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Statistical mediation analysis is used to investigate mechanisms through which a

randomized intervention causally affects an outcome variable. Mediation analysis is often

carried out in a pretest-posttest control group design because it is a common choice for

evaluating experimental manipulations in the behavioral and social sciences. There are

four different two-wave (i.e., pretest-posttest) mediation models that can be estimated

using either linear regression or a Latent Change Score (LCS) specification in Structural

Equation Modeling: Analysis of Covariance, difference and residualized change scores,

and a cross-sectional model. Linear regression modeling and the LCS specification of

the two-wave mediation models provide identical mediated effect estimates but the

two modeling approaches differ in their assumptions of model fit. Linear regression

modeling assumes each of the four two-wave mediation models fit the data perfectly

whereas the LCS specification allows researchers to evaluate the model constraints

implied by the difference score, residualized change score, and cross-sectional models

via model fit indices. Therefore, the purpose of this paper is to provide a conceptual and

statistical comparison of two-wave mediation models. Models were compared on the

assumptions they make about time-lags and cross-lagged effects as well as statistically

using both standard measures of model fit (χ2, RMSEA, and CFI) and newly proposed

T-size measures of model fit for the two-wave mediation models. Overall, the LCS

specification makes clear the assumptions that are often implicitly made when fitting

two-wave mediation models with regression. In a Monte Carlo simulation, the standard

model fit indices and newly proposed T-size measures of model fit generally correctly

identified the best fitting two-wave mediation model.

Keywords: longitudinal mediation, latent change scores, goodness-of-fit, mediation, equivalence testing

INTRODUCTION

The questions asked in analyses of randomized interventions are inherently about change. For
example, Kunze et al. (2019) assessed if imagery rescripting, a treatment for nightmare disorder,
caused a change in nightmare distress via changing the participant’s self-efficacy. Generally,
interventionists might ask if the program was able to change a health outcome (e.g., nightmare
distress), if the program components successfully changed the mechanism (e.g., self-efficacy), or
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how a change in a mechanism led to a change in the health
outcome. Statistical mediation analysis is used to investigate
mechanisms through which a randomized intervention causally
affects an outcome variable (Lazarsfeld, 1955; Baron and Kenny,
1986; MacKinnon, 2008) and is often carried out in a pretest-
posttest control group designs to address questions of change.
While there are many ways in which to investigate mediating
mechanisms over time [see for example, MacKinnon (2008,
Chapter 8), Vuorre and Bolger (2018), and Montoya (2019)], we
focus on the pretest-posttest control group design because it is
a common design for evaluating experimental manipulations in
the behavioral and social sciences.

Traditionally, researchers use several ways to represent the
change across time of mediators and outcomes in the statistical
mediation model (MacKinnon, 2008, Chapter 8). For example,
researchers could use a difference score, which is the difference
between the score at pretest and the score at posttest. A second
approach is to use a residualized change score, which is the
residual left over after the posttest score is regressed on the
pretest score. At face value, difference scores and residualized
change scores directly address the question of change—they
represent how a variable changed from pretest to posttest—
thus, they remain popular approaches in the social sciences
despite having some drawbacks [see the discussion section for
more details; see MacKinnon et al. (1991), Jansen et al. (2013),
Cederberg et al. (2016), Silverstein et al. (2018), Kunze et al.
(2019), for difference score mediation models, and Miller et al.
(2002), Slee et al. (2008), Quilty et al. (2008), Reid and Aiken
(2013), for residualized change score mediation models]. A
third approach is the ANCOVA model which treats pretest
measures of the mediator and outcome as covariates when
analyzing the posttest mediator-outcome relation (MacKinnon,
1994; MacKinnon et al., 2001; Schmiege et al., 2009; Jang et al.,
2012). Finally, it is also possible to estimate a cross-sectional
model which ignores the pretest measures. The cross-sectional
model is discussed because it is one of the four possible models
that can be fit with two-waves of data. The difference score,
residualized change score, and cross-sectional models make very
stringent assumptions about the relationship between the pretest
and posttest measures for both the mediator and the outcome
(Valente and MacKinnon, 2017). These assumptions are rarely
evaluated, and we suspect that this lack of evaluation is because
researchers did not have the tools or guidance to do so.

Statistical mediation models with difference scores,
residualized change scores, or a cross-sectional model can
be parameterized using a Latent Change Score (LCS; McArdle,
2001, 2009) specification (Valente and MacKinnon, 2017).
Using the LCS specification, it can be shown that statistical
mediation models with difference scores or residualized change
scores are nested within the ANCOVA model. As such, the
LCS specification provides researchers with a venue to assess
model fit which is not possible using traditional approaches for
estimating these models (e.g., regression modeling). This is an
important finding because it allows researchers to move beyond
questions asked within a Null-Hypothesis Significance Testing
(NHST) framework (e.g., which two-wave mediation models
produced statistically significant mediated effect estimates?)

and benefit from model-based thinking (e.g., which model best
describes the psychological process under investigation and
which model best fits the data?; Rodgers, 2010). However, despite
the promise of using this framework to assess the fit of these
various models, the performance of traditional (West et al., 2012)
and newly-developed fit statistics (Yuan et al., 2016) to assess
the fit for these models of change must first be evaluated. While
statistical properties (i.e., Type 1 error rates, statistical power,
confidence interval coverage, and relative bias) of these models
of change were investigated in previous research (Valente and
MacKinnon, 2017), the models of change were not compared
under conditions that explicitly match the constraints implied
by each model and the performance of model fit indices was
not investigated.

Therefore, the goals of this paper are to demonstrate the
advantage of the LCS framework over the regression framework
for two-wave mediation models, assess the performance of model
fit indices for these models, and provide guidance for applied
researchers in how to evaluate the performance of model fit
indices for assessing the adequacy of the model constraints that
are implied by each of these models. This paper starts with
an overview of the two-wave mediation model, followed by an
overview of the approach of fitting each model using an LCS
specification. Next, the χ2 test is described in general and for each
specific nested model followed by additional model fit statistics.
Then, results are presented from a simulation study on the
performance of model fit indices to evaluate the fit of different
models of change. Finally, an empirical example is presented to
demonstrate the advantages of fitting the models using the LCS
specification compared to regression modeling.

Two-Wave Mediation Models
The simplest longitudinal mediation model that can be used to
estimate the mediated effect of a randomized intervention on
an outcome is the two-wave mediation model. The two-wave
mediation model consists of pretest (or baseline) measures of
the mediator and outcome variable collected prior to units being
randomized to levels of an intervention and posttest measures
of the mediator and outcome variables after units have been
randomized to levels of an intervention 1.

Three popular two-wavemediationmodels to examine change
include ANCOVA, difference scores, and residualized change
scores. We recommend readers to review MacKinnon (2008,
Chapter 8) for differences in these models. Another possible

1It is assumed that the mediator at posttest occurs prior to the outcome at posttest.

Research designs with multiple posttest follow-up waves may be preferred when

establishing temporal precedence of the mediator – outcome relation (Gollob

and Reichardt, 1991; Cole and Maxwell, 2003; MacKinnon, 2008). However, in

this paper we focus on the traditional pretest-posttest control group design.

To assume that the mediated effect in the model has a causal interpretation,

we assume that there are no unmeasured confounders of treatment-mediator

relation conditional on the pretest measures, no unmeasured confounders of the

mediator-outcome relation conditional on treatment and the pretest measures, no

unmeasured confounders of the treatment-outcome relation conditional on the

pretest measures, and no post-treatment confounders of the mediator-outcome

relation affected by treatment conditional on the pretest measures (MacKinnon,

2008; Vanderweele and Vansteelandt, 2009; Valente andMacKinnon, 2017; Valente

et al., 2020).
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model that researchers could investigate with two-waves of data is
the cross-sectional mediation model, in which researchers ignore
the measures at pretest altogether. In other words, the cross-
sectional mediation model is not a model of change, but we
describe it to understand the consequences of ignoring pretest
measures. Below, we describe the typical specification of these
four models.

ANCOVA
The following three equations can be used to describe the
relations among the intervention (X), mediator (M), and
outcome (Y) variables in the two-wave mediation model
(MacKinnon, 2008; Valente and MacKinnon, 2017).

Y2 = i1 + cy2xX + e1 (1)

M2 = i2 + am2xX + sm2m1M1 + bm2y1Y1 + e2 (2)

Y2 = i3 + c′y2xX + sy2y1Y1 + by2m1M1 + by2m2M2 + e3 (3)

The ANCOVA estimate of the mediated effect in this model
can be equivalently estimated as the product am2xby2m2 from
Equations (2, 3) or the difference cy2x- c’2yx from Equations (1, 3).

Difference Score Model
Equations (4, 5) represent regression equations using
difference scores for the mediator variable and outcome
variable, respectively. The difference score for the mediator
is 1M = M2 − M1. The difference score for the outcome is
1Y = Y2 − Y1. These difference scores represent change on the
mediator and outcome from pretest, respectively.

1M = i6 + a1X + e6 (4)

1Y = i7 + c′1X + b11M + e7 (5)

The mediated effect is estimated by computing the product of a1

coefficient from Equation (4) and b1 coefficient from Equation
(5) (a1b1) which is the effect of X on change in Y through its
effect on change inM.

Residualized Change Score Model
Equations (6, 7) represent regression equations using residualized
change scores for themediator variable and the outcome variable,
respectively. The residualized change score for the mediator
variable isRM = M2−E[M2|M1] which is the change in predicted
scores on the mediator variable measured at posttest subtracted
from observed scores on the mediator variable measured at
posttest. The residualized change score for the outcome variable
is RY = Y2 − E[Y2|Y1] which is the change in predicted scores
on the outcome variable measured at posttest subtracted from
observed scores on the outcome variable at posttest.

RM = i8 + aRX + e8 (6)

RY = i9 + c′RX + bRRM + e9 (7)

The mediated effect is estimated by computing the product of aR
coefficient from Equation (6) and bR coefficient from Equation
(7) (aRbR) which is the effect of X on the residual change in Y
through its effect on the residual change inM.

Cross-Sectional Model
The cross-sectional model is the simplest model because it does
not take into account the pretest measures of the mediator
and outcome and therefore does not address a question
of change across time. Equation (8) represents the relation
between the treatment variable and the posttest mediator
(am2x) and Equation (9) represents the relation between the
treatment variable and the posttest outcome (c’y2x) adjusted
for the posttest mediator and the relation between the posttest
mediator and the posttest outcome (by2m2) adjusted for
the treatment.

M2 = i4 + am2xX + e4 (8)

Y2 = i5 + c′y2xX + by2m2M2 + e5 (9)

The cross-sectional mediated effect is estimated by
computing the product of am2x coefficient from
Equation (8) and by2m2 coefficient from Equation (9)
(am2xby2m2) which is the effect of X on Y2 through
its effect on M2 not adjusted for pretest measures, M1

and Y1.

Latent Change Score Specification for
Two-Wave Mediation Models
LCS specification is a SEM approach to modeling longitudinal
data that can represent simple and dynamic change over
time with either manifest or latent measures of a time-
dependent outcome (McArdle, 2001, 2009; Grimm et al.,
2017). For the two-wave mediation model, all four two-wave
models previously mentioned can be fitted with the LCS
specification (see Figure 1). The two-wave mediation model
displayed in Figure 1 contains 20 free parameters across the
mean and covariance structure. Figure 1A displays the full
ANCOVA model, 1B displays the difference score model,
1C displays the residualized change score model, and 1D
displays the cross-sectional model. The LCS specification for
each of the two-wave mediation models can be used to
evaluate the assumptions encoded by the difference score,
residualized change score, and cross-sectional models via model
fit indices.

The full ANCOVA model is estimated by creating a latent
change score for the mediator (1M) which has a loading on
M2 that is fixed to 1.0 while the mean and variance of 1M
are freely estimated. Next, the path from M1 to M2 is fixed
to 1.0, the mean and variance of M2 are constrained to zero,
and the mean and variance of M1 are freely estimated. The
same steps are followed to compute the latent change score
for the outcome variable (1Y). The covariances between M1,
Y1, and X are freely estimated. 1M is then regressed on X,
M1, and Y1and 1Y is regressed on X, 1M, M1, and Y1. The
full ANCOVA model is a saturated model with zero degrees of
freedom (df ).

The difference score model is obtained by constraining the
s∗m2m1, s∗y2y1, b∗y2m1, and bm2y1 parameters in Figure 1A to
zero as shown in Figure 1B. The difference score model has
four df. The residualized change score model is obtained by
constraining the b∗y2m1, and bm2y1 parameters in Figure 1A
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FIGURE 1 | Adapted from Valente and MacKinnon (2017). (A) LCS specification of the ANCOVA two-wave mediation model. (B) LCS specification of the difference

score model. (C) LCS specification of the residualized change score model. (D) LCS specification of the cross-sectional model.

to zero and the parameters s∗m2m1 and s∗y2y1, in Figure 1A

to bm2m1 and by2y1, respectively as shown in Figure 1C. bm2m1

is the regression coefficient estimate from a linear regression
of M2 on M1 and by2y1 is the regression coefficient estimate
from a linear regression of Y2 on Y1. The residualized change
score model has four df. The cross-sectional model is obtained
by constraining the s∗m2m1, s

∗
y2y1, b

∗
y2m1, bm2y1 parameters and

the paths from M1 to M2 and from Y1 to Y2 in Figure 1A

to zero as shown in Figure 1D. The cross-sectional model has
four df. These models can be fitted using any SEM software.
Because these models are fitted using SEM, we can use the
model fit indices to evaluate the adequacy of the model in
this dataset.

It was demonstrated how these four models can be estimated
using a Latent Change Score (LCS) specification and that
the difference score, residualized change score, and cross-
sectional models make strict assumptions about the stability
of the mediator and outcome variables and the cross-lagged
paths from the pretest measures of the mediator and the
outcome to the posttest measures of the mediator and the
outcome. Thesemodels are therefore nested within the ANCOVA
model (Valente and MacKinnon, 2017). The implication is
that the difference score, residualized change score, and cross-
sectional models are not fully saturated models that fit the
data perfectly.

In summary, the LCS specification provides researchers
with two advantages over regression modeling. First, the LCS
specification helps researchers clarify the assumptions they
are making regarding each model of change because these
assumptions are encoded in the LCS path diagrams thus resulting
in a clearer understanding of the theoretical implications of
each model. Second, the LCS specification provides the added
benefit of supplementing theoretical considerations of model
choice with fit statistics. Below, we describe how model fit
is evaluated.

Evaluating the Fit of Different Models of
Change
There are several fit statistics that researchers could use
to evaluate fit. Some of these fit statistics include: the χ2

goodness of fit statistic, the Comparative Fit Index (CFI;
Bentler, 1990), the Root Mean Square Error of Approximation
(RMSEA; Steiger, 1989), and the newly proposed T-size
CFI and RMSEA (Yuan et al., 2016). Performance of the
standard fit indices has been investigated in LCS models
in the context of measurement non-invariance (Kim et al.,
2020) and when testing the performance of the fit indices
in selecting the nested autoregressive cross-lagged factor
model (Usami et al., 2015, 2016). The performance of
these standard fit indices and the T-size fit indices for
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selecting alternative two-wave mediation models has never
been investigated.

The χ
2 Test

Model χ2 goodness of fit tests or simply, χ2 tests, can be used to
test the fit of a statistical model or used to compare the fit of two
competing models such that one model is nested within another
model (Bentler and Bonett, 1980; Bollen, 1989; West et al., 2012).
A model is considered nested within a full model if it is possible
to estimate the parameters of the nested model by constraining
parameters of a full model to zero, effectively removing them
from the model. As demonstrated above, the difference score
model in Figure 1B is nested within the ANCOVA model in
Figure 1A because constraining the s∗m2m1, s

∗
y2y1, b

∗
y2m1, and bm2y1

parameters to zero results in the difference score model with four
df. Because the ANCOVA model is fully saturated and fits the
data perfectly, the χ2 tests of the nested models are simply the
χ2 goodness of fit tests. Therefore, the χ2 test can then be used
to test the null hypothesis that the difference score model fits the
data perfectly assuming a χ2distribution with df equal to four.
Therefore, rejecting the null hypothesis provides evidence that
the difference score model does not fit the data perfectly. For
example, we might fit the difference score model that is displayed
in Figure 1B and observe χ2 = 7.5, df = 4. The critical value for
a chi-square distribution with 4 degrees of freedom at p-value =
0.05 is 9.488. Therefore, we fail to reject the null hypothesis that
the difference score model fits the data perfectly, thus providing
justification to fit the difference score model.

Failing to reject the null hypothesis provides statistical
evidence that estimating the extra four parameters in the
ANCOVA model does not result in a significantly better fitting
model as compared to the fit of the simpler, more parsimonious
difference score model (i.e., simpler in terms of less estimated
parameters). In other words, the psychological phenomenon
characterized by this two-wavemediationmodel can be explained
equally well using a simpler model with fewer estimated
parameters compared to a more complicated model with more
estimated parameters. The χ2 test is a test of perfect model fit
which may be unrealistic in practice (MacCallum et al., 2001).
Therefore, it is important to investigate how each model fits the
data by using other indexes of model fit.

CFI and RMSEA
The Comparative Fit Index (CFI) is a goodness of fit index
that measures how well model-implied covariances match the
observed covariances in the data (Bentler, 1990). Higher values
of the CFI indicate better fit than lower values of the CFI
(Bentler, 1990; West et al., 2012). The Root Mean Square Error of
Approximation (RMSEA) is a badness of fit index that measures
how poorly model-implied covariances match the observed
covariances in the data (Steiger and Lind, 1980; Steiger, 1989,
2016). Lower values of the RMSEA indicate better fit than higher
values of the RMSEA (Steiger and Lind, 1980; Steiger, 1989, 2016;
West et al., 2012). Both the CFI and the RMSEA have cut-off
values that are used as a rule-of-thumb to determine at which
values of the respective fit indexes a model is considered to fit the
data well.

Equivalence Testing and T-Size Measures
While the null hypothesis of the χ2test can provide information
that a model does not fit perfectly and the CFI and RMSEA
can provide information about the goodness of model fit and
the badness of model fit, respectively, neither of these indexes
of model fit provide information about endorsing the null
hypothesis for model fit. Ideally, there would be a measure that
could provide some level of confidence that themodel fit is within
a specified range of the null hypothesis. In other words, the
rejection of the standard null hypothesis of model fit will tell us
the model does not fit perfectly but failure to reject the null does
not tell us that the model does fit perfectly. Recent papers by Yuan
et al. (2016) andMarcoulides and Yuan (2017, 2020) provide such
measures for SEMs via equivalence testing.

The goal of equivalence testing is to endorse a model under the
standard null hypothesis instead of rejecting a model under the
standard null hypothesis. In order to conduct equivalence testing,
a minimum tolerable size of model misspecification (εt ; i.e., the
T-size) corresponding to the observed χ2-test statistic must be
determined. The main goal of equivalence testing is to accurately
reject a model. This happens when the observed χ2-test statistic
falls within a specific interval between zero and a left-tail critical
value with cumulative probability equal to α from a non-central
χ2 distribution with a specified level of misspecification and
df equal to the observed model df. The rejection of the null
hypothesis at α = 0.05, implies the model misspecification
is within a tolerable size. This is opposed to standard null
hypothesis significance testing which tests if the observed χ2-
test statistic falls above a right-tail critical value with cumulative
probability equal to 1—α from a central χ2 distribution with df
equal to the observed model df [for a complete treatment and
details on how the significance regions are calculated, see Yuan
et al. (2016)]. In keeping with the literature on equivalence testing
in SEM, the tolerable size of misspecification can be transformed
into aT-size RMSEA, or CFI value. Regarding the RMSEA, theT-
sizemeasures are interpreted at α = 0.05 as “we are 95% confident
that the misspecification is X-units as measured by the RMSEA”
and the T-size CFI is interpreted as “we are 95% confident that
the population CFI is above X” (Marcoulides and Yuan, 2017).

Because equivalence testing results in new T-size RMSEA

and CFI values that take into account a specified level of model

misspecification, it is not appropriate to compare these T-size

RMSEA and CFI values to the standard cut-off values. To remedy

this, Yuan et al. (2016) derived adjusted cut-off values for the T-
size RMSEA and CFI values for which the T-size RMSEA and CFI

values can be compared, respectively. The adjusted RMSEA cut-
off values are estimated based on the observed sample size and

model degrees of freedom and are therefore estimated for each

sample and each model being fit to the data. The interpretation
of the adjusted cut-off values is therefore conditional on our

specified level of model misspecification. In other words, our
model may have excellent, close, fair, mediocre, or poor fit given

the specified level of misspecification.
Regarding the CFI, equivalence testing compares the fit of the

observed model to the misfit of the baseline model for the CFI.

The adjusted cut-off values for the CFI are a function of the
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sample size, model degrees of freedom, number of predictors,
and baseline model degrees of freedom. The adjusted CFI cut-
off values are therefore estimated for each sample and each
model being fit to the data. Similar to the adjusted cut-off
values for the RMSEA, the interpretation of the adjusted cut-
off values for the CFI are conditional on our specified level of
model misspecification. In other words, our model may have
excellent, close, fair, mediocre, or poor fit given the specified level
of misspecification.

Present Study
The LCS specification allows researchers to test the adequacy
of the model constraints imposed by the difference score,
residualized change score, and cross-sectional models. This is an
advantage over the regression-based approach for these models
because the regression-based approach does not have any way of
evaluating how the model constraints may impact the fit of the
models to the observed data. Since the model fit can be assessed
for each of these models, researchers can use fit indexes in SEM
to evaluate the appropriateness of these model constraints for
their observed data. Therefore, it is important to know how the
χ2 test, CFI, and RMSEA, along with the equivalence measures,
will perform when evaluating the fit of these two-wave mediation
models (i.e., do the indices support or reject model fit when
they should).

The purpose of the simulation study is to demonstrate
which factors of the two-wave mediation model are important
predictors of the Type 1 error and power of the χ2 test when
used to test the difference score model, the residualized change
score model, and the cross-sectional model. There are three
main hypotheses for the simulation study that are driven from
the constraints that are made to fit each of these models: (1).
When stability = 1.00 and cross-lags = 0 (i.e., the true model
is the difference score model) the null hypothesis of the χ2

test assessing the fit of the difference score model should not
be rejected; (2). When both cross-lagged paths = 0 (i.e., the
residualized change score model is the true model), the null
hypothesis of the χ2 test assessing the fit of the residualized
change score model should not be rejected; (3).When stability =
0 and cross-lags = 0 (i.e., the cross-sectional model is the true
model), the null hypothesis of the χ2 test assessing the fit of
the cross-sectional model should not be rejected. Further, it is
expected that the CFI, T-size CFI, RMSEA, and T-size RMSEA
values will indicate close or excellent fit when the respective
model assumptions are met. Further, we have an empirical
illustration to highlight the differences between the estimation of
the models of change using regression and the LCS specification.

SIMULATION STUDY

Method
SAS 9.4 was used to conduct Monte Carlo simulations. The
following equations represent the linear regression model used
to generate the data where x is an observed value of X and x̃ is the

sample median.

X ∼ N (0, 1) :(x ≥ x̃) = 1; (x < x̃) = 0 (10)

M1 ∼ N (0, 1) (11)

Y1 = by1m1M1 + e1 (12)

M2 = am2xX + bm2y1Y1 + sm2m1M1 + e2 (13)

Y2 = c′y2xX + by2m1M1 + by2m2M2 + sy2y1Y1 + e3 (14)

The factors varied were: sample size (N = 50, 100, 200, 500);
effect size of the am2x (0, 0.14, 0.39, 0.59), by2m2 (0, 0.14, 0.39,
0.59), and c’y2x (0, 0.39) paths; effect size of the Y2 cross-lagged
path by2m1 (0, 0.50) and M2 cross-lagged path bm2y1 (0, 0.50);
stability of the mediating variable (sm2m1) and outcome variable
(sy2y1) (0, 0.30, 1.00); and relation between M1 and Y1 (0, 0.50).
These factors were varied to test hypotheses 1 – 3. All residual
terms (e1, e2, and e3) had a standard deviation of one, were
uncorrelated with each other and the predictors. The effect sizes
were chosen to reflect approximately small, medium, and large
effect sizes (Cohen, 1988). A full factorial design produced 3,072
conditions, each with 1,000 replications. All models were fit using
SAS PROC CALIS. The T-size measures of the CFI and RMSEA
were obtained using the R function provided by Yuan et al.
(2016).

The raw data were analyzed using analysis of variance
(ANOVA). The dataset contained 3,072,000 observations
consisting of 1,000 replications for each of the 3,072 conditions.
All significant main effects and interactions with semi-partial
eta-squared values of 0.005 or greater (rounded to the third
decimal place) were considered important and reported in the
Supplementary Materials along with simulation results for
additional fit indexes (SRMR, AIC, and BIC). The ANOVA
was used to determine the pattern of results described in the
proceeding results section. The CFI and RMSEA values of the
ANCOVAmodel were not reported because the ANCOVAmodel
is a saturated model with zero degrees of freedom therefore it fits
the data perfectly. Type 1 error rates of the χ2 tests were deemed
acceptable if they fell within the robustness interval [0.025, 0.075]
(Bradley, 1978). Sample size was not a significant predictor of the
performance of the χ2 tests, CFI, or RMSEA therefore all results
for these fit indices were collapsed across sample sizes.

χ
2 Test Results

Difference Score Model
The Type 1 error rate of this χ2 test can be assessed when stability
= 1.00 and both cross-lagged paths = 0. For this condition, the
Type 1 error rates were within the robustness interval but only
when the by2m2 path= 0 (i.e., α = 0.057). When the by2m2 path=
0.14 the Type 1 error rate increased to α = 0.347 and approached
1.00 as the by2m2 path increased to 0.59. Power can be assessed
when stability < 1.00 and either or both cross-lagged paths > 0.
When stability was <1.00 and as the by2m2 path, M2 cross-lag,
and Y2 cross-lag paths increased in magnitude, the power of the
χ2 test to reject the null hypothesis of perfect fit for the difference
score model approached 1.00.
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Residualized Change Score Model
The Type 1 error rate of this χ2 test can be assessed when both
cross-lagged paths = 0. For this condition, the Type 1 error
rates increased as stability approached 1.00 and the by2m2 path
increased in magnitude. The condition that resulted in the lowest
Type 1 error rate was when stability = 0.00, the by2m2 path =

0.00 and both cross-lags = 0.00 (i.e., α = 0.013) but the Type
1 error rate for this condition was below the lower bound of
the robustness interval. The Type 1 error rates were within the
robustness interval when both cross-lags = 0.00 and stability =

0.00 and when by2m2 = 0.59. Power can be assessed when either
or both cross-lagged paths> 0. As theM2 cross-lag and Y2 cross-
lag paths increased from 0.00 to 0.50, the power of the χ2 test to
reject the null hypothesis of perfect fit for the residualized change
score model approached 1.00.

Cross-Sectional Model
The Type 1 error rate of this χ2 test can be assessed when stability
= 0 and both cross-lagged paths = 0. For this condition, the
Type 1 error rate was within the robustness interval (i.e., α =

0.057). Power can be assessed when stability > 0 and either or
both cross-lagged paths > 0. As stability, the M2 cross-lag, and
the Y2 cross-lag paths increased from 0.00 to 0.50, the power
of the χ2 test to reject the null hypothesis of perfect fit for the
cross-sectional model approached 1.00.

CFI and T-size CFI Results
Because the CFI and T-size CFI (CFI_t) results were below the
conventional cut-off values when either or both the cross-lagged
paths were greater than zero, the results were reported for the
condition M2 cross-lag = 0 and Y2 cross-lag = 0. Both the
CFI and CFI_t values were compared to their respective cut-off
values. For the CFI values, the conventional cut-offs are: 0.99 –
excellent; 0.95 – close; 0.92 – fair; 0.90 mediocre; <0.90 – poor.
The adjusted cut-off values for the CFI_t are a function of the
sample size, model degrees of freedom, number of predictors, and
baseline model degrees of freedom. Because the models tested
contain the same degrees of freedom, same number of predictors,
and same baseline model degrees of freedom, the adjusted CFI
cut-off values varied only as a function of sample size. Therefore,
the CFI_t results were reported for each sample size. The adjusted
CFI cut-off values for N = 50 were: 0.77 – excellent; 0.66 – close;
0.59 – fair; 0.54 mediocre; <0.54 – poor. The adjusted CFI cut-
off values for N = 100 were: 0.88 – excellent; 0.79 – close; 0.73 –
fair; 0.69 mediocre;<0.69 – poor. The adjusted CFI cut-off values
for N = 200 were: 0.94 – excellent; 0.86 – close; 0.80 – fair; 0.77
mediocre; <0.77 – poor. The adjusted CFI cut-off values for N =

500 were: 0.97 – excellent; 0.90 – close; 0.86 – fair; 0.83 mediocre;
<0.83 – poor.

Difference Score Model
Table 1 displays the CFI results tabled as a function of the by2m2

path, baseline correlation, and stability. As stability increased
to 1.00, the CFI increased in magnitude and approached the
conventional level of excellent fit when the by2m2 path = 0 and
approached the conventional level of close fit when the by2m2 path
= 0.14. As the by2m2 path increased in magnitude the CFI values

decreased to below the conventional level of poor fit (for example,
CFI = 0.781 and 0.832 for baseline correlation = 0 and baseline
correlation= 0.5, respectively; see Table 1).

Table 2 displays the T-size or CFI_t results tabled as a
function of the by2m2 path, baseline correlation, stability, and
sample size for all models. Across all sample sizes, as stability
increased to 1.00, the CFI_t values were above the adjusted cut-
off value for close fit when the by2m2 path was less than or
equal to 0.14 across both values of the baseline correlation. The
CFI_t values were higher when the baseline correlation = 0.50
(see Table 2).

Residualized Change Score Model
The CFI values for the residualized change score model were
greater than the conventional cut-off of close fit except when
stability = 0.30, baseline correlation = 0, and by2m2 path = 0.59.
The CFI values were also below the conventional cut-off of close
fit when stability = 1.00 and the by2m2 path was greater than or
equal to 0.39. In general, the CFI values were larger in magnitude
when the baseline correlation= 0.50 (see Table 1).

ForN = 50, the CFI_t values for the residualized change score
model were only above the adjusted cut-off of close-fit when
stability = 1.00, baseline correlation = 0, and the by2m2 path was
less than or equal to 0.14 and when stability = 1.00, baseline
correlation = 0.50, and the by2m2 path was less than or equal
to 0.39. For N = 100, the CFI_t values were greater than the
adjusted cut-off of close fit for the same conditions asN = 50 with
the addition of stability = 0, baseline correlation = 0.50, and the
by2m2 path = 0.59. For N = 200 and 500, the CFI_t values were
greater than the adjusted cut-off of close fit when the baseline
correlation = 0.50 except when stability = 1.00 and the by2m2

path=0.59. In general, there were more conditions for which the
CFI_t values were greater than the adjusted cut-off of close-fit as
sample size increased and when the baseline correlation = 0.50
(see Table 2).

Cross-Sectional Model
The magnitude of the CFI values were above the conventional
level of close fit when stability= 0. The only exception was when
the baseline correlation = 0 and the by2m2 path was less than or
equal to 0.14 (see Table 1). For N = 50, there were no conditions
for which the CFI_t values for the cross-sectional model were
above the adjusted cut-off of close fit. For N = 100, the only
condition for which the CFI_t value was greater than the adjusted
level of close fit was when stability = 0, baseline correlation =

0.50, and the by2m2 path= 0.59. For N =200, the only conditions
for which the CFI_t values were above the adjusted cut-off of
close fit was when stability =0, baseline correlation = 0, and the
by2m2 path = 0.59 and when stability = 0, baseline correlation =

0.50, and the by2m2 path was greater than or equal to 0.39. For N
= 500, CFI_t values were above the adjusted cut-offwhen stability
= 0 and baseline correlation = 0.50. The CFI_t values were also
above the adjusted cut-off level of close fit when stability = 0,
baseline correlation = 0, and when the by2m2 path was greater
than or equal to 0.39 (see Table 2).
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TABLE 1 | CFI values for the difference score model (Diff), residualized change score model (Res), and cross-sectional model (Cross) for M2cross-lag = 0 and Y2

cross-lag = 0.

Base. Corr.

0 0.5

Diff Res Cross Diff Res Cross

Stability by2m2 path

0 0 0.000 0.970 0.887 0.000 0.993 0.976

0.14 0.000 0.974 0.918 0.001 0.993 0.977

0.39 0.001 0.985 0.967 0.006 0.993 0.983

0.59 0.003 0.986 0.983 0.029 0.991 0.988

0.3 0 0.014 0.990 0.474 0.048 0.995 0.711

0.14 0.020 0.988 0.514 0.079 0.994 0.730

0.39 0.040 0.969 0.678 0.175 0.985 0.786

0.59 0.072 0.940 0.797 0.287 0.968 0.841

1 0 0.992 0.998 0.083 0.994 0.998 0.243

0.14 0.982 0.989 0.098 0.986 0.993 0.277

0.39 0.902 0.910 0.182 0.926 0.948 0.351

0.59 0.781 0.788 0.298 0.832 0.872 0.428

CFI values that were above the conventional cut-off for close fit are bolded and underlined. The conventional cut-off values are: 0.99 – excellent; 0.95 – close; 0.92 – fair; 0.90 mediocre;

<0.90 - poor.

RMSEA and T-size RMSEA Results
Because the RMSEA and T-size RMSEA (RMSEA_t) results were
below the conventional cut-offs values when either or both the
cross-lagged paths were greater than 0, the results were reported
for the conditionM2 cross-lag= 0 and Y2 cross-lag= 0. Both the
RMSEA and RMSEA_t values were compared to their respective
cut-off values. For the RMSEA values, the conventional cut-offs
are: 0.01 – excellent; 0.05 – close; 0.08 – fair; 0.10 mediocre;
>0.10 – poor. The adjusted RMSEA cut-off values are estimated
based on the observed sample size andmodel degrees of freedom.
Because the models tested contain the same degrees of freedom,
the adjusted RMSEA cut-off values varied as only as a function of
sample size therefore the RMSEA_t results were reported for each
sample size. The adjusted RMSEA cut-off values forN = 50 were:
0.22 – excellent; 0.23 – close; 0.24 – fair; 0.25 mediocre; >0.25
– poor. The adjusted RMSEA cut-off values for N = 100 were:
0.15 – excellent; 0.16 – close; 0.19 – fair; 0.20 mediocre; >0.20
– poor. The adjusted RMSEA cut-off values for N = 200 were:
0.11 – excellent; 0.13 – close; 0.15 – fair; 0.17 mediocre; >0.17 –
poor. The adjusted RMSEA cut-off values for N = 500 were: 0.07
– excellent; 0.10 – close; 0.12 – fair; 0.14 mediocre; >0.14 – poor.

Difference Score Model
Table 3 displays the RMSEA results tabled as a function of the
stability, by2m2 path, and baseline correlation for all models.
The only conditions that resulted in RMSEA values below the
conventional cut-off for close-fit was when stability = 1.00 and
the by2m2 path= 0 (see Table 3).

For N = 50, the RMSEA_t values for the difference score
model were only below the adjusted cut-off for close fit when
stability = 1.00 and when the by2m2 path was less than or equal
to 0.14 which was true for both values of the baseline correlation.
For N = 100 – 500, the RMSEA_t values were only below the

adjusted cut-off for close fit when stability = 1.00 and when the
by2m2 path = 0 which was true for both values of the baseline
correlation (see Table 4).

Residualized Change Score Model
When stability = 0.00, the RMSEA was below the conventional
cut-off value for close fit for all values of the by2m2 path and for
both values of the baseline correlation. When stability = 0.30,
the RMSEA was below the conventional cut-off value for close fit
when the by2m2 path was less than or equal to 0.39 for both values
of the baseline correlation. When stability = 1.00, the RMSEA
was below the conventional cut-off value for close fit when the
by2m2 path was less than or equal to 0.14 for both values of the
baseline correlation (see Table 3).

For N = 50, the RMSEA_t values for the residualized change
score model were below the adjusted cut-off value for close fit
when stability was less than or equal to 0.30 except when the
baseline correlation = 0.50 and the by2m2 path = 0.59. When
stability =1.00, the RMSEA_t values were below the adjusted
cut-off value for close fit when the by2m2 path was less than or
equal to 0.14 across both values of the baseline correlation. For
N = 100 – 500, the RMSEA_t values for the residualized change
score model were below the adjusted cut-off value for close fit
when stability = 0. When stability = 0.30, the RMSEA_t values
were below the adjusted cut-off value for close-fit when the by2m2

path was less than or equal to 0.39 across both values of the
baseline correlation. When stability =1.00, the RMSEA_t values
were below the adjusted cut-off value for close fit when the by2m2

path was less than or equal to 0.14 across both values of the
baseline correlation (see Table 4).

Cross-Sectional Model
The only conditions that resulted in RMSEA values below
the conventional cut-off for close-fit was when stability
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TABLE 2 | T-size CFI values (CFI_t) for the difference score model (Diff), residualized change score model (Res), and cross-sectional model (Cross) for M2cross-lag = 0

and Y2 cross-lag = 0.

Sample size

50 100 200 500

Diff Res Cross Diff Res Cross Diff Res Cross Diff Res Cross

Stability Base. Corr. by2m2 path

0 0 0 0.003 0.198 0.101 0.002 0.393 0.244 0.001 0.578 0.448 0.001 0.763 0.678

0.14 0.002 0.228 0.116 0.002 0.408 0.277 0.000 0.623 0.489 0.000 0.787 0.693

0.39 0.000 0.285 0.188 0.000 0.551 0.438 0.000 0.765 0.695 0.000 0.928 0.902

0.59 0.000 0.408 0.357 0.000 0.706 0.678 0.000 0.882 0.872 0.000 0.961 0.958

0.5 0 0.000 0.393 0.220 0.000 0.689 0.535 0.000 0.870 0.800 0.000 0.960 0.937

0.14 0.000 0.418 0.249 0.000 0.701 0.563 0.000 0.873 0.813 0.000 0.963 0.942

0.39 0.000 0.505 0.357 0.000 0.778 0.689 0.000 0.913 0.876 0.000 0.970 0.959

0.59 0.000 0.570 0.523 0.000 0.833 0.808 0.000 0.932 0.922 0.000 0.977 0.973

0.3 0 0 0.000 0.293 0.011 0.000 0.550 0.026 0.000 0.772 0.082 0.000 0.934 0.173

0.14 0.000 0.320 0.012 0.000 0.555 0.040 0.000 0.769 0.109 0.000 0.918 0.209

0.39 0.000 0.327 0.041 0.000 0.552 0.110 0.000 0.758 0.227 0.001 0.875 0.384

0.59 0.000 0.357 0.116 0.000 0.593 0.282 0.001 0.754 0.469 0.006 0.848 0.629

0.5 0 0.000 0.500 0.031 0.000 0.785 0.117 0.000 0.916 0.269 0.000 0.973 0.466

0.14 0.001 0.512 0.046 0.000 0.782 0.148 0.001 0.914 0.312 0.003 0.966 0.503

0.39 0.002 0.528 0.103 0.005 0.780 0.272 0.011 0.888 0.470 0.032 0.942 0.618

0.59 0.008 0.557 0.223 0.018 0.771 0.467 0.044 0.868 0.625 0.091 0.917 0.724

1 0 0 0.731 0.814 0.000 0.895 0.930 0.000 0.955 0.970 0.000 0.983 0.989 0.000

0.14 0.694 0.760 0.000 0.858 0.885 0.000 0.922 0.934 0.000 0.956 0.960 0.000

0.39 0.495 0.528 0.000 0.684 0.695 0.000 0.774 0.778 0.001 0.832 0.833 0.013

0.59 0.278 0.308 0.000 0.488 0.489 0.002 0.600 0.601 0.017 0.679 0.679 0.081

0.5 0 0.809 0.870 0.000 0.921 0.947 0.000 0.965 0.976 0.002 0.987 0.992 0.031

0.14 0.790 0.843 0.000 0.899 0.925 0.001 0.943 0.958 0.007 0.968 0.975 0.062

0.39 0.646 0.712 0.001 0.774 0.817 0.006 0.836 0.868 0.046 0.877 0.902 0.159

0.59 0.470 0.557 0.005 0.621 0.685 0.041 0.700 0.754 0.146 0.757 0.803 0.263

CFI_t values that were above the adjusted cut-off for close fit are bolded and underlined. The adjusted CFI cut-off values for N = 50 were: 0.77 – excellent; 0.66 – close; 0.59 – fair;

0.54 mediocre; <0.54 – poor. The adjusted CFI cut-off values for N = 100 were: 0.88 – excellent; 0.79 – close; 0.73 – fair; 0.69 mediocre; <0.69 – poor. The adjusted CFI cut-off values

for N = 200 were: 0.94 – excellent; 0.86 – close; 0.80 – fair; 0.77 mediocre; <0.77 – poor. The adjusted CFI cut-off values for N = 500 were: 0.97 – excellent; 0.90 – close; 0.86 – fair;

0.83 mediocre; <0.83 – poor.

= 0.00 (see Table 3). For all sample sizes, the RMSEA_t
values for the cross-sectional model were only below the
adjusted cut-off value for close fit when stability = 0.00 (see
Table 4).

Summary of Simulation Results
A consistent pattern emerged for the model fit for the difference
score and cross-sectional models across the χ2 test, CFI, T-
size CFI, RMSEA, T-size RMSEA, and the additional fit indices
reported in the Supplemental Materials. For the difference
score model, Type 1 error rates for the χ2 test were within
the robustness interval, CFI and T-size CFI values were above
their respective cut-off values for close-fit, and RMSEA and T-
size RMSEA values were below their respective cut-off values
for close-fit when stability = 1.00, the cross-lagged effects =

0.00, and the by2m2 path was less than or equal to 0.14. For
the residualized change score model, when both cross-lagged
paths = 0, the Type 1 error rates of the χ2 test increased
as both stability and the by2m2 path increased in magnitude.

The CFI values were above the conventional cut-off for close-
fit and the RMSEA values were below the conventional cut-
off for close-fit primarily when stability was less than or equal
to 0.30. As stability increased, the fit according to the CFI
and RMSEA got worse as the magnitude of the by2m2 path
increased. A similar pattern emerged for the T-size CFI and the
T-size RMSEA values for the residualized change score model
but only for sample sizes N = 200 and N = 500. For the
cross-sectional model, Type 1 error rates for the χ2 test were
within the robustness interval, CFI and T-size CFI values were
above their respective cut-off values for close-fit, and RMSEA
and T-size RMSEA values were below their respective cut-off
values for close-fit when the stability and cross-lagged effects were
equal= 0.00.

EMPIRICAL EXAMPLE

Data from the Athletes Training and Learning to Avoid
Steroids (ATLAS; Goldberg et al., 1996) program were used to
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TABLE 3 | RMSEA values for the difference score model (Diff), residualized change score model (Res), and cross-sectional model (Cross) for M2cross-lag = 0 and Y2

cross-lag = 0.

Base. Corr.

0 0.5

Diff Res Cross Diff Res Cross

Stability by2m2 path

0 0 0.588 0.012 0.029 0.604 0.010 0.029

0.14 0.589 0.012 0.029 0.598 0.011 0.029

0.39 0.597 0.016 0.029 0.589 0.014 0.029

0.59 0.614 0.025 0.029 0.589 0.022 0.029

0.3 0 0.448 0.011 0.198 0.468 0.011 0.211

0.14 0.450 0.014 0.199 0.457 0.014 0.211

0.39 0.469 0.045 0.198 0.448 0.038 0.212

0.59 0.505 0.096 0.198 0.460 0.079 0.211

1 0 0.029 0.010 0.588 0.029 0.010 0.604

0.14 0.065 0.046 0.588 0.065 0.038 0.604

0.39 0.197 0.187 0.588 0.198 0.160 0.605

0.59 0.326 0.321 0.588 0.326 0.282 0.604

RMSEA values that were above the conventional cut-off for close fit are bolded and underlined. The conventional cut-offs are: 0.01 – excellent; 0.05 – close; 0.08 – fair; 0.10 mediocre;

>0.10 - poor.

demonstrate the model fit for the two-wave mediation models.
MacKinnon et al. (2001) evaluated the mediating mechanisms
of 12 mediators of the ATLAS program on three outcomes. In
this example, the model tested students’ perception of their high
school football team as an information source at posttest as the
mediating variable of the ATLAS program on strength training
self-efficacy at posttest. The variables included pretest measures
of the mediator, perception of team as information source at
pretest (M1), which included items such as “Being on the football
team has improved my health,” and the outcome, strength
training self-efficacy at pretest (Y1), which included items such as
“I know how to train with weights to become stronger.” Both the
mediator and the outcome were measured immediately after the
ATLAS program was administered (i.e., units randomly assigned
to experimental conditions) and constitute the posttest measures
of these variables, respectively (M2 and Y2) (see Figure 2).

There were 1,144 observations used in this example after
listwise deletion of the original 1,506 observations. The purpose
of the empirical example is to demonstrate that the models
produce identical estimates of the mediated effect across the
regression and LCS approaches but that the LCS approach has
the added benefit of providing model fit information. Therefore,
the models were estimated with both linear regression using
the lm function in R and the LCS specification using the R
package lavaan (Rosseel, 2012). Asymmetric distribution of the
product confidence intervals were computed for the mediated
effect estimates (MacKinnon et al., 2002; Preacher and Hayes,
2008) using the R package RMediation (Tofighi and MacKinnon,
2011). The equivalence tests were computed using the R function
provided in Yuan et al. (2016) (syntax for a simulated dataset is
provided in the Supplementary Materials).

The mediated effect estimate and 95% distribution of the
product asymmetric confidence intervals (95% C.I.) for all

models estimated with regression and the LCS specification were
identical. That is, for the ANCOVA model the mediated effect
estimate was 0.237 with 95% confidence interval equal to [0.181,
0.297] under both modeling strategies. The mediated effect
estimate and 95% C.I. for the difference score model was 0.181,
95% C.I. [0.129, 0.239] and was identical under both modeling
strategies. The mediated effect estimate and 95% C.I. for the
residualized change score model was 0.222, 95% C.I. [0.168,
0.281] and was identical under both modeling strategies. Finally,
the mediated effect estimate and 95% C.I. for the cross-sectional
model was 0.254, 95% C.I. [0.188, 0.323] and was identical under
both modeling strategies. In summary, linear regression and the
LCS specification resulted in identical mediated effect estimates
for the respective models.

The χ2 tests for the difference score model, residualized
change score model, and cross-sectional models were all
statistically significant. Therefore, the test provided evidence
that the constraints implied by the difference score, residualized
change score, and cross-sectional models did not fit the observed
data well (see Table 5). The T-size RMSEA for the difference
score model was 0.456. This implies we are 95% confident that
the misspecification as measured by the RMSEA was not >0.456.
Using the new cut-off values, the model had poor fit because
the T-size RMSEA was greater than the adjusted poor fit cut-
off value of 0.128. The T-size CFI for the difference score model
was 0.000. This implies we are 95% confident that the population
CFI is >0.000. Using the new cut-off values, our model had
poor fit as measured by the CFI. The T-size RMSEA for the
residualized change score model was 0.113. This implies we
are 95% confident that the misspecification as measured by the
RMSEA was not >0.113. Using the new cut-off values, the model
had between fair and mediocre fit. Using the standard RMSEA
value (0.087) and the standard cut-off values, the model fit would
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TABLE 4 | T-size RMSEA values (RMSEA_t) for the difference score model (Diff), residualized change score model (Res), and cross-sectional model (Cross) for

M2cross-lag = 0 and Y2 cross-lag = 0.

Sample Size

50 100 200 500

Diff Res Cross Diff Res Cross Diff Res Cross Diff Res Cross

Stability Base. Corr. by2m2 path

0 0 0 0.710 0.168 0.205 0.673 0.111 0.143 0.647 0.081 0.100 0.626 0.048 0.062

0.14 0.710 0.165 0.207 0.675 0.114 0.142 0.649 0.078 0.099 0.627 0.050 0.062

0.39 0.718 0.179 0.206 0.682 0.120 0.141 0.657 0.086 0.098 0.636 0.054 0.062

0.59 0.735 0.197 0.206 0.699 0.135 0.141 0.674 0.094 0.099 0.652 0.059 0.062

0.5 0 0.726 0.160 0.205 0.689 0.106 0.141 0.664 0.078 0.099 0.642 0.048 0.062

0.14 0.720 0.159 0.205 0.683 0.108 0.141 0.657 0.082 0.100 0.635 0.048 0.062

0.39 0.710 0.168 0.204 0.674 0.117 0.141 0.649 0.081 0.099 0.627 0.053 0.063

0.59 0.710 0.192 0.205 0.674 0.131 0.142 0.649 0.090 0.099 0.627 0.056 0.062

0.3 0 0 0.571 0.163 0.332 0.533 0.110 0.291 0.508 0.078 0.265 0.487 0.048 0.242

0.14 0.573 0.163 0.333 0.536 0.117 0.292 0.510 0.085 0.264 0.489 0.059 0.242

0.39 0.593 0.197 0.333 0.554 0.151 0.291 0.530 0.122 0.264 0.507 0.100 0.242

0.59 0.628 0.243 0.333 0.591 0.197 0.291 0.565 0.170 0.264 0.543 0.149 0.241

0.5 0 0.592 0.161 0.343 0.554 0.109 0.302 0.528 0.077 0.276 0.507 0.049 0.254

0.14 0.581 0.166 0.343 0.544 0.116 0.302 0.516 0.083 0.277 0.495 0.057 0.254

0.39 0.571 0.191 0.345 0.534 0.142 0.303 0.508 0.113 0.277 0.486 0.091 0.255

0.59 0.584 0.228 0.345 0.546 0.182 0.302 0.520 0.153 0.276 0.498 0.134 0.255

1 0 0 0.205 0.161 0.710 0.141 0.110 0.673 0.098 0.077 0.647 0.063 0.048 0.626

0.14 0.227 0.191 0.710 0.171 0.149 0.672 0.137 0.123 0.648 0.111 0.105 0.625

0.39 0.330 0.312 0.710 0.290 0.280 0.673 0.263 0.259 0.647 0.241 0.239 0.626

0.59 0.452 0.443 0.710 0.413 0.409 0.674 0.388 0.385 0.647 0.366 0.365 0.626

0.5 0 0.204 0.159 0.726 0.142 0.111 0.690 0.099 0.078 0.664 0.062 0.048 0.642

0.14 0.225 0.183 0.726 0.171 0.141 0.689 0.137 0.114 0.664 0.111 0.095 0.642

0.39 0.333 0.288 0.728 0.291 0.255 0.690 0.264 0.233 0.664 0.241 0.214 0.642

0.59 0.452 0.402 0.726 0.414 0.371 0.688 0.389 0.348 0.665 0.365 0.328 0.642

RMSEA_t values that were above the conventional cut-off for close fit are bolded and underlined. The adjusted RMSEA cut-off values for N = 50 were: 0.22 – excellent; 0.23 – close;

0.24 – fair; 0.25 mediocre; >0.25 – poor. The adjusted RMSEA cut-off values for N = 100 were: 0.15 – excellent; 0.16 – close; 0.19 – fair; 0.20 mediocre; >0.20 – poor. The adjusted

RMSEA cut-off values for N = 200 were: 0.11 – excellent; 0.13 – close; 0.15 – fair; 0.17 mediocre; >0.17 – poor. The adjusted RMSEA cut-off values for N = 500 were: 0.07 – excellent;

0.10 – close; 0.12 – fair; 0.14 mediocre; >0.14 – poor.

be considered between fair and mediocre as well. The T-size CFI
for the difference score model was 0.930. This implies we are
95% confident that the population CFI is >0.930. Using the new
cut-off values, the model fit was between excellent and close as
measured by the CFI. Using the standard CFI (0.986) and the
standard cut-off values, the model fit was between excellent and
close. TheT-size RMSEA for the cross-sectional model was 0.314.
This implies we are 95% confident that the misspecification as
measured by the RMSEA was no greater than 0.314. Using the
new cut-off values, the model fit was poor. The T-size CFI for
the cross-sectional model was 0.488. This implies we are 95%
confident that the population CFI was >0.488. Using the new
cut-off values, our model fit was poor.

In summary, we demonstrated with the empirical example
that researchers can estimate the mediated effect under the
ANCOVA, difference score, residualized change score, and
cross-sectional models using linear regression and the LCS
specification which provide identical mediated effect estimates
for the respective models. The added benefit of the LCS
specification is that it makes explicit the model constraints

FIGURE 2 | Diagram of the model described in the empirical example. The

bold path from Atlas to Stren. Train. 2 through Team Info. Source 2 indicates

the mediated effect of the ATLAS program on strength training self-efficacy at

posttest through its effect on team as an information source at posttest.

assumed by the difference score, residualized change score,
and cross-sectional models and provides evidence of the fit
of these models via model fit indices. We tested the model
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constraints for the difference score, residualized change score,
and cross-sectional models in our example and we found
evidence that the non-ANCOVA models did not fit the data as
well as the ANCOVA model although the residualized change
score model did not fit poorly. Overall, we would proceed by
selecting the ANCOVA model. However, it is possible the model
misfit in the empirical example was caused by other sources of
model misspecification (more on this in the discussion section).
Overall, the χ2 tests, CFI, T-size CFI, RMSEA, and T-size
RMSEA provided the same general conclusion that the difference
score, residualized change score, and cross-sectional models did
not fit the data well. The T-size model fit indices of RMSEA and
CFI provide a different interpretation than the standard RMSEA
and CFI but comparing these T-size fit indices to the adjusted
cut-off values provided the same conclusion of model fit for
each model.

DISCUSSION

This paper extended previous work using the LCS specification to
estimate two-wave mediation models by testing the performance
of model fit statistics when evaluating which of the two-wave
mediation models best describe the observed data. The goals
of this paper were to describe how researchers can use the
LCS specification to fit the two-wave mediation models and
demonstrate conditions under which goodness-of-fit indexes
including newly proposed T-size fit indices perform well. The
LCS specification of the two-wave mediation models provides
an advantage over the regression approach because the LCS
specification allows researchers to test the implications of the
model constraints imposed by each of the nested two-wave
mediation models via model fit indices. This is an important
strength over the regression approach which implicitly assumes
the nested two-wave mediation models fit the data equally well as
the ANCOVAmodel.

Overall, the χ2 tests for the models (difference score,
residualized change score, and cross-sectional) had Type 1 error
rates within the robustness interval for a limited range of
conditions corresponding to the strict assumptions each model
makes regarding the magnitude of the stabilities and cross-lagged
paths. Subsequently, the χ2 tests for the models resulted in high
statistical power to reject the null hypothesis that the nested and
full model (e.g., the difference score and ANCOVA model) fit
the data equally well. The CFI and RMSEA fit indexes generally
provided similar information regarding the fit of the difference
score, residualized change score, and cross-sectional models. The
T-size counterparts of the CFI and RMSEA provided similar fit
conclusions as the CFI and RMSEA but these conclusions were
dependent on sample size.

Although the T-size CFI and T-size RMSEA resulted in
similar fit conclusions as the CFI and RMSEA, respectively,
the T-size measures have a different interpretation than the
standard CFI and RMSEA values. For example, at α = 0.05,
the T-size CFI is interpreted as “we are 95% confident that
the population CFI is above X” and the T-size RMSEA is
interpreted as “we are 95% confident that the misspecification

is X-units as measured by the RMSEA” (Marcoulides and Yuan,
2017). Therefore, the T-size measures provide researchers with
information regarding the probability that the size of the model
misspecification is within a certain tolerable size. This is useful
additional information that researchers may want to consider
when fitting two-wave longitudinal mediationmodels. TheT-size
measures can easily be calculated using an R function created by
Yuan et al. (2016).

An interesting result was that the magnitude of the mediator-
outcome relation at posttest (by2m2 in Figure 1A) negatively
affected the fit of the difference score and residualized change
score models. Upon inspection of the residual covariance
matrices for some of these conditions, it appeared that the
covariance between the pretest mediator and latent change score
for the outcome was equal to zero. This covariance term is
non-zero in the population but is assumed to be equal to
zero via path tracing rules when using the LCS specification
(see Supplementary Material for more details). Because of
the complexity of the relations between the mediator-outcome
relation at posttest across the different models, further research
is needed to fully understand the factors involved in affecting
the model fit as the mediator-outcome relation increases in
magnitude. Further, the effect the magnitude of the mediator-
outcome relation at posttest had on the model fit may be
explained by conceptual differences in how the time interval
between measurement occasions is encoded by the models.

Conceptual Differences Between the
Models of Change
In applied settings, it is important to consider the conceptual
differences between the models of change. The ANCOVA model
is a conditional model of change and the difference score model is
an unconditional model of change. Consequently, the ANCOVA
model and difference score model make different assumptions
about regression to the mean. Absent a treatment effect, the
ANCOVA model assumes regression to the mean will occur
with the most extreme values at pretest becoming less extreme
at posttest (i.e., regressing to the mean at posttest) while the
difference score model assumes individual differences at pretest
will maintain through posttest (Cronbach and Furby, 1970;
Dwyer, 1983; Rogosa, 1988; Campbell and Kenny, 1999). In
other words, the ANCOVA model assumes that individuals with
the most extreme values on the mediator and the outcome
variables at pretest will tend toward the mean of the mediator
and the outcome variables at posttest, respectively. The difference
score model assumes individual differences on the mediator
and the outcome variables at pretest will remain the same
at posttest which is encoded in the assumption that the
stabilities of the mediator and the outcome variables are equal
to one. The residualized change score model provides a middle
ground between the ANCOVA and difference score models
by computing a change variable that is the difference between
the observed posttest values of the mediator and outcome
and predicted posttest values (using the pretest values) of the
mediator and outcome, respectively. The cross-sectional model is
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TABLE 5 | Model fit information for LCS specification of two-wave mediation models applied to empirical example.

Model Baseline χ
2 (df) Model χ2 (df) RMSEA RMSEA T-size New RMSEA cut-off CFI CFI T-size New CFI cut-offs

ANCOVA 1039.801 (10) 0 (0) 0 NA NA 1 NA NA

Diff 1039.801 (10) 855.026 (4) 0.431 0.456 0.047; 0.079; 0.108; 0.128; 0.174 0.000 0.857; 0.882; 0.921; 0.977

Res 1039.801 (10) 38.769 (4) 0.087 0.113 0.047; 0.079; 0.108; 0.128; 0.986 0.930 0.857; 0.882; 0.921; 0.977

Cross 1039.801 (10) 387.234 (4) 0.289 0.314 0.047; 0.079; 0.108; 0.128; 0.628 0.488 0.857; 0.882; 0.921; 0.977

not a model for change since it makes no adjustment for pretest
values either conditionally or unconditionally.

Another important theoretical consideration is that of the
time-interval betweenmeasurement occasions. The time-interval
between the measurements of the treatment, mediator, and the
outcome will play a role in the effect size of those relations
(Gollob and Reichardt, 1991; Collins andGraham, 2002; Cole and
Maxwell, 2003; Reichardt, 2011). This holds for the stabilities of
the variables, the cross-sectional relations, and the cross-lagged
effects. For example, the magnitude of the effect of the mediator
on the outcome will be different if the mediator and outcome are
measured 30min apart vs. 3 months apart. What is considered
a short time interval for change to occur in one variable (e.g.,
M) may not be a short time interval for change to occur in
another variable (e.g., Y) and the time-interval that produces the
largest effect sizes does not necessarily mean this is the “correct”
time-interval. It is preferred to have measured X, M, and Y
over a time-interval that is believed to represent the underlying
theoretical process of change. In other words, simply measuring
the mediator before the outcome does not mean the mediator
construct precedes the outcome construct.

Implications and Recommendations
When researchers have questions that are explicitly about relating
change in the mediator over a period of time to the change
in the outcome over a period of time, the difference score and
residualized change score model may seem appealing but each
model requires model constraints that can be explicitly tested
with the LCS specification of the two-wave mediation model. The
LCS specification of the two-wavemediationmodel makes it clear
that the difference score and residualized change score models
make strict assumptions regarding the stability of the mediator
and outcome and the cross-lagged paths. In this case, researchers
may want to take this information into consideration when
choosing which two-wave mediation model will best represent
their observed data.

Overall, it is recommended that researchers consider the
model of change that describes the phenomenon of under
investigation and are encouraged to report model fit information
such as the CFI and RMSEA values and the T-size CFI and
T-size RMSEA to supplement the results of the χ2 test. These
recommendations are meant to provide researchers with an
additional tool when evaluating models of change for the two-
wave mediationmodel. If researchers are planning on fitting two-
wave mediation models, they may want to rely on the theory of
change that best represents the phenomena under investigation

and supplement this model choice with statistical evidence via
the fit indices mentioned above.

Limitations and Future Directions
The two-wave mediation models described in this manuscript
assume the absence of treatment-by-mediator interactions. The
treatment-by-mediator interaction is an important component
to mediation modeling in the potential outcomes framework
for causal inference (Vanderweele and Vansteelandt, 2009;
Valeri and Vanderweele, 2013; Mackinnon et al., 2020). The
presence of a treatment-by-mediator interaction implies the
mediated effects may differ in magnitude across the control
and treatment groups and the direct effects may differ in
magnitude across levels of the mediator variable. It is unclear
how the presence of treatment-by-mediator interactions may
impact the performance of the two-wave mediation models
described in this manuscript or how these interactions may
manifest over the repeated measurements (e.g., baseline-by-
treatment interactions; MacKinnon, 2008, Ch. 8; Morgan-Lopez
and MacKinnon, 2006).

It was assumed in this manuscript that the mediator
variable construct had identical measurement properties across
the control and treatment groups and across time. In other
words, it was assumed there was measurement invariance.
Measurement invariance in the mediation model has become
an interesting area of research because the causal conclusions
of mediation analysis rests on measuring the same construct
for each group at each time point. Recent work has begun
to incorporate concepts and statistical tests of measurement
invariance into the mediation model in general and the two-
wave mediation model in particular (Olivera-Aguilar et al.,
2018; Georgeson et al., 2021)2 and more generally to investigate
properties of mediation models under varying psychometric
properties (Gonzalez and MacKinnon, 2016, 2020). More
work is needed to determine how psychometric properties
of the mediator and outcome may affect statistical mediation
conclusions. In general, it is recommended that researchers
consider the measurement theory and use latent variables
whenever possible.

It was assumed that model misfit as characterized in
this study was caused by misspecification of the models of
change estimated in the sample compared to their population
counterpart. Model misspecification could occur for a variety
of reasons including the presence of unmeasured confounders

2Georgeson, A. R., Valente, M. J., and Gonzalez, O. (2020). The effect of partial

invariance on mediation in a two-wave mediation model for interventions.
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(Holland, 1988; Imai et al., 2010), measurement error (Fritz
et al., 2016), lack of measurement invariance across groups
or over time (Olivera-Aguilar et al., 2018; Georgeson et al.,
2021)2, and misspecified non-linear or non-additive effects
like treatment-by-mediator interactions (Vanderweele and
Vansteelandt, 2009; Valeri and Vanderweele, 2013; Mackinnon
et al., 2020). Therefore, researchers may also consider these other
potential sources of model misspecification when comparing
models of change.

CONCLUSION

Overall, the LCS approach to two-wave mediation models
provides a strong advantage over the traditional regression
approach for these models because the LCS specification can be
used to assess the adequacy of the assumed model constraints
of the difference score, residualized change score, and cross-
sectional model. Our research demonstrates that traditional and
newly-proposed model fit indices perform well in distinguishing
models of change. Specifically, in addition to choosing the
model of change that best describes the phenomenon under
investigation—including an evaluation of the plausibility of
the constraints implied by the difference score, residualized
change score, and cross-sectional models—the model fit indices
were generally able to provide evidence in support of a more
parsimonious models when the model the constraints of the
parsimonious models held in the population. We encourage

researchers to use the LCS specification to assess if their model
of change is adequate for their data.
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