems that the order as well as the 
congruency of examples is not of great importance. Following this, 
the focus should be  on making the examples themselves as 
conducive to instruct learners as possible. In addition, it could 
be useful to present the examples simultaneously and to ask the 
participants to compare them. This variant of presenting CE and 
EE has been shown in other studies to promote learning (Durkin 
and Rittle-Johnson, 2012; Heemsoth and Kleickmann, 2018; Loibl 
and Leuders, 2019). However, taking the mediational analysis into 
consideration, it seems that there is more to the effect of order on 
learning than the non-significant main effect would suggest. There 
might be ways in which order of examples does impact learning 
performance. Clearly more research is needed to further explore 
this relationship and to offer substantial recommendations 
for practitioners.

Findings on metacognitive variables
Concerning RQ3, order did not influence JOL. However, for 

RQ4, the EE first conditions were less likely to underestimate their 
delayed learning performance on all units than the CE first 
conditions. This effect of order may be interpreted in light of the 
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belief-adjustment model (Hogarth and Einhorn, 1992). The 
model’s concrete assumptions depend on consistency, complexity, 
and length of information sets as well as response mode. A priori 
we  could determine that as defined by Hogarth and Einhorn 
(1992) the length of information set was short (in total only six 
pieces of information). Additionally, we could classify the response 
mode as end-of-sequence mode since the JOL accuracydelayed was 
collected only once after the entire learning phase ended. A 
posteriori we can now say, as indicated by the mental load ratings, 
that complexity of information was rather high. If we assume that 
CE and EE convey inconsistent information the model predicts a 
recency effect to bias the JOL accuracy, which means the last piece 
of information should have been given more weight in judgment 
formation. Since the EE-CE order condition was more accurate, it 
follows that CE might be better for estimating one’s own JOL. To 
the best of the author’s knowledge, so far there has been no 
theoretical or empirical work that focused on order effects of 
different instructional methods on JOL. Therefore, these results 
shed first light in this regard and have important practical 
implications. It follows for the practical design of learning 
environments that CE should succeed EE to improve the accuracy 
of self-assessment, especially if the presentation of examples 
concludes the lesson and self-regulated learning activities follow. 
In this case, it is vitally important for learners to correctly assess 
their current understanding of contents because this will guide 
them in allocating their study time for different subjects (Metcalfe, 
2009). The trade-off with a higher cognitive burden for students 
during learning due to the CE-EE order might be  considered  
individually.

The finding that the sample as a whole was quite bad in 
estimating their performance is in line with many other studies 
(Dunlosky and Lipko, 2007; Prinz et al., 2020). However, according 
to Dunlosky and Lipko (2007), learners usually overestimate 
rather than underestimate themselves, like in this study. This 
divergence could be explained by the fact that different from other 
studies, we  set mathematical understanding instead of text 
comprehension as a learning goal (Dunlosky and Lipko, 2007; 
Prinz et al., 2020). In addition, the sample consisted largely of 
women. Consequently, some participants may have been biased 
through self-stereotyping when assessing their learning 
performance as bad mathematical ability is wrongly but commonly 
associated with the female gender (Watt, 2004; Burkley and 
Blanton, 2009). Interestingly, the overall underestimation of 
performance also contradicts research on the hard-easy effect 
which describes a well-documented bias in confidence ratings 
(Juslin et al., 2000; Moore and Healy, 2008). Although usually 
collected after a knowledge or performance test, confidence 
ratings are related to JOL as they represent the subjective 
confidence in or, differently termed, the judgment of one’s own 
specific knowledge. Supported by several empirical findings, the 
hard-easy effect proposes that difficult tasks foster overconfidence 
while easy tasks foster underconfidence (Juslin et al., 2000). As the 
mean performance on the problem-solving tasks was low to 
medium across all three units (see Table 1), the tasks difficulty can 

be  considered as rather high. However, students still 
underestimated instead of overestimated their performance, 
contradicting the hard-easy effect. From this finding it follows that 
for predicting accuracy it might be decisive if one’s own knowledge 
base is evaluated before or after a test-situation.

Limitations and future directions

The results of this study are limited in the sense that there are 
a few alternative explanations for the findings. Regarding the 
insignificant main effect of order, it can be  argued from a 
productive failure perspective that not all conditions for the 
occurrence of an order effect were fully met. The productive 
failure effect has so far been found mainly in problem-solving 
tasks and direct instruction, but not in EE and CE. EE resembles 
problem-solving in that solutions have to be  generated 
independently, but this usually applies only to a part and not to 
the whole task. Although, Kapur (2014) also conducted studies on 
vicarious failure in which learners, instead of generating solutions 
themselves, were presented with incorrect solutions by classmates 
and asked to evaluate them. This condition was found to be less 
beneficial than the classic productive failure problem-solving – 
direct instruction condition but still more beneficial than the 
direct instruction – problem-solving condition. Therefore, EE 
should at least in principle meet the criteria for a productive 
failure effect. Furthermore, unlike in the above-mentioned 
productive failure studies, we did not start with the exploratory 
method but with a short direct instruction phase. This was 
necessary so that the subjects had minimal prior knowledge of the 
topic and were able to recognize errors in the execution of the 
Vedic rules. However, this should not have prevented a true 
productive failure effect, since the EE themselves were followed by 
another form of guided instruction, namely the CE.

Secondly, the findings might only extend to learning 
environments that include EE with rather few errors. As the EE 
used in this study only include two errors the difference between 
EE and CE was rather small. This might have attenuated a possible 
effect and explain why no effect was found in contrast to former 
studies where the difference between the instructional methods 
used was more significant (e.g., Van Gog et al., 2011; Kapur, 2014). 
Future studies could include more errors in the EE to test this 
alternative explanatory approach.

Thirdly, it is possible that an effect of order did not occur 
because learners only focused on the CE when learning and 
tended to ignore the EE, for example, because the EE was judged 
to be too complex and difficult (Van Gog and Paas, 2008). This 
explanation is also supported by the finding that learners invested 
less time in learning with the EE (M = 59.87, SD = 35.52) than with 
the CE (M = 99.56, SD = 25.98), although EE should actually cause 
a higher cognitive load than CE and learners thus need more time 
to process them (McLaren et  al., 2016). This finding also 
contradicts other studies that have compared the learning time of 
CE and EE (e.g., McLaren et al., 2016). In these studies, however, 
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learners were also asked to correct the EE in writing. In this study, 
this was avoided to keep the conditions comparable. As a result, 
the implemented self-explanation prompt may have lost its 
effectiveness. Although collecting qualitative data was beyond the 
scope of this study, it might be recommendable for future studies 
to conduct post-hoc interviews with some participants and learn 
about their experience within the learning environment.

Regarding the significant indirect effects of order via mental 
load on learning, it must be carefully noted that a statistically 
significant mediation model does not ensure automatically that 
there actually is a causal relationship between the variables, as this 
assumption has to be met by the study’s method as well (Rohrer 
et al., 2022). In this study, however, only the predictor order had 
been manipulated experimentally, not the mediator mental load. 
Hence, the results might only be  seen as an indication for a 
mediated model of effects. Future studies with a more suitable 
methodological framework are necessary to substantiate this 
finding. This could also help to shed light on the somewhat 
contradicting finding that there was no significant total effect of 
order on learning but a significant indirect effect via mental load.

In addition, the results of the study are limited concerning 
the interaction hypothesis between order and congruence. On 
the one hand, the null effect might be attributed to the low 
power of the study. The observed effect size was lower than 
expected and the value of p of the interaction almost reached 
marginal significance. Therefore, future studies with bigger 
sample sizes may find significant results. On the other hand, it 
can be assumed that there was no interaction effect because the 
learners did not have enough time to remember the several 
individual steps of the CE. As a result, and contrary to the 
original intention, the subjects in the congruent CE-EE 
condition might have failed to recognize the difference between 
the examples (i.e., the errors) early. This explanation is 
supported by the descriptive statistics of the learning units. In 
the first and simplest learning unit, where the steps could 
possibly be remembered more easily, the mean values of the 
groups tended to correspond to the postulated pattern. This 
was not the case in the other learning units. To test this 
alternative explanation, instead of two errors, only one error 
could be embedded in the EE in future studies. Or examples 
could be used that are clearer and do not require remembering 
so many calculation steps. Another possibility would be to use 
EE with concrete error signaling.

Moreover, as there has not been much theoretical and 
empirical work on the effect of order and congruency on 
metacognitive judgments, this study’s explanations for the 
significant findings on JOL accuracy need further elaboration. 
More data is needed to check on potential effects and their 
mechanisms. Using the belief-adjustment model (Hogarth and 
Einhorn, 1992) as a framework for explaining order effects on 
metacognitive judgments might be  recommendable for future 
studies. Moreover, theoretical work is needed on the question of 
how CE and EE in isolation influence JOL and in case the order 
effect was indeed caused by recency bias why CE promote better 
JOL accuracy.

Conclusion

This is the first study to experimentally investigate the effect of the 
order of correct and erroneous worked examples on learning 
performance as well as to examine whether congruency of exemplified 
problems functions as a moderator. Overall, the results show no total 
effect of order on learning but still indicate that there is an indirect 
effect. Presenting correct worked examples first and erroneous worked 
examples second resulted in lower mental load, which in turn was 
associated with better learning performance, thereby supporting the 
assumptions made by the expertise reversal effect and contradicting 
the assumptions made by the productive failure approach. 
Congruency did not moderate the impact of order on learning, 
challenging cascade theory as an explanation for erroneous worked 
example effects. Furthermore, order of examples significantly 
influenced JOL accuracy as learners estimated their learning 
performance more accurately when erroneous worked examples were 
presented first. Further studies are needed to test the limitations 
discussed above.
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Appendix A

Explicit instruction

In the following you see the text which was provided on the slide with explicit instruction on the second learning unit “Vertical 
and Crosswise.”

Application

Multiplication of two-digit numbers.

Explanation

Both numbers are first written one below the other.
Then the respective first digits and the respective second digits are multiplied with each other. Afterwards the product of the first digit 

of the first number and the second digit of the second number is formed as well as the product of the second digit of the first number and 
the first digit of the second number. The sum of these two products is written between the products of the vertical multiplications.

Finally, the tens (if any) of the second vertical multiplication are transferred to the middle sum and the tens (if any) of this new number 
are transferred to the product of the first vertical multiplication. The result is made up of this new number and the two remainders.

Appendix B

Cognitive load survey

Adapted version according to Krell (2015). Translated from german to english.

Mental load

 - The examples were difficult to understand
 - The content of the examples was complicated.
 - The examples were challenging
 - Working with the examples was easy
 - The content of the examples was easy to understand.
 - It was easy to understand why the examples were correct or incorrect.

Mental effort

 - When working with the examples I have not done my best particularly.
 - I did not make a special effort to understand the examples.
 - I have made an effort working with the examples.
 - In understanding the examples, I made an effort intellectually.
 - I have not particularly focused to understand why the examples were correct or incorrect.
 - I have given my best to understand why the examples were correct or incorrect.

https://doi.org/10.3389/fpsyg.2022.1032003
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

	The influence of the order and congruency of correct and erroneous worked examples on learning and (meta-)cognitive load
	Introduction
	Worked examples
	Erroneous worked examples
	Theories on order effects
	Expertise reversal effect
	Productive failure
	Empirical findings on order effects
	Hypotheses and research questions

	Materials and methods
	Design and sample
	Learning environment
	CE vs. EE
	Same vs. different exemplified problems
	Measures
	Cognitive load
	Learning achievement
	Metacognitive variables
	Procedure

	Results
	Effects on cognitive load
	Effects on learning achievement
	Indirect effects via cognitive load on learning achievement
	Mental load as mediator
	Mental effort as mediator
	Metacognitive variables

	Discussion
	Summary and implications
	Findings on cognitive load and learning achievement
	Findings on metacognitive variables
	Limitations and future directions
	Conclusion

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Appendix A
	Explicit instruction
	Application
	Explanation

	Appendix B
	Cognitive load survey
	Mental load
	Mental effort


	References

