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Multilevel models have been developed for addressing data that come from a hierarchical

structure. In particular, due to the increase of longitudinal studies, a three-level growth

model is frequently used to measure the change of individuals who are nested in groups.

In multilevel modeling, sufficient sample sizes are needed to obtain unbiased estimates

and enough power to detect individual or group effects. However, there are few sample

size guidelines for three-level growth models. Therefore, it is important that researchers

recognize the possibility of unreliable results when sample sizes are small. The purpose of

this study is to find adequate sample sizes for a three-level growth model under realistic

conditions. A Monte Carlo simulation was performed under 12 conditions: (1) level-2

sample size (10, 30), (2) level-3 sample size (30, 50, 100) (3) intraclass correlation at

level-3 (0.05, 0.15). The study examined the following outcomes: convergence rate,

relative parameter bias, mean square error (MSE), 95% coverage rate and power.

The results indicate that estimates of the regression coefficients are unbiased, but the

variance component tends to be inaccurate with small sample sizes.

Keywords: three-level growth model, sample size, intraclass correlation, Monte Carlo simulation study, multilevel

(hierarchical) modeling

INTRODUCTION

In education, counseling and social science research, observations with a hierarchical structure
are common (Raudenbush and Bryk, 2002). Students are nested within classrooms or schools,
workers are nested within firms, and patients are nested within counselors. When data are sampled
in a multi-stage manner or observations (i.e., students) are nested within groups (i.e., schools),
modeling data by ignoring the clustering can lead to false inferences about the relations among
variables in themodel. Therefore, methods have been developed for addressing data that come from
a hierarchical structure. One suchmethod is referred to asmultilevel modeling (MLM), hierarchical
linear modeling (HLM), mixed models or random coefficients modeling (Raudenbush and Bryk,
2002). Multilevel models can be conceptualized as regression models at two levels; that is, units of
observation at one level are nested in groups at a higher level. However, there are many situations
in which not only are the observations are nested within groups, but also repeated measures are
nested within groups (Curran et al., 2012). In previous studies, researchers were interested in
examining the change of individuals within groups by using the three-level growth model. For
example,McCoach et al. (2006) examined the effects of school factors on the growth in kindergarten
students’ reading achievement with a three-level growth model. Lutz et al. (2007) used a three-level
growth model to assess the amount of variance in across-session change in the symptom intensity
scores of patients who were seeing different therapists. In their study, 1,198 patients were treated
by 60 therapists, with a median number of sessions of 61.
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The three-level growth model is conceptually similar to a
linear regression model in that an outcome variable is predicted
from multiple covariates. However, to handle clustered data,
the within-group or individual variance is partitioned into the
component at the lower level and the between-group variance at
the upper level. For example, level-1 is each student’s growth in
academic achievement over time, level-2 is the variation across
students in academic achievements within a group, and level-3 is
the variation in initial status and growth rate among schools.

The equation for level-1 model is as follows

Ytij = π0ij + π1ijtimetij + etij (1)

where Ytij is the academic achievement at time t for individual i
in group j; π0ij is the initial status for student i in school j, that is,
the expected outcome for student i in school j when time point
= 0; π1ij is the growth rate for student i in school j; timetij is the
student level time predictor at time t for student i in school j; and
etij is the residual associated with a student’s score at a specific
time point, which is assumed to be normally distributed with a
mean of 0 and variance of σ 2

e . The level-2 equations are

π0ij = β00j + γ0ij (2)

π1ij = β10j + γ1ij (3)

where β00j represents the mean initial status for school j, and γ0ij
is the variation in initial status among students within-school.
β10j is the mean growth for school j, and γ1ij is the variation
in growth rate among students within-school. γ0ij and γ1ij are
assumed to be in multivariate normal distribution, each with a
mean of 0, and some variance (i.e., σ 2

r0 and σ 2
r1, respectively) and

covariance among them (i.e., σ 2
r01). The variances of γ0ij and γ1ij

indicate the extent to which students within a school vary from
school mean initial status and growth rate. The level-3 equations
are as follows

β00j = γ000 + u00j (4)

β10j = γ100 + u10j (5)

where γ000 represents the grandmean initial status, and u00j is the
variation in initial status across schools. γ100 represents the grand
mean growth rate, and u10j is the variation in growth rate across
schools. u00j and u10j are assumed to be in multivariate normal
distribution, each with a mean of 0, and some variance (i.e., σ 2

u00
and σ 2

u10, respectively) and covariance among them (i.e., σ 2
u01).

The variances of u00j and u10j indicate the extent to which schools
vary with respect to the grand mean initial status and growth rate
of the whole sample. To summarize, the three-level growthmodel
described here combines longitudinal and multilevel features
because level-1 describes each student’s growth in outcomes
over time (i.e., the longitudinal feature), level-2 captures the
variation across students in growth parameters (i.e., initial
status and growth rate) within a schools, and level-3 captures
variation in initial status and growth rate among schools (i.e., the
multilevel features).

When researchers conduct a three-level growth model
analysis, the question of sufficient sample size for adequate

statistical power and accurate estimates of parameters arise. If
there are relatively small sample sizes, biased estimates may be
obtained and the statistical test may lack sufficient power to
detect the effect. A review of multilevel studies in education,
psychology and sociology demonstrated the difficulties of
achieving sufficient sample sizes in applied research (Dedrick
et al., 2009). According to this review, of 99 multilevel studies
from 13 journals (1999–2003), 21% did not meet the sample
size recommendation. Although this result is limited to two-
level models, we can infer a similar conclusion from three-level
growth models. Thus, this finding suggests that researchers may
not be aware of sample size guidelines. Though many researchers
acknowledge the importance of sample size, budget constraints
and limited time make it difficult to collect enough samples in
applied research because receiving approval from several schools
can be unfeasible. Therefore, it is important that researchers are
aware of the possibility of unreliable results when sample sizes
are small.

In this paper, simulation studies are used to examine the
effects of different sample sizes at each level on the accurate
estimates and adequate power in three-level growth models in
which time points are nested within individuals and individuals
are nested within groups. Moreover, various ICC values will be
considered to reflect realistic conditions. Monte Carlo methods
were used to investigate model convergence rate, parameter bias,
mean square error (MSE), 95% coverage rate and the statistical
power of the tests. By examining three-level growth models, this
study can provide sample size guidelines for researchers who are
interested in using a longitudinal design.

[Research Question]

1. What are sufficient level-1, level-2, and level-3 sample sizes for
accurate parameter and standard error estimates and adequate
power when estimating a three-level growth model?

2. How do study conditions affect parameter and standard
error estimates and power when estimating a three-level
growth model?

LITERATURE REVIEW

The question of how many individuals per group and how many
groups should be sampled to obtain accurate estimates (e.g., fixed
effects estimates, random effects estimates, standard errors) from
two-level MLM has been addressed in several studies (Kreft,
1996; Maas and Hox, 2004, 2005; Snijders and Bosker, 2012).
Depending on the researcher’s interest in estimates, required
sample sizes maybe changed. Compared to fixed effects, random
effect estimates require considerably more groups in order to
captures statistically significant variation across groups (Maas
and Hox, 2005; Clarke andWheaton, 2007). For example, studies
have demonstrated no bias in the estimates of fixed effects with 30
clusters (Maas and Hox, 2004; Clarke, 2008; Bell et al., 2014). The
same results have been observed for the standard errors of the
fixed effects that 30 groups are required to obtain for unbiased
standard errors (Maas and Hox, 2004, 2005). However, with
random effects, overestimated estimates are obtained with small
group sizes (Maas and Hox, 2004, 2005; Clarke, 2008). Maas and
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Hox (2005) demonstrated that with 30 groups, the non-coverage
rate for level-2 variance is around 9%. Clarke (2008) examined
data sparseness in MLM and illustrated that five observations
per group with 200 groups are required to obtain reliable results
for random effects. In addition, the results of simulation studies
regarding power have been addressed. For the power to detect
the effect, Bassiri (1988) noted that 30 groups with 30 individuals
per group are required. Scherbaum and Ferreter (2009) also
demonstrated that given an effect size of 0.5, the power to detect
the effect of a group-level predictor exceeded 0.8 with 30 groups
with a size 30. However, Bell et al. (2014) maintained that the
commonly cited rule of 30 groups and 30 individuals per group
would likely not guarantee a statistical power of 0.8 for the fixed
effects at each level of the model. Moreover, in multilevel models,
the size of the intraclass correlation (ICC) influences the power to
detect covariate effects (Goldstein, 1995). When there is a higher
ICC, larger differences between groups exist, and that group
variance explains the variance of the group effect, thus reducing
the power to detect an effect (Heck and Thomas, 2015).

While several sample size studies have been conducted on the
two-level MLM, little is known about sample size requirements
for the three-level MLM (McNeish and Stapleton, 2016). De
Jong et al. (2010) performed an a priori power analysis for
three-level longitudinal models. They used a routine outcome
monitoring (ROM) data consisting of 1,966 measurements of
patient functioning within 610 patients, who were treated by
109 therapists. The ICCs at the patient and therapist levels
were 0.75 and 0.18. In the results, they indicated that increases
in sample size at level 2 and 3 improve power, and that
increasing the number of measurements did not increase power
very much. Li and Konstantopoulos (2016) experimented with
methods for power analysis in three-level polynomial change
models for cluster randomized designs. They found that power
increased as the number of measurement occasions, the number
of individuals in each group and the number of groups increased.
While all other things being equal, the number of level 3 units
influences power more than the number of level 2 units or the
number of measurement occasions of the study. These studies
performed a power analysis and reported the required sample size
amount to achieve a power>0.80. However, in addition to power,
it is necessary to have adequate sample sizes at each level to obtain
accurate estimates of parameters and standard errors. Even if
sample sizes are large enough to obtain adequate power, they may
not be sufficient for accurate parameter estimates (Maxwell et al.,
2008). In some cases, this results in larger sample sizes than are
necessary for enough power. Otherwise, model parameters and
standard errors could be seriously biased, thus inflating the Type
I error. Moreover, De Jong et al. (2010) used real data where the
ICC at level-3 was rather high instead of other naturalistic data.
A higher ICC means that there is a larger difference between
groups and that the group variance explains part of the variance
of the effect, thus reducing the power to detect that effect. When
lower ICC values exist, a small sample size is sufficient for power.
Thus, various ICC values should be considered in simulation
to determine sufficient sample size. In conclusion, to investigate
adequate sample sizes for a three-level growth model for accurate
estimates and power, this study conducts a simulation under a

variety of conditions. By examining a three-level growth model,
this study can provide sample size guidelines for researchers who
are interested in longitudinal design.

METHODS

In this paper, to generate the model a simple three-level growth
model is used, with one explanatory variable at the individual
level and one explanatory variable at the group level. The first
level for change over time of level 2 unit i in group j can be
expressed as follows:

level 1 :Ytij = π0ij + π1ijtimetij + etij (6)

level 2 :π0ij = β00j + β01jXij + γ0ij (7)

π1ij = β10j + β11jXij + γ1ij (8)

level 3 :β00j = γ000 + γ001Zj + u00j (9)

β01j = γ010 + u01j (10)

β10j = γ100 + γ101Zj + u10j (11)

β11j = γ110 + u11j (12)

Combined :Ytij = γ000 + γ001Zj + u00j

+
(

γ010 + u01j
)

Xij + γ0ij +
(

γ100 + γ101Zj

+ u10j
(

γ110 + u11j
)

Xij + γ1ij
)

timetij + etij

(13)

Three conditions are varied in the simulation: (1) intraclass
correlation at group level (ICC: 0.05, 0.15), (2) level-2 sample
sizes (group sizes: 10, 30), (3) level-3 sample sizes (number of
groups: 30, 50, 100). For the three-level growth model, ICC is
calculated for level-2 and level-3. According to Spybrook et al.
(2011), repeated measures (level-2) usually have high ICC values
that range between 0.5 and 0.7. Otherwise, the ICC values of
level-3 range between 0.05 and 0.15, which that correspond to the
lowest and overall mean ICC obtained by Hedges and Hedberg
(2007) who reported the typical ICC in applied behavioral
research. Based on previous research, the first set of ICC was set
to 0.45 for level-1, 0.5 for level-2, and 0.05 for level-3. In the
second set of ICC, level-1 ICC was set to 0.35, level-2 ICC was
kept same, 0.5, and level-3 ICC was set to 0.15. In the three-level
growth model, there are different sample sizes at each level: the

FIGURE 1 | Relative bias for level-3 variance component (u00j ).
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number of measurements per individual (level-1), the number of
individuals per group (level-2), and the number of groups (level-
3). To analyze the growth model, at least three repeated measures
per individual for linear change are required. If researchers want
to estimate a quadratic growth model, at least four time points
are required because there are more parameters in the model.
Therefore, in this simulation study, the level-1 sample size is set
to 4. In the case of the level-2 sample size, 30 observations are
standard in educational research. Considering this tendency in
the literature, the level-2 sample size is set to 10 for the lowest
group size and 30 for highest group size. Similarly, for the level-
3 sample size, 30 is the smallest acceptable number according
to Kreft and de Leeuw (1998). For an upper limit, 100 groups
were chosen according to simulation research by Hox and Maas
(2001) who concluded that 100 groups are adequate for unbiased
estimates. Therefore, in this simulation, a total 2 × 3 × 2 = 12
conditions will be examined.

For each condition, 500 simulated data sets were generated
using Mplus 7.4 (Muthén and Muthén, 1998–2015), assuming
normally distributed residuals. Multilevel data were generated

by using TYPE = THREELEVEL RANDOM command. The
regression coefficients are defined as follows: 0.5 for the intercept,
and 0.3 (a medium effect size) (Cohen, 1998) for all regression
slopes. The residual variance σ 2

r at the individual level is 2.0. To
simplify the model, the covariances between residuals are set to
zero. In applied research, it is common for the data to include
different numbers of students per school, which is an unbalanced
design. Therefore, students were differently assigned to schools
(5-15/15-45). Maximum likelihood (ML) is used in the analysis
of the generated data.

To compare all conditions of the three-level model, several
outcomes will be examined: model convergence rate, relative
parameter bias, mean square error (MES), 95% coverage rate
and power. The convergence rate is the proportion of the
number of properly converged replications to the total number of
replications (n = 500). The defined model results are considered
successfully converged when there is no negative variance or a
singular matrix and no errors are reported by Mplus. To evaluate
the accuracy of the estimates of the fixed effects and random
effects from the estimating models, relative parameter bias can

TABLE 1 | Mean Square Errors (MSEs) for fixed and random effect estimates.

Parameter ICC Number of groups

30 50 100

Group sizes

10 30 10 30 10 30

γ000 0.05 0.016 0.010 0.011 0.007 0.005 0.003

0.15 0.029 0.023 0.021 0.015 0.009 0.007

γ001 (Z) 0.05 0.018 0.012 0.010 0.006 0.005 0.003

0.15 0.034 0.027 0.019 0.014 0.009 0.007

γ010(X) 0.05 0.017 0.010 0.011 0.006 0.005 0.003

0.15 0.017 0.010 0.011 0.006 0.005 0.003

γ100 (Time) 0.05 0.011 0.008 0.008 0.005 0.003 0.003

0.15 0.011 0.008 0.007 0.005 0.003 0.003

γ101 (TimeZ) 0.05 0.001 0.009 0.007 0.005 0.004 0.003

0.15 0.013 0.009 0.007 0.005 0.004 0.003

γ110 (TimeX) 0.05 0.012 0.009 0.006 0.005 0.004 0.003

0.15 0.012 0.008 0.006 0.005 0.004 0.003

etij 0.05 0.011 0.003 0.005 0.002 0.003 0.001

0.15 0.007 0.002 0.003 0.001 0.002 0.001

γ0ij 0.05 0.055 0.014 0.034 0.009 0.018 0.004

0.15 0.051 0.013 0.032 0.008 0.016 0.004

γ1ij 0.05 0.009 0.003 0.006 0.002 0.003 0.001

0.15 0.007 0.002 0.005 0.001 0.002 0.001

u00j 0.05 0.015 0.006 0.009 0.004 0.004 0.002

0.15 0.055 0.033 0.033 0.019 0.015 0.011

u01j 0.05 0.016 0.007 0.009 0.004 0.005 0.002

0.15 0.016 0.007 0.009 0.003 0.004 0.002

u10j 0.05 0.007 0.004 0.005 0.002 0.002 0.001

0.15 0.007 0.004 0.005 0.002 0.002 0.001

u11j 0.05 0.008 0.005 0.005 0.002 0.002 0.001

0.15 0.007 0.004 0.004 0.002 0.002 0.001
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be calculated. The formulas for relative parameter bias are
as follows

Bias (θi) =
θi − θi

θi
(14)

where θi is the population value of parameter i and θi is
the parameter estimate averaged across the 500 replications in
each condition (Hoogland and Boomsma, 1998). Hoogland and
Boomsma (1998) concluded that a relative parameter bias up to
5% is tolerable. If parameter estimates under- or overestimate
the population value by more than 5%, estimation is at risk
for inaccuracy. Because estimation accuracy is also reflected
by the standard error, a growing number of scholars have
suggested MSE because it combines bias and standard error
(Zitzmann et al., 2021). To measure the overall estimation
accuracy, MSE, the sum of the squared bias and variance of the
parameter estimate, is considered another criterion. Unlike the
relative parameter bias, MSE does not have an acceptable range;
therefore, a smaller MSE represents that estimates are obtained
in a more reliable and accurate way. The coverage probability
of a confidence interval is the proportion of replications where
the true parameter value is captured in each condition. Coverage
indicates how well the parameters and standard errors are
estimated. Coverage rates between 91 and 98% are considered
acceptable (Muthén and Muthén, 2002). The power can be
calculated as the proportion of replications that reject the null
hypothesis (α = 0.05). Following common guidelines, a statistical
power of 0.80 is appropriate (Cohen, 1992; Muthén and Muthén,
2002). This means that for population parameters different from
zero, a significant effect should be detected in at least 80% of the
generated samples.

RESULTS

Convergence Rate
The overall rate of model convergence varied from 99.8 to
100%, with no negative variance estimates in all converged
models. With 30 groups and a group size of 10, the convergence
rates were 99.8%. For 50 and 100 groups, all replications were
successfully converged. The convergence rate improved with
either an increase in the number of groups or an increase in the
group size.

Relative Parameter Bias
The number of groups and group size had no effect on the fixed
effect estimates, the intercept and regression slopes, under all
conditions. The average bias was smaller than 5%. The largest
bias of estimates was found with the smallest sample sizes
with the highest ICC. The relative bias was 4.4%, and it was
a negligible bias. The relative bias value for the random effect
estimates were estimated with small bias. Except for a level-3
variance component, random effect estimates were not biased in
all conditions. With 30 groups, the relative bias for the 3-level
residual variance (u00j) was 10.2–14.8%. The largest relative bias
was for u00j and it was under the condition when ICC is 0.05, the
number of groups is 30, and group sizes are 10. In Figure 1, each
plot shows a different group size while the number of groups is on
the x-axis, and the relative bias of estimates is on the y-axis. The
gray line indicates a reference line for the cut-off criteria (0.10 for
percent underestimated).

Mean Square Error
To assess the overall estimation accuracy, the MSE was obtained.
TheMSEs for the fixed and random effect estimates are presented
in Table 1. Overall, the MSEs ranged from 0.001 to 0.055. The

TABLE 2 | 95% coverage rate for fixed effect standard errors.

Parameter ICC Number of groups

30 50 100

Group sizes

10 30 10 30 10 30

γ000 0.05 0.934 0.938 0.914 0.936 0.956 0.944

0.15 0.944 0.934 0.918 0.932 0.948 0.940

γ001 (Z) 0.05 0.900 0.906 0.926 0.934 0.948 0.944

0.15 0.900 0.900 0.936 0.926 0.952 0.944

γ010 (X) 0.05 0.944 0.940 0.940 0.940 0.940 0.948

0.15 0.938 0.944 0.942 0.944 0.940 0.952

γ100 (Time) 0.05 0.942 0.944 0.944 0.944 0.948 0.932

0.15 0.940 0.940 0.944 0.942 0.946 0.932

γ101 (TimeZ) 0.05 0.896 0.910 0.934 0.930 0.946 0.932

0.15 0.896 0.918 0.932 0.928 0.950 0.934

γ110 (TimeX) 0.05 0.934 0.920 0.954 0.942 0.940 0.944

0.15 0.940 0.916 0.954 0.946 0.940 0.942

The shaded cells indicate meaningfully biased values.
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FIGURE 2 | 95% coverage rate for level-3 fixed effect standard error (γ001).

FIGURE 3 | 95% coverage rate for level-3 fixed effect standard error (γ101).

largest MSE was found with the smallest sample sizes, such as
30 groups and a group size of 10. The MSE decreased when the
number of groups and group sizes increased.

95% Coverage Rate
To assess the accuracy of the standard errors, a 95% coverage
rate was obtained. The 95% coverage rates for the fixed effect
estimates are presented in Table 2. The standard error estimates
for the fixed effect of level-3 were biased with 30 groups. With
30 groups, the coverage rates were 89.6–90.6% for the regression
coefficients of level-3 (γ001, γ101). Table 2 shows the effect of the
conditions on the coverage rate for standard errors of the fixed
coefficients. In Figures 2, 3, each plot represents γ001 and γ101,
while the number of groups is on the x-axis and 95% coverage
rates are on the y-axis. The gray line indicates a reference line for
the cut-off criteria (0.91 for 95% coverage rate).

The effect of the number of groups and group sizes on the
standard errors of the variance components is sufficiently large.
The 95% coverage rates for random effect standard errors are
presented in Table 3. With 30 groups, the coverage rates for

the level-3 variances (u00j, u01j, u10j and u11j) were 79.8–88.2%.
With 50 groups, the coverage rates for the level-3 variances were
85.6–91.0%. With 100 groups, the coverage rates for the level-3
variances were 89.8–92.8%.

Power
For the statistical power test of each fixed effect, the general
pattern of results is presented in Table 4. Across all effects, power
rates exceeded 0.8 with a group size of 50, ranging from 0.874 to
1.000, except level-3 predictors (Z). Power estimates for the fixed
effect Z reached the 0.8 level with groups of a sample size of 100.
When ICC is 0.05, the power of Z would be 0.86 with 30 groups
containing 30 individuals per group, while power exceeds 0.8
with 100 groups of a sample size of 10 with a 0.15 ICC. The power
of level-2 predictors (X) exceeds 0.8 with 50 groups containing
30 individuals in each group. In order to obtain sufficient power,
more than 50 groups and 30 individuals per group are required.
Figure 4 shows the power curve of level-3 predictors (Z) with the
number of groups, group sizes and ICC.

DISCUSSION

When educational researchers are interested in the changes in
the academic performance of students who are nested in schools,
a three-level growth model is required for analysis. Recently,
application of a three-level model has grown in education,
psychology, and social science research. However, to achieve
reliable results in multilevel models, it is important to obtain
adequate sample sizes. If there are relatively small sample sizes,
estimated parameters might be biased, and the statistical power
to detect an effect may be insufficient. Simulation studies in
various conditions have been conducted to provide sample size
guidelines and to indicate the possibility of unreliable results
when sample sizes are small. The purpose of this paper was to
perform simulation studies for three-level growth models and to
illustrate the effect of the ICC, level-2 and level-3 sample size
on the accuracy of estimates and power. This study performed
a Monte Carlo simulation with 12 conditions: (1) level-2 sample
size (10, 30), (2) level-3 sample size (30, 50, 100) (3) ICC at level-3
(0.05, 0.15).

In this study, two research questions were suggested to find
adequate sample sizes in the three-level growthmodel. First, what
are sufficient level-1, level-2, and level-3 sample sizes for accurate
parameter and standard error estimates and adequate power
when estimating a three-level growth model? Second, how do the
study conditions affect parameter and standard error estimates
and power when estimating a three-level growth model?

Results indicated that the fixed effects, the intercept and
regression slopes, are all estimated without bias under all
simulated conditions. The sample size combination of 4 time
points among 10 individuals within 30 groups was sufficient to
estimate an unbiased fixed effect. This finding aligns with the
results of previous 2-level model studies that demonstrated no
bias in the estimates of the fixed effects with 30 groups (Maas
and Hox, 2004; Clarke, 2008; Bell et al., 2014). However, the
standard error estimates for the fixed effect of level-3 were slightly
biased with 30 groups. With 30 groups, the coverage rates were
89.6–90.6% for the regression coefficients of level-3 (γ001, γ101).
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TABLE 3 | 95% coverage rate for random effect standard errors.

Parameter ICC Number of groups

30 50 100

Group sizes

10 30 10 30 10 30

etij 0.05 0.922 0.938 0.962 0.938 0.946 0.946

0.15 0.926 0.934 0.962 0.934 0.952 0.946

γ0ij 0.05 0.928 0.940 0.934 0.940 0.946 0.944

0.15 0.924 0.944 0.930 0.942 0.946 0.938

γ1ij 0.05 0.940 0.940 0.914 0.944 0.944 0.956

0.15 0.932 0.942 0.924 0.938 0.946 0.950

u00j 0.05 0.848 0.798 0.868 0.882 0.910 0.902

0.15 0.852 0.808 0.862 0.874 0.914 0.898

u01j 0.05 0.882 0.848 0.874 0.904 0.908 0.928

0.15 0.868 0.850 0.876 0.902 0.922 0.918

u10j 0.05 0.850 0.822 0.856 0.908 0.912 0.916

0.15 0.858 0.824 0.862 0.910 0.906 0.920

u11j 0.05 0.858 0.826 0.876 0.902 0.916 0.906

0.15 0.856 0.832 0.876 0.904 0.916 0.902

The shaded cells indicate meaningfully biased values.

TABLE 4 | Power for fixed effect.

Parameter ICC Number of groups

30 50 100

Group sizes

10 30 10 30 10 30

γ000 0.05 0.978 1.000 1.000 0.998 1.000 1.000

0.15 0.832 0.916 0.954 0.976 0.998 1.000

γ001 (Z) 0.05 0.660 0.858 0.838 0.966 0.984 1.000

0.15 0.432 0.578 0.604 0.754 0.874 0.952

γ010 (X) 0.05 0.508 0.672 0.710 0.886 0.940 0.992

0.15 0.508 0.680 0.698 0.894 0.942 0.992

γ100 (Time) 0.05 0.652 0.786 0.860 0.938 0.988 1.000

0.15 0.666 0.792 0.870 0.944 0.990 1.000

γ101 (TimeZ) 0.05 0.790 0.890 0.936 0.992 1.000 1.000

0.15 0.802 0.898 0.940 0.992 1.000 1.000

γ110 (TimeX) 0.05 0.644 0.816 0.840 0.950 0.982 0.998

0.15 0.658 0.826 0.870 0.948 0.982 0.998

The shaded cells indicate power < 0.8.

The estimates of random effects, except for level-3 variance,
were not biased under all conditions. With 30 groups, the
relative bias for the 3-level residual variance (u00j) was 10.2–
14.8%. According to the results, to obtain accurate estimates
for random effects, more than 30 groups with 30 individuals
per group are needed. Compared to the common rule of
30/30 proposed by previous research for a two-level model,
this result demonstrates that slightly more samples are required
for a three-level model (Kreft, 1996; Maas and Hox, 2004,

2005). Otherwise, a 95% coverage rate for random effects
is underestimated within level-3 variances. As previously
researched, standard error estimates of group-level variance
are the most influenced model estimate when the sample size
is small (Maas and Hox, 2005; Clarke, 2008). The coverage
rates for level-3 standard error estimates are biased even
in the 100 groups, indicating that at least 100 groups are
needed to obtain reliable confidence (McNeish and Stapleton,
2016).
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FIGURE 4 | Statistical power of Z coefficients (γ001).

For adequate power, more than 50 groups and 30 individuals
per group are required when coefficients have medium effect
size (d = 0.3). As previous studies illustrated, level-3 sample
sizes create greater effects than level-2 sample sizes in increasing
statistical power (De Jong et al., 2010; Li and Konstantopoulos,
2016). This indicates that researchers are suggested to collect
more schools rather than students. Moreover, the higher ICCs
are, the larger sample sizes are required to obtain sufficient power
for group level effects.

In conclusion, the results from this study provide researchers
with helpful guidelines regarding the effect of certain conditions
on their results. The sample size recommendations from this
study indicate that the three-level growth model can be used
with small sample sizes, depending on the parameter of interest.
When researchers are interested in estimating a fixed effect, the
standard error estimates for the fixed effect of level-3 could
be slightly underestimated with 30 groups, thus inflating the
Type I error. Therefore, at least 50 groups are required for
accurate fixed effect estimates. Compared to fixed effects, random
effect estimates require at least 100 groups in order to capture
statistically significant variations across groups.

Compared to previous studies, it appears that researchers can
gain information about sample size for three-level growth model
with unbalanced designs and varied ICC. Moreover, this study
examined both the parameter estimates and power to obtain
reliable results not only for individual research but also for
building a cumulative science (Maxwell et al., 2008).

However, as with any other simulation studies, this study has
some limitations. One major limitation is that this research used
one predictor at each level. In applied research, usually more than
one predictor is analyzed. If more variables are added, the model
becomes complex and more parameters should be estimated.

In further research, it is advisable to examine more complex
multilevel models.

Second, this study used maximum likelihood (ML) for
estimating the multilevel model. However, it has been argued and
shown that Bayesian estimation is less demanding and can work
well even in very small samples (Hamaker and Klugkist, 2011;
Hox et al., 2012). Thus, in future research, Bayesian estimation
can be considered for reducing the sample size requirements in
three-level growth models.

Third, the outcome variable used in this study was a
continuous variable and assumed normal distribution. However,
binary, ordinal and nominal outcomes requiring multilevel
logistic regression or poisson regression have not been addressed.
In previous research on two-level models, simulations have been
conducted for binary and mixed outcomes (Moineddin et al.,
2007; Austin, 2010; Bell et al., 2014). Thus, other types of outcome
variables could be explored to provide more detailed guidelines
to researchers.

Despite these limitations, the results of this study extend
the understanding of adequate sample sizes for a three-level
growth model given various conditions. This study indicates that
required sample sizes can be different, according to researchers’
interest in parameter estimates (i.e., fixed effect, random effect) at
each level, ICC and statistical power. In this regard, researchers
are encouraged to consider sample sizes based on their research
questions, especially when there are budget and time limitations.
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