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The combination of network modeling and psychometric models has opened up exciting

directions of research. However, there has been confusion surrounding differences

among network models, graphic models, latent variable models and their applications

in psychology. In this paper, I attempt to remedy this gap by briefly introducing latent

variable network models and their recent integrations with psychometric models to

psychometricians and applied psychologists. Following this introduction, I summarize

developments under network psychometrics and show how graphical models under this

framework can be distinguished from other network models. Every model is introduced

using unified notations, and all methods are accompanied by available R packages

inducive to further independent learning.

Keywords: network analysis, psychometrics, network psychometrics, latent spacemodels, item responsemodels,

latent space item response models, joint latent space models

1. INTRODUCTION

Networks represent relationships or edges among a group of entities (we will call nodes), which,
depending on the context, can be individuals, cells, countries, railway stations, and ecological
species. Systems resembling a network are abundant with examples such as the World Wide Web,
power grid systems, cell networks, economical networks, and social networks. The most commonly
studied networks in behavioral science perhaps are social networks. Social networks can arise
in various contexts including follower-followee relationships in online platforms, coauthorship
among scientists, and friendships formed at schools.

Statistical modeling of networks has emerged as amajor topic of interest, with a growing number
of books and survey papers across disciplines (e.g., Wasserman and Faust, 1994; Newman, 2003;
Goldenberg et al., 2010; Snijders, 2011; Vivar and Banks, 2012; Matias and Robin, 2014; Sweet,
2016; Desmarais and Cranmer, 2017; Kim et al., 2018; Smith et al., 2019; Zhang et al., 2020; Sosa
and Buitrago, 2021). Existing surveys cover a broad range of topics including processes occurring
on networks, exponential random graph models (ERGMs), stochastic actor oriented models
(SAOMs), and latent variable network models, e.g., latent space models (LSM) and stochastic
blockmodels (SBM).

A latent variable is not directly observed, but inferred from observed variables. A latent
variable can be used to reduce the complexity of information by providing a parsimonious
description of a multitude of noisy and often high-dimensional observations. This benefit of
latent variables has been seen in a variety of settings, including factor analysis, item response
theory (Spearman, 1904; Harman, 1976; van der Linden and Hambleton, 1997), and more recently,
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in network modeling (Snijders, 1996; Hoff et al., 2002). The key
benefit of latent variables in network modeling is to capture
various forms of dependencies or associations between a pair of
persons or a group of persons. Conditional on latent variables,
some form of independence can be assumed in the error
term (Henry, 2014), which largely simplifies the model. In
educational and psychological studies, latent variables are also
used to model abstract concepts such as depression, extraversion,
and intelligence. I refer readers to Bollen (2002) for a further
discussion on the use of latent variables in psychology.

With the rising popularity of network modeling, there has
been rapid growth in research works that incorporate latent
variable network models with psychometric models. Given the
rather new status of this type of research, to the best of
my knowledge, there has not been any attempt to document
the progress in the integrations of latent variable network
models with psychometric models such as item response models,
structural equation models, and factor analysis. Therefore, in
this paper, I outline key developments bridging network latent
variable models with psychometric models, summarize their
connections with networkmodels as well as psychometric models
and point out directions for future research.

The paper is organized as follows. I first introduce network
modeling using discrete and continuous latent variables, i.e.,
stochastic blockmodels and latent space models. I divide latent
space models into two categories following models’ latent effects,
whether the latent effect is based on Euclidean distances or vector
products. I then describe integrative frameworks motivated by
latent variable network models and psychometric models. In
section 4, I summarize model developments under the popular
network psychometrics framework and provide key distinctions
of this framework from the current topic. In section 5, I present
a diagram summarizing relationships of all models and point out
current gaps in research and possible future directions.

2. LATENT VARIABLE NETWORK
MODELING

In this section, I first describe network modeling using
discrete latent variables, namely stochastic blockmodels. Then,
I introduce two categories of network models with continuous
latent variables: (i) distance models that are built on Euclidean
distances between two nodes, and (ii) vector models that are built
on vector products between two nodes. The reasoning behind this
categorization is two-fold. First, these two categories represent
two distinct ways of modeling information in a network and
result in two distinct ways of interpreting latent spaces. Second,
there are many models under each of these two categories that
would be difficult to keep track of if this categorization was
not made.

The purpose of discussing latent variable network modeling
is two-fold. First, despite many efforts surveying network
models, a detailed introduction of latent variable network
models to behavioral scientists is still lacking. By providing a
comprehensive survey of latent variable network models using
unified notations and terminologies, I hope to provide an
introductory tool for psychologists from substantive as well as

methodological backgrounds to delve deeper into this topic.
Second, in the next section, it can be seen that among many
available options for latent variable network models, only one or
two are chosen by psychologists. Therefore, I hope to encourage
a more diverse integration of network models with psychometric
models by providing a comprehensive discussion of latent
variable network models.

2.1. Stochastic Blockmodels
In this section, I summarize the posteriori blockmodeling of
networks introduced by Snijders and Nowicki (1997) and
Nowicki and Snijders (2001). In the stochastic blockmodels, the
probability of a connection between two nodes depends on their
block (group) memberships. Suppose there is a network written
as an adjacency matrix:

X =







x1,1 x1,2 . . . x1,N
...

...
. . .

...
xN,1 xN,2 . . . xN,N






, (1)

where xa,b represents the presence of an edge (binary network)
or the degree of association (weighted network) between nodes a
and b, a, b = 1, . . . ,N and b 6= a1, and N is the total number
of nodes. Let us define the discrete latent variable ua as the
latent block membership for node a, ua ∈ 1, 2, . . . ,K, where
K is the total number of blocks or groups. Conditional on the
latent variable, the probability of two nodes forming an edge is
independent of all the other edges in the network:

P(X|U) =
N

∏

a=1

N
∏

b=1,b6=a

p(xa,b|ua, ub), p(xa,b|ua, ub) = mua ,ub ,

(2)
where mua ,ub is the probability of a connection between the
corresponding blocks. SBMs can be used to identify equivalent
nodes in a network based on their relationships with other nodes
(structural equivalence) as members of the same group share the
same patterns of relationships. Stochastic blockmodels can be
fitted using the CIDnetworks package with MCMC algorithms
(Adhikari et al., 2015) and the blockmodels package using
variational inference (Leger, 2015), among others (e.g., Brusco
et al., 2020; Chiquet et al., 2021).

However, the assumption that the probability of shared
connections between nodes is dependent on their membership to
a single blockmay be too restrictive. Airoldi et al. (2008) proposes
an extension of SBMs, called the mixed membership stochastic
blockmodels, to allow nodes to belong to multiple groups with
varying affiliation probabilities. SBMs have also been extended to
accommodate differences in nodal degrees (total number of edges
a node has to other nodes) (e.g., Karrer and Newman, 2011),
to model network evolution across time (e.g., Xing et al., 2010;
Yang et al., 2011; Xu and Hero, 2014; Matias and Miele, 2017)
and to model multiple types of relationships among the same set
of nodes (e.g., Paul et al., 2016; Barbillon et al., 2017; Paul and
Chen, 2020) and among different types of nodes (e.g., Sengupta
and Chen, 2015; Huang et al., 2020).

1Ties from a node to itself are rarely considered. Diagonal entries can be written as
0 though they are omitted from the analysis.
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2.2. Distance Models
A latent space is a hypothetical multidimensional space that
represents the positions of nodes in a lower dimensional space.
The position of nodes in the lower dimensional space reflects the
geometric rules of the latent distance model. The idea of a latent
space for network modeling is first seen in Hoff et al. (2002),
where a vector of length K, u is used to represent the position
of a node in a K-dimensional latent space. Conditional on the
latent positions, the probability of two nodes forming an edge is
independent of all the other edges in the network:

P(X|U ,Z,β) =
N

∏

a=1

N
∏

b=1,b6=a

p(xa,b|ua, ub, za,b,β), (3)

whereU is a K×N matrix consisting of latent positions, and Z,β
include the covariates and their coefficients.

In this section, I review network modeling with continuous
latent variables following the categorization of distance vs. vector
models. In a vector model, the vector product between two
nodes is included, thus the vector length and the angle between
two vectors both drive the interpretation of the latent space.
In a distance model, the Euclidean distance between two nodes
is included, thus the magnitude of the distance drives the
interpretation of the latent space. The smaller the Euclidean
distance, the more likely that the two nodes form a connection.

2.2.1. Latent Distance Model

The probability of an edge between two nodes depends on their
Euclidean distance given covariates (Hoff et al., 2002):

E(xa,b|ua, ub, za,b,β) = g(φa,b)

φa,b = α + βTza,b − |ua − ub|, (4)

where α is the intercept; g(·) is the link function. Most
commonly, X is binary; g(φa,b) is the logistic inverse link

functions, i.e., g(φa,b) =
exp(φa,b)

1+exp(φa,b)
. Other link functions for

the latent distance model are available in the latentnet package
(Krivitsky and Handcock, 2008).

The latent distance model has been extended to allow built-
in clustering, called the latent position cluster model (Handcock
et al., 2007), to accommodate nodes’ varying degrees of sociability
and popularity, called the latent cluster random effects model
(Krivitsky et al., 2009), to model multi-layer networks (Gollini
and Murphy, 2016; Salter-Townshend and McCormick, 2017;
Zhang et al., 2020), and to model network’s changes across time
(Sarkar and Moore, 2005; Sewell and Chen, 2015). The latent
distance model can be fitted using the latentnet package with
MCMC algorithms. For large datasets, the latent distance model
can be fitted using the lvm4net package with variational inference
(Gollini, 2014).

2.3. Vector Models
2.3.1. Latent Projection Model

The earliest form of vector network model appears in Hoff et al.
(2002), called the latent projection model:

φa,b = α + βTza,b +
uTa ub

||ub||
. (5)

In the projection model, the angle between two latent vectors
and the length of vector ua affect two nodes’ probability to
connect. When looking at a latent space formed by the latent
projection model, one can assess nodes’ propensity to form
edges by looking at vectors’ directions, with opposite directions
(uTa ub < 0) indicating aversion to edge formation, similar
directions (uTa ub > 0) indicating favorable edge formation, and
perpendicular relations (uTa ub = 0) indicating independence.
The probability of a connection from node a to node b is
differently modeled than the probability of a connection from
node b to node a.

2.3.2. Bilinear Mixed-Effects Model

Hoff (2005) proposed a generalized bilinear mixed-effects model
that can be seen as an extension of the latent projection model
with a modified latent effect:

φa,b = βTza,b + uTa ub + aa + bb + γa,b (6)

(aa, bb) ∼ MVN(0,6ab),

(γa,b, γb,a) ∼ MVN(0,6γ ),

u ∼ MVN(0, σ 2
u Ik),

where aa is the random sender (initiator of a connection) effect,
bb is the random receiver (receiver of a connection) effect, and6γ

represents the within dyad (a pair of nodes) dependence. Higher
reciprocity means that the receiver of a connection is more likely
to reciprocate the friendly gesture by the sender. Across the
row of the social network, differences in nodes’ sociability are
accounted for by aa; and, across columns, differences in nodes’
popularity are accounted for by bb. Dependencies occurring in
a group of three nodes or more include transitivity, balance and
clusterability; they are accounted for by the vector product uTa ub.
We refer readers toWasserman and Faust (1994) and Hoff (2008)
for further discussions about these dependencies.

2.3.3. Additive and Multiplicative Effects Model

The additive and multiplicative effects (AME) model is proposed
in Minhas et al. (2019) and Hoff (2021).

φa,b = βTza,b + uTaDvb + aa + bb + γa,b (7)

(aa, bb) ∼ MVN(0,6ab),

(γa,b, γb,a) ∼ MVN(0,6γ ),

(u, v) ∼ MVN(0,6uv),

where uTaDvb is the multiplicative effect modeling dependencies
involving triads of nodes. Models with a different multiplicative
effect (uTaDub) are sometimes called eigenmodels or latent
factor models (see Hoff, 2008; Minhas et al., 2019). Another
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similar but different multiplicative effect can be seen in
Hoff (2021) without the diagonal matrix D, which allows
different latent dimensions to exert different effects on the
probabilities to connect. Other parameters of the AME
model follow those of the bilinear mixed-effects model.
The AME model can be fitted using the AMEN package
(Hoff et al., 2020).

The bilinear mixed-effects model and AME model are
extensions of the latent projection model. According to Hoff
(2008), the multiplicative effect in the eigen model, uTDu,
generalizes the latent class effect in stochastic blockmodels
and the latent distance effect in latent distance models. Sosa
and Buitrago (2021) show that the eigen model has better
out of sample predictive accuracy for networks with varying
properties and structures compared to the latent class and
distance models. We refer readers to Smith et al. (2019) and Sosa
and Buitrago (2021) for further discussions on vector models vs.
distance models.

In addition to latent spaces defined by Euclidean distances
and vector products, Schweinberger and Snijders (2003)
proposes an ultrametric space, where nodes are assigned to
a system of nested groups. A negatively curved hyperbolic
space has been proposed by Krioukov et al. (2010). The
radius of the hyperbolic space grows exponentially rather
than linearly, as in Euclidean distance space. A hyperbolic
space is more suitable for networks with tree-like structures
(see Krioukov et al., 2010; Smith et al., 2019).

3. INTRODUCING LATENT VARIABLE
NETWORK MODELING TO
PSYCHOMETRIC MODELS

Recent research has seen a surge of developments
integrating network models with psychometric
models such as structural equation models and item
response models. In this section, I summarize some of
these efforts.

3.1. Doubly Latent Space Joint Model
Jin and Jeon (2019) proposes the doubly latent space joint model
(DLSJM) that applies the latent space model framework to item
responses. The DLSJM separates the information about items
and persons in the item response matrix, Y into two sets of
sociomatrices V = {V1,V2, . . .VN} and U = {U1,U2, . . .UM},
whereN is the total number of persons, andM is the total number
of items. I will use subscripts p and j as person indices and
subscripts a and b as item indices.

up,ab =











1, if yp,a = 1 & yp,b = 1

0, otherwise, p = 1, 2, . . . ,N, a, b = 1, 2, . . . ,

M, a 6= b

va,pj =











1, if yp,a = 1 & yj,a = 1

0, otherwise, a = 1, 2, . . . ,M, p, j = 1, 2, . . . ,

N, p 6= j.

(8)

This transformation is a projection of the item response matrix,
seen as a bipartite network, into sets of relationship sociomatrices
that record the similarity of items and the commonality of
persons. In network terms, this transformation relies on the
duality of bipartite networks, the transfer of information between
connections within nodes of type A, connections within nodes of
type B and connections between nodes of type A and nodes of
type B.

After transformation, DLSJM models the commonality of
persons as a network and estimates latent positions of persons
p and j following the latent distance model:

P(U ,V|Z,β , θ) =
N

∏

p=1

P(Up|Z, θp)
M
∏

a=1

P(Va|Z,βa)

=

N
∏

p=1

∏

a 6=b

exp(θp − |fa(z)− fb(z)|)
up,ab

1+ exp(θp − |fa(z)− fb(z)|)

M
∏

a=1

∏

p6=j

exp(βa − |zp − zj|)va,pj

1+ exp(βa − |zp − zj|)

fa(z) =
N

∑

p=1

yp,azp
∑N

p=1 yp,a
, fb(z) =

N
∑

p=1

yp,bzp
∑N

p=1 yp,b
,

(9)

where zp and zj are latent positions for persons p and j;
fa(z) and fb(z) are functions of D-dimensional latent person
positions served as latent positions of items. Latent item positions
are defined as averages of positive responses weighted by
latent person positions, or alternatively speaking, averages of
latent person positions for whom the responses are positive. A
hierarchical extension of the DLSJM is proposed by Jin et al.
(2018) to accommodate variations across different schools.

Following latent distance model and latent space joint
model (Gollini and Murphy, 2016), DLSJM takes on similar
model assumptions. In DLSJM, sociomatrices V and U

are conditionally independent given latent person positions.
Furthermore, information collected for person i in the form of
pairwise similarities of all items are assumed to be conditionally
independent to similar information collected for person j.
Information collected for item a in the form of commonalities
of all persons are also assumed to be conditionally independent
to similar information collected for item b.

3.2. Latent Space Item Response Model
Jeon et al. (2021) proposes a latent space item response model,
which applies a latent distance model with random intercepts to
an item response matrix. For a binary item response matrix Y ,
the expectation of a correct response for person p to item i is
as follows:

E(yp,i|αp,βi, up, vi) = αp + βi + γ |up − vi|, (10)

where up
iid
∼ N(0, ID), vi

iid
∼ N(0, ID), αp

iid
∼ N(0, σ 2), βi

iid
∼

N(0, τ 2β ), log γ ∼ N(uγ , τ 2γ ), σ
2 iid
∼ Inv-Gamma(aσ , bσ ), and D is
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the number of dimensions. Following notations in the previous
sections, I use up to denote the latent position of person p and vi
to denote the latent position of item i. The authors use random
effects αp and βi to account for differences in the overall scores of
persons and in the sum scores of items.

Compared with DLSJM, the latent space item response
model analyzes item responses instead of first transforming item
responses. Compared to Rasch models with random item effects,
it adds a Euclidean-distance latent effect to capture deviations
from the random intercepts. The added Euclidean-distance latent
effect also allows visualizations of the item and person nodes
in a hypothetical latent space. As a network model, latent space
item response model can be seen as a bipartite latent space
model, first developed in the latentnet package (Krivitsky and
Handcock, 2008). Unlike the bipartite latent space model, the
latent space item response model adds a γ coefficient in front of
the Euclidean-distance latent effect, allowing varying degrees of
contribution by the Euclidean-distance effect to the probability
of a connection.

Latent space item response model can be fitted using the
latentnet package with the assumption of γ = −1. For large-scale
datasets, a variational algorithm for bipartite latent space model
is proposed by Wang et al. (2021), which can be applied using
the jlsm package (Wang, 2021). The bipartite latent space model
has also been extended to model networks across multiple time
points by Sarkar and Moore (2005) and Friel et al. (2016).

3.3. Social Network Structural Equation
Model
Liu et al. (2018) proposes social network structural equation
model that integrates latent distance model with structural
equation model. Different from the previous two methods,
the social network structural equation model analyzes both a
network dataset and an item response matrix with the goal of
estimating their dependence or association. Following previous
notations, I will use X to denote the social network, Y to denote
the item response matrix and Z to denote covariates. The model
is estimated in two separate steps. First, item responses are fitted
to a confirmatory factor model (measurement model):

yp = 3ηp + ǫp, p = 1, 2, . . . ,N, (11)

where yp is a vector of lengthM representing person p’s scores on
M items (indicators); ηp represents a vector of D latent variables,
ηp ∼ MVN(0,8); 3 is the M × D factor loading matrix; and ǫp
is the unexplained residual, ǫp ∼ MVN(0,9). In the second step,
the factor scores from the first step are fitted as covariates of the
social network model (structural model):

E(xa,b|α,β , γ ) = α + βTha,b + γ

√

(ηa − ηb)T8−1(ηa − ηb),

(12)

where α is the intercept; ha,b is the manifest nodal covariate
between nodes a and b2; and ηa and ηb are the factor
scores obtained from the measurement model. Coefficients β

2Elements of hab are transformation of the nodal covariates.

and γ estimate the effects of the manifest covariates and the
Mahalanobis distances of the latent factors, respectively. In the
structural model, the friendship connection is explained by
manifest covariates as well as factor scores extracted from the
measurementmodel. Themeasurementmodel can be fitted using
the lavvan package (Rosseel, 2012), and the structural model can
be fitted as a logistic regression.

Extensions of the social network structural equation model
are proposed as social network mediation analysis, where
the latent position is first extracted from the social network
following latent distance model (Liu et al., 2021) and eigenmodel
(Che et al., 2021), and subsequently fitted as a mediator in
a regression analysis. The latent positions can be estimated
using the latentnet package (Krivitsky and Handcock, 2008), the
Eigenmodel package (Hoff, 2012), or the AMEN package (Hoff,
2015). Social networks have been fitted as regressionmediators in
the hierarchical network model (HNM) for mediation, proposed
by Sweet (2019). In HNM for mediation, a network statistic is
used to summarize the entire network and then fitted as the
mediator in a regression model. Different from social network
mediation analysis, the network model and the mediation model
in HNM for mediation are simultaneously estimated instead of in
two steps.

3.4. Joint Latent Space Model
Wang et al. (2021) proposes a joint latent space model (JLSM) to
jointly analyze social network and item responses. Using a joint
modeling approach, the authors model social network and item
responses stemming from a shared data generation process. I use
ua to denote latent position of person a and vi to denote latent
position of attribute i.

p(X,Y|U ,V ,α0,α1) =
N

∏

a=1

N
∏

b=1,b6=a

p(xa,b|α0, ua, ub)
N

∏

p=1

M
∏

i=1

p(yp,i|α1, up, vi),

N
∏

a=1

N
∏

b=1,b6=a

exp(α0 − |ua − ub|
2)xa,b

1+ exp(α0 − |ua − ub|2)

N
∏

p=1

M
∏

i=1

exp(α1 − |up − vi|
2)yp,i

1+ exp(α1 − |up − vi|2)
, (13)

where ua
iid
∼ MVN(0, λ20ID), vi

iid
∼ MVN(0, λ21ID), and

α0,α1, λ20, λ
2
1 are unknown parameters. To model the connection

between persons a and b, the authors use the (squared) Euclidean
distance3 between latent positions ua and ub. To model whether
person p possesses attribute i, the authors use the Euclidean
distance between latent positions up and vi. The dependence
between social network and item responses is modeled by the
shared latent variable U .

3The squared Euclidean distances are shown to result in similar latent positions
as Euclidean distances while maintaining computational efficiency by Gollini and
Murphy (2016).
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JLSM4 extends the latent space joint model proposed by
Gollini and Murphy (2016), and both use a shared latent variable
to model the dependence between different networks. The JLSM
can be applied using the jlsm package (Wang, 2021).

4. NETWORK PSYCHOMETRICS

Although not a framework for modeling networks, network
psychometrics has gain wide-spread popularity in various
disciplines of psychology (e.g., Cramer et al., 2012; Fried et al.,
2015; McNally et al., 2015; van Borkulo et al., 2015; Dalege
et al., 2016; Isvoranu et al., 2016; Kossakowski et al., 2016)
with a mission to contend the common-cause interpretation of
latent variables with a web (network) of connected variables.
Whether the contention is fair or a matter of incomplete
perception (see Fried and Cramer, 2017; Bringmann and Eronen,
2018), it has paved the way for the introduction of network
modeling to psychology. For this reason, we provide a summary
of current developments under network psychometrics, and
we offer a few key distinctions of this framework from the
current discussion.

Graphical models are proposed under network psychometrics
to analyze multivariate datasets including item responses. Each
variable is conceptualized as a node in the network, and
the presence of conditional dependence between variables is
constructed as an edge between two nodes. In graphical models,
the network is no longer the observed (social) network, but
constructed based on correlations between observed variables.
The gaussian graphical model (GGM) constructs edges between
variables based on their partial correlations. Suppose we observe
Pmultivariate normal variables, yj, j = 1, 2, . . . , P:

Cor(yj, yk|y
−(j,k)) = wjk = wkj, (14)

where wjk is the weight of the edge between nodes j and k.
Compared with latent variablemodels such as structural equation
model, GGM considers correlations between observed variables
as the data generating process instead of outcomes of shared
latent variables.

In Marsman et al. (2018), it is shown that the Ising model
is statistically equivalent to the item response model such that
we can expect the same model fit when both are applied to the
same data. By proving this equivalence, Marsman et al. (2018)
provides an alternative framework for understanding abstract
psychological phenomena such as depression. The co-occurrence
of disorder symptoms can be hypothesized as stemming from
correlated observed variables instead of a shared latent variable.
This alternative view has broad applications in various sub-fields
of psychology.

In latent network modeling, Epskamp et al. (2017) combines
graphical models with latent variable models by allowing latent
variables (or their residuals, seen in residual network modeling)

4An earlier version of this model can be seen inWang (2019), where an ensemble of
item response matrices was modeled through a shared attribute similarity matrix,
and the vector-product latent effect was used instead of the Euclidean distance in
modeling the item responses.

to be modeled as a correlated network. Epskamp (2020) extends
GGM to model observations across time, called graphical vector
autoregressive model. Yang et al. (2014) and Chen et al. (2015)
propose mixed graphical models to accommodate situations,
where distributions of variables, conditional on other variables,
have different exponential family forms. I refer readers to
Epskamp et al. (2017), Epskamp (2020), and Altenbuchinger
et al. (2020) for comprehensive discussions of graphical models
under network psychometrics. These graphical models can be
implemented using the qgraph package (Epskamp et al., 2012);
and a review of related statistical software can be seen in
Haslbeck and Waldorp (2015).

Compared with network models introduced in the previous
sections, graphical models under network psychometrics possess
a few key distinctions. First, these models are not meant for
analyzing networks, instead they create a network representation
of variables based on correlations. Second, as a psychological
framework, network psychometrics presents an alternative way
to conceptualize psychological phenomena, which is not the case
for network modeling. It argues for a network of correlated
observed variables as the true data generating process instead of
shared latent variables. Furthermore, networkmodels are distinct
from other analytic methods because networks are distinct
from other types of data including multivariate datasets. The
assumption of independence does not apply in a network as it
does in a multivariate dataset because the association between
persons is part of the modeling interest. In fact, dependencies in a
network are often complex and are not yet well-defined. For these
reasons, networkmodeling, as a discipline, is often not covered in
quantitative courses, and multivariate models are not applicable
for network datasets.

5. SUMMARY AND DIRECTIONS FOR
FUTURE RESEARCH

Studies on network modeling and psychometrics may be
divided into many lines of research, such as dynamic vs.
static modeling and Bayesian vs. frequentist inference. In this
paper, I focus on the integration of latent variable network
modeling with psychometric models. When analyzing a network,
latent variables are used to model network dependencies (e.g.,
associations between a pair of nodes or a group of nodes)
and to construct low-dimensional geometric spaces, which
are useful for visualization. In psychometric models, latent
variables can be used to simplify model specification and
provide statistical representation of abstract latent constructs.
From these, I outline recent efforts integrating latent variable
network models with psychometric models. To conclude, I
provide a diagram (see Figure 1) outlining relationships of
methods discussed in sections 2, 3, and 4. Psychometric models
and network models are in the left and the right of the
diagram. Presence of a link represents the integration of the two
methods that motivate the development of the new framework at
the center.

Despite recent efforts integrating latent variable network
models with psychometric models, there remain several
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FIGURE 1 | Diagram summarizing the relationship between psychometric models and network models1. Double-headed arrows indicate integrations of two

frameworks with the resulting framework at the center.

1JLSM: A earlier version of JLSM contains the vector product latent effect (Wang, 2019).

challenges. While viewing item response data as a bipartite
network opens doors for new possibilities, further research is
needed to understand the implications of this equivalence. In
a network, the assumption of independence between persons
is violated as dependencies between them are the drivers of
a connected network, and the goal of network modeling is to
analyze and understand such dependencies. Meanwhile, the
independence assumption is traditionally applied in an item
response matrix, which makes applying network modeling to
item responses problematic. This is not necessarily the case
though. If respondents of a survey come from the same school or
reside in the same geographic region, it is reasonable to assume
dependence between them given the nonzero likelihood of their
prior engagement. If we assume dependence between persons in
an item response matrix, what are its implications?

To fully take into account potential dependence between
respondents of an item response matrix, it is preferential to
have observations of respondents’ relationships in addition to
their attributes. To model the dependence between networks and
individual attributes, we can incorporate individual attributes as
nodal or edge covariates in network modeling, e.g., in stochastic

blockmodels (Sweet, 2015; Mele et al., 2019) and in latent
space models (Hoff et al., 2002; Krivitsky and Handcock, 2008;
Austin et al., 2013; Fosdick and Hoff, 2015). Alternatively,
we can apply social influence models and regard individual
attributes as the dependent variable and estimate the effects

of the social network on attributes. (Dorans and Drasgow,
1978; Robins et al., 2001; Leenders, 2002; Frank et al., 2004;
Fujimoto et al., 2013; Sweet and Adhikari, 2020). The situation
is more complicated when individual attributes are multivariate
or multidimensional such as the item responses. The social
network structural equation model regards item responses as
the dependent variable in the first step, and then models the
social network as the dependent variable in the second step.
The joint latent space approach simultaneously models the social
network and item responses as the dependent variables. Both
pose as interesting directions of research, but improvements are
also possible.

Latent variable network modeling has the potential to be
further integrated in educational and psychological research.
Through this paper, we hope to inspire readers to begin
incorporating some of these methods to their current analysis
plans and develop new methods filling in existing research gaps
and answering new research questions. Despite the novelty of
thesemodels, we have included information about the R packages
available for network models as well as the integrative methods in
order to facilitate further independent learning.
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