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Recent work on the application of neural networks to language modeling has shown

that models based on certain neural architectures can capture syntactic information

from utterances and sentences even when not given an explicitly syntactic objective. We

examine whether a fully data-drivenmodel of language development that uses a recurrent

neural network encoder for utterances can track how child language utterances change

over the course of language development in a way that is comparable to what is achieved

using established language assessment metrics that use language-specific information

carefully designed by experts. Given only transcripts of child language utterances

from the CHILDES Database and no pre-specified information about language, our

model captures not just the structural characteristics of child language utterances,

but how these structures reflect language development over time. We establish an

evaluation methodology with which we can examine how well our model tracks language

development compared to three known approaches: Mean Length of Utterance, the

Developmental Sentence Score, and the Index of Productive Syntax. We discuss the

applicability of our model to data-driven assessment of child language development,

including how a fully data-driven approach supports the possibility of increased research

in multilingual and cross-lingual issues.

Keywords: child language assessment, natural language processing, computational linguistics, language model,

IPSyn, neural network

INTRODUCTION

Measuring the level of syntactic development in child language precisely is useful both in language
research and in clinical settings. Although several metrics have been proposed to quantify progress
in language development, such as the Index of Productive Syntax (IPSyn; Scarborough, 1990),
the Developmental Sentence Score (DSS; Lee and Canter, 1971), and the Language Assessment,
Remediation and Screening Procedure (LARSP; Fletcher and Garman, 1988) the most widely used
metric remains the Mean Length of Utterance (MLU; Brown, 1973). Although less detailed than
many available alternatives, MLU is simple and fast to compute consistently, while metrics based
on identification of specific language structures have traditionally required expert manual analysis.
Additionally, MLU use in many languages other than English is considerably more straightforward
than adaptation of metrics that rely on identification of specific lexical or grammatical items, and
MLU is less susceptible to issues relating to differences among varieties of the same language. While
there may seem to be inherent trade-offs associated with the use of approaches to tracking language
development based on detailed language-specific structural analysis and based on superficial
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utterance characteristics, we investigate whether accurate
measurements of language development can be made quickly,
reliably and without reliance on analyses requiring linguistic
expertise. Specifically, through the use of data and neural
network approaches to natural language processing, we aim to
track language development in a way that is as fine-grained as
can be obtained with carefully crafted language-specific metrics,
but as fast, reliable and widely applicable as with MLU. Our
present goal is not to create a new metric, but to examine
whether computational models built only from transcribed
utterances can capture how child language utterances change
through the course of language development at a fine enough
resolution to serve as a foundation for new ways to measure
syntactic development.

With the development of computational models for syntactic
analysis of child language utterances (Sagae et al., 2004, 2010),
automatic accurate computation of syntax-based metrics of
language development became possible. Identifying the Index of
Productive Syntax (IPSyn; Scarborough, 1990) as a measurement
tool that has been used widely in research but requires a
substantial amount of manual analysis, Sagae et al. (2005)
proposed mapping the language structures targeted in IPSyn
computation to patterns in parse trees generated by an automatic
parser, eliminating manual effort from the process of calculating
IPSyn scores. This work provided initial evidence that automatic
IPSyn scoring was possible, and served as the basis for
subsequent work to make the concept practical, for example
through CLAN-IPSyn (accessible at http://talkbank.org). These
efforts have highlighted both the promise of more widespread
and consistent assessment of syntactic development and the
difficulty in matching the quality of analyses produced by experts
(MacWhinney et al., 2020; Roberts et al., 2020).

Scoring schemes originally intended for manual computation,
such as IPSyn, are designed partly to account for the strengths
and limitations of human annotators, without regard for how to
leverage syntactic analysis technology. Recognizing the different
strengths in manual and automatic syntactic analysis, Lubetich
and Sagae (2014) examined the extent to which IPSyn-like
scoring can be performed automatically without a pre-defined
list of targeted syntactic structures, leaving it up to a data-
driven model to select the relevant structures in the output of an
automatic syntactic parser. Their approach is to teach a machine
to reproduce IPSyn scores just by looking at automatically
generated parse trees, with no information about how IPSyn
scores are computed or what they mean. Starting from the
assumption that these parse trees contain sufficient syntactic
information to assess language development, figuring out what
structures to focus on is left to the machine.

The ability demonstrated by this approach to produce
scores that track language development almost as accurately
as with IPSyn, but without the expertise that went into the
design of IPSyn, raises the important question of whether
computational models of language can learn to measure syntactic
development in children from only language data, without any
given knowledge about the language acquisition process. This
question is not whether a computational model can perform
the steps necessary for IPSyn scoring, as in the work of Sagae

et al. (2005), or whether a computational model can learn IPSyn
scoring from examples, as in the work of Lubetich and Sagae,
but whether a computational model derived from child language
samples alone can encode its own metric that tracks language
development over time as accurately as, or even more accurately
than an expertly designedmetric like IPSyn. In other words, if the
goal is not to model an existing language development metric,
but to model the language itself and how it changes over time
in individual children, will the resulting model encode a usable
language development metric? We investigate this question by
creating such a model using neural networks. We base our
approach on language modeling using a type of recurrent neural
network, but unlike typical language models used in natural
language processing that are trained to predict tokens in a string,
we additionally have our model sort child language samples
chronologically during training. This sorting consists of scoring
different language samples produced at different times such that
the score for the sample produced later is higher than the score
for the sample produced earlier. This is intended to require
the model to learn how utterances produced at different stages
of development differ. Once the model is trained, it can be
used to score a language sample, in the same way one would
use existing metrics like IPSyn or MLU. Unlike previous work
on automated assessment of child language development, this
process does not use a syntactic parser or any information about
how to measure language development, such as existing metrics.
Although we focus on English, our approach, which requires
only transcribed utterances, shares with MLU the advantage
of not relying on language-specific resources or language-
specific expertise, while having a substantially greater resolution,
comparable to that achieved with IPSyn. Using North American
English data from the CHILDES database (MacWhinney, 2000),
we show that our neural language model successfully discovers
how to score child language samples according to language
development more accurately than existing implementations
of MLU and automated IPSyn scoring. This result suggests
that neural network language models are capable of encoding
how syntactic development in progresses in English-speaking
children, and creates promising directions for accurate data-
driven measurement of language development.

MATERIALS AND METHODS

Our experiments involve a specific kind of language model based
on a type of recurrent neural network, more specifically the
Long Short-Term Memory network, or LSTM (Hochreiter and
Schmidhuber, 1997). The model is trained using longitudinal
child language data from the CHILDES Database. We first
describe the neural network model, and present details about the
data used. We then describe how the model was trained and how
our experiments were conducted.

Background: Recurrent Language
Modeling
Our approach assumes an LSTM language model (Sundermeyer
et al., 2015), which is a kind of recurrent neural network language

Frontiers in Psychology | www.frontiersin.org 2 July 2021 | Volume 12 | Article 674402

http://talkbank.org
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Sagae Tracking Language Development

model. This kind of neural language model has been applied
successfully in various settings in natural language processing.
We provide here only a brief overview of recurrent neural
language models to facilitate discussion of our neural network
model for language development. For a detail description of
LSTM language models, see Sundermeyer et al. (2015).

The general language model formulation commonly assumed
in natural language processing and computational linguistics is
based on word predictions. Specifically, the model is designed to
estimate the probability of strings in the language as the product
of the conditional probabilities of each word in the string given
the preceding words. Essentially, the model predicts words in a
string (a sentence or an utterance) from previous words:

P (S) = P (t1t2 . . . tN) =

N
∏

i=1

P(ti|t0 . . . ti−1)

Here, the probability of the string P(S) is the probability of
the word sequence (or token sequence) t1t2 . . . tN of length
N − 1, to which special tokens representing the beginning of
sentence (BOS) and end of sentence (EOS) have been prepended
and appended, respectively, making t0 BOS, and tN EOS. The
probability of this sequence is the product of the probability of
each word ti given the preceding words t0 . . . ti−1. Notice that the
product above does not include the probability of t0; since, by
how we defined our strings, every string starts with the special
token BOS, its probability is 1 and does not affect the product.
The probability of the special token EOS, on the other hand, is
the probability of ending the string (i.e., ending the utterance or
sentence) given all the previous words.

In a language model implemented using neural networks,
or a neural language model, these word predictions are made
based on spreading activation according to parameters of the
neural network. In perhaps its simplest form, where the sequence
t0 . . . ti−1 is approximated according to a first-order Markov
assumption as simply ti−1, resulting in a kind of model known
as the bigram model, a simple feedforward network takes ti−1 as
input and produces ti as output, as illustrated in Figure 1, where
the token ti−1 is represented by a value of 1 in a specific node
in the input layer, while the other nodes have value zero, and
the output is the node with highest value in the output layer.
Notice that the network is made of units organized in layers,
and the input word corresponds to a single unit in the input
layer. Activation from the input layer spreads to the first hidden
layer (the embedding layer), and from there to the second hidden
layer, and from there to the output layer, where the unit with
highest activation is chosen as the network’s prediction. The first
hidden layer is often referred to as the embedding layer, and in a
trained neural language models it is known to encode meaningful
representations of words. Although only two hidden layers are
shown (including the embedding layer), the use of more hidden
layers is common. In a feedforward network, activation spreads
in one direction, from input to output. A unit’s activation is a
function of the sum of the incoming activation for that unit.
The parameters that the model learns from data are the weights
that are applied to the connections between units of the network.
Typically, the parameters of this kind of network are initialized

randomly. Among other things, this means that each word in
the vocabulary of the model is initialized to be represented by a
random embedding. Over the course of training, where weights
are adjusted gradually to increase the probability of predicting
the correct output word, the weights learned in the embedding
and hidden layers have been found to encode representations of
the input and the task that improve prediction of the output.
For example, word representations in the embedding layer form
a meaningful multidimension space that encodes semantic and
syntactic relationships among words (Turian et al., 2010;Mikolov
et al., 2013). Intuitively, when learning to predict what word
follows chairs, the network learns that chairs is the plural of chair,
that chairs is related to seat, etc.

In a recurrent neural network, the input is a sequence, and
each symbol in the sequence is presented to the network one at
a time in consecutive time-steps. In the first time-step, the first
symbol is presented, in the second time-step, the second symbol
is presented, and so on. In a recurrent neural language model, the
input sequence is the string, and the symbols that make up the
string are the words, or tokens. The intuitive difference between
the feedforward network described in the previous paragraph and
a recurrent network is that hidden units in a recurrent network
receive activation not just from lower layers, but also from
hidden units in the previous time-step. In recurrent language
models, the hidden layers are recurrent, with the exception of the
embedding layer, which is not recurrent. The term hidden layer
is then understood not to include the embedding layer, which is
commonly referred to as simply the embedding layer. The result
of the recurrence in the network is that, as the string is processed
word by word one step at a time, the hidden representation from
which the output prediction for word ti is made is influenced
by its preceding words t0 . . . ti−1. A simple recurrent network is
illustrated in Figure 2. In Figure 3, we show the same network
unrolled in L time steps, where L is the length of the input
sequence. LSTM language models are recurrent language models
designed to address specific shortcomings of simple recurrent
neural networks. A discussion of these shortcomings and the way
in which LSTMs address them are beyond the scope of this brief
overview of recurrent neural language models, but are discussed
in detail by Goldberg (2017, chapter 15).

One insight about recurrent language models, such as
LSTM language models, that is important in understanding
our neural network model of child language development is
that models with enough hidden units trained with enough
data have been found to encode syntactic structure in their
hidden representations (Futrell and Levy, 2019; Linzen and
Baroni, 2021). Just as the word embedding that result from
training neural language models come to encode detailed word
representations over the course of training with large corpora
because the network learns that such representations are useful
in the next-word prediction task, the representations in the
hidden layers of a recurrent language model encode syntactic
structure because ultimately syntax is important in the next-word
prediction task. Intuitively, knowledge of the grammar of the
language is necessary to complete or continue sentences. Given
enough data and enough parameters, a recurrent language model
trained using backpropagation discovers and encodes syntactic
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FIGURE 1 | A simple feedforward neural network with an input layer, an embedding layer, a hidden layer, and an output layer. This network can implement a bigram

language model with units in the input and output layers representing different words in a vocabulary. When a word is active in the input layer, the unit with highest

activation in the output layer is the model’s prediction for the next word.

information about the language in its hidden layers. Although
the syntactic information encoded by neural language models is
not always represented in a way that is readily understandable,
text generated randomly from large neural language models is
surprisingly grammatical and complex, confirming that these
models must capture the syntax of the language. Additionally,
these language models have been found to be directly useful
in tasks explicitly about syntactic structure (Kiperwasser and
Goldberg, 2016). Decoding the syntactic and other structure
information encoded in neural language models in the context
of our current understanding of linguistics is currently a topic of
active research (Linzen et al., 2016; Futrell and Levy, 2019;McCoy
et al., 2020; Linzen and Baroni, 2021).

A Neural Network Model of Child
Language Development
Our model of child language development is based on the
simple assumptions that language is acquired over time and
development is monotonic. It is intended to pick up on what
changes in utterances through language development, and not to
reflect cognitive mechanisms. Monotonicity here does not mean
that the child’s language is always increasingly more similar to

some ultimate form, and it does not mean that development

progresses linearly, but simply that typical development does

not regress. In other words, the assumption is that given two

appropriately sized language samples (lists of utterances) from

the same child collected at different times during language
development, it should be possible for a model to distinguish
between the earlier and later samples. The key idea is that
if a model can sort these language samples chronologically,
it must do so by figuring out what changes in the language
over time. Since recurrent neural language models encode some
information about syntax, they are a promising way to encode
the language samples to be compared and sorted. Importantly,
the goal is to have one model that makes accurate predictions
across different children. Even though some children may learn
certain things at different rates and at different ages, the model
must be able to sort the language samples for a new individual
child it has never encountered before. Although the idea of
ordering language samples is the key for howwe intend to capture
changes in language over time, the model is ultimately intended
to score individual language samples, in the same way one would
score a language sample using an instrument such as IPSyn.
We design our model to score individual language samples, but
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FIGURE 2 | A simple recurrent neural network. The hidden layer receives

activation from the embedding layer and from the hidden layer in the previous

time step.

train it, or learn the neural network parameters from data, by
repeatedly choosing a pair of language samples, scoring each
sample individually, and adjusting the model’s parameters to
make it more likely that the sample originally produced at a later
time receives a higher score.

Our neural model of child language development can be
thought of as being composed of two modules, which together
can assign a score to a language sample containing a certain
number of utterances from a child. The first module consists
primarily of an LSTM language model, or more precisely a
Bidirectional LSTM (BiLSTM) encoder (Graves, 2012), which is
used to encode utterances into a vector representation. Given a
language sample composed of a certain number of utterances,
the LSTM language model encodes each utterance simply by
processing the utterance one word at a time. Recall that every
utterance ends with a special EOS token. It is the activation of
the topmost hidden layer of our model at the last time step,
which corresponds to having the EOS token as input, that we
use as (half of) the representation of the sentence. This specific
representation is chosen because it is the result of the model

having processed all of the words in the utterance, and the
recurrent nature of the model makes it possible, in principle, for
information about the entire utterance to be captured at this last
time step. A common practice when encoding strings with an
LSTM network is to repeat the process on the reversed string
with separate parameters, resulting in a bidirectional model. The
string is then encoded forwards and backwards. In the forward
pass, the hidden representation for the EOS token is used as half
of the representation for the sentence. In the backward pass, the
hidden representation for the BOS token gives us the other half of
the representation for the sentence. These two halves are simply
concatenated. Once representations for individual utterances are
computed, a single representation for the entire language sample
composed of these individual utterances is simply the average of
the representations of the individual utterances. Each utterance
representation is a vector, and the representation for the entire
language sample is taken to be the average vector of all utterance
vectors in the sample.

Once a vector representation for a language sample is
computed using the encoder module containing the BiLSTM
language model, the second module of the model derives a
numerical score from the representation of the language sample.
The scores assigned to language samples from a single child are
meant to increase according to the chronological order of the
language samples. In other words, the score corresponding to
a set of utterances produced by a child of age 3;00 should be
greater than the score assigned to a set of utterances produced
by the same child at age 2;06. The module that assigns the
score to a language sample given its representation consists of
a feedforward network that has one hidden layer and a single
output unit. The input to this module is the representation
obtained with the first module, and the activation of the output
unit is the score for the sample. Figure 4 shows our model, with
input consisting of several utterances, which are each encoded to
create a representation for the entire set of utterances (labeled as
Language Sample Vector), from which a score is computed.

With the two modules that together encode a list of utterances
and produce a language development score, the remaining
questions are how to make the encoder module focus on how
the grammar of utterances change over the course of language
development, and how to make the score produced by the
second module track language development based on what
the first module encodes. These two questions are addressed
jointly through end-to-end training of the model. An important
distinction between our utterance encoder and a typical neural
language model trained as described above using a word
prediction objective is that our encoder is trained using the
language sample sorting task directly. When a typical language
model is trained without a specific task as an objective, it learns
from its training strings what it needs for its word prediction
task. The same network architecture can also be trained on
tasks that are not word prediction tasks. In the word prediction
case, the error signal that is used to adjust the weights of the
network comes directly from the model predicting a different
word from what was observed in a specific position in a training
string. In our case, an error signal is obtained when the language
model has been used to encode the utterances in two distinct
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FIGURE 3 | A simple recurrent neural network unrolled for L time steps, where L is the length of the input string.

FIGURE 4 | Our model for encoding and scoring language samples composed of utterances. Each utterance is encoded by a Bidirectional LSTM network. Utterance

representations consisting of the concatenations of the first and last tokens are averaged into a vector that represents the entire language sample. From this language

sample vector, a score is computed for the entire language sample.

language samples, the scorer module assigns scores for these
two language samples, and the sorted order of the scores does
not correspond to the chronological order of the samples. In

such a case, the error is propagated through the entire network
so that weights can be updated in a way that is specific to
the task.
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Training the model requires longitudinal language data
from multiple children. For each child, 100-utterance language
samples are organized chronologically. Parameters (network
weights) for both modules are initialized randomly. During
training, the model is presented with data from each child 20
times, and each time a maximum of 100 samples are chosen
randomly from the samples from that child. Every language
sample is encoded with the first module and scored with the
second module. Within the set of 100 randomly chosen samples,
every sample is paired with every other sample to create 100 ×

99 training pairs, each composed of two samples. In each sample,
the chronological order is known. The scores for the two samples
are then compared. The model’s training objective is to make
sure chronologically later samples have higher scores than earlier
samples. The number of times data for each child is presented
(20), and the number of samples chosen randomly for each
child (100) are meta-parameters of the model. The model’s meta-
parameters and meta-parameter tuning process are described in
the next section.

The model is trained end-to-end, with a pair of language
samples being provided to the model, each sample being scored
and compared, and parameters across the entire model being
adjusted in response to errors. This means that the two modules
are trained together and influence each other. With weight
updates (parameter learning) in neural networks being error-
driven, each time an incorrect prediction is made (i.e., the
model fails to predict the chronological order the samples),
the error is propagated from the ultimate prediction, down
to the representation of the average of the utterances in
each sample, down to the representations of each individual
utterance produced by the language model encoder, and all of
the parameters in the entire model are updated to make the
correct prediction more likely. Over the process of training the
entire model, the language model learns to prefer encodings
of the utterances that will make the chronological ordering
task more accurate. As a result, the encoder learns to model
language development by focusing on the differences in the
representations of the two language samples from different times.
Because the training material consists of data from multiple
children, the model prefers patterns that apply generally, and not
to individual children.

Intuitively, one can imagine a very patient intelligent entity
with limited memory and no knowledge of grammar, but high
sensitivity to details, looking at two sets of utterances produced by
the same child several months apart. This entity knows what set
of utterances was produced later, and starts to look for patterns
that could be used to determine the chronological order of the
samples. Initially, the presence of individual words or sequences
of words might seem promising, but when presented with a long
list of pairs of languages samples, this entity notices that certain
structural patterns are more predictive of chronological order. If
it is really structural patterns that are most predictive of order of
the samples, over many passes over many pairs of samples, the
entity will learn a list of what patterns to look for, and how to
weigh these patterns against other patterns. This list might end up
being similar inmany ways to the list of structures used inmetrics
like IPSyn. This is approximately what motivates our model.

Finally, to prevent the model from picking up on differences
in the topics discussed at different ages or the differences in
vocabulary, we use the morphosyntactic tags (MacWhinney,
2000) from US English CHILDES transcripts instead of the
surface word forms as the tokens in our model. These tags
differentiate between parts-of-speech such as nouns, verbs,
adjectives, adverbs, prepositions, pronouns, etc. Experiments
using the observable surface forms (the words themselves)
produced very similar results.

Implementation Details
The encoder in our model is a BiLSTMwith a 50-unit embedding
layer and seven hidden layers, each with 200 units for each
direction (forward and backward). To encode a language sample,
the BiLSTM encoder produces encodings for each utterance as
a vector of 400 dimensions resulting from the concatenation of
the topmost hidden layer for each direction at the last time step
(i.e., the 200-dimensional vector obtained after processing the
EOS token in the forward direction, and the 200-dimensional
vector obtained after processing the BOS token in the backward
direction). We chose the size of the language samples to be 100
utterances, motivated partly by the size of the language samples
used to computer IPSyn scores.

The scoring module is a feedforward network with one
hidden layers of 200 units, and a single output unit. It takes
the representation of a language sample as a vector of 400
dimensions and produces a real-valued score. The ranking task
used to train the network involves encoding and scoring two
language samples, and comparing the resulting scores for each
language sample.

The network is trained end-to-end for 20 epochs, and the data
for each child in the training dataset is observed once per epoch.
The number of epochs was chosen by observing performance
on a small part of the available training data that was used as
held out or validation data after each epoch. Changes in results
after 15 epochs as small, and no significant improvement was
observed during meta-parameter tuning after 20 epochs. The
number of hidden layers, hidden units and embedding dimension
was similarly tuned by using a small held out portion of the
training set as a validation set. The meta-parameters of the model
were not tuned exhaustively, and it may not be the optimal
values. Parameters of the model were optimized using the Adam
optimizer (Kingma and Ba, 2015) using a learning rate of 1e-05
and the margin ranking loss function:

loss
(

xA, xB, y
)

= max(0, −y (xA − xB))

Here, xA is the score for language sample A, xB is the score
for language sample B, and y is +1 if A comes before B
chronologically and −1 if B comes before A chronologically.
When the model’s predictions for the scores of the two samples
order the samples correctly, the loss is zero. Otherwise, the loss
is greater than one, and the value is used in parameter updates to
reduce loss.

Data
To train and evaluate our model, we used data from the
CHILDES Database. Training our model requires longitudinal
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data from multiple children, and we included in our dataset
utterances from corpora that contained transcripts collected
from the same child at least 6 months apart. Additionally, we
included only corpora from which we could extract at least
75 language samples containing 100 complete utterances not
including repetitions, and for which we could determine the age
of the child in months. Having a certain number of language
samples per child ensures that the data will be useful to the model
during training, and that we reduce the amount of noise in our
evaluation. While it is possible that corpora with fewer than 75
samples would also be useful, we found there were a sufficient
number of corpora that fit our criteria. Data from other children
that did not fit our criteria was used as development data and
in the process of meta-parameter tuning. The corpora and 16
children included in the final dataset are:

• Braunwald: Laura
• Brown: Adam, Eve, Sarah
• Clark: Shem
• Demetras1: Trevor
• Kuczaj: Abe
• MacWhinney: Ross
• Sachs: Naomi
• Snow: Nathaniel
• Suppes: Nina
• Weist: Benjamin, Emily, Jillian, Matt, Roman.

The transcripts for each child were split into samples of 100
utterances each, and the child age corresponding to each
sample was recorded to determine the reference ordering during
training and evaluation. From each transcript in CHAT format
(MacWhinney, 2000), we used the %mor line, containing part-
of-speech and morphological analysis for each utterance. To
conduct experiments excluding word forms to avoid having our
model capture the effect of topic in ordering samples, we simply
used the most basic form of each lexical item’s tag (e.g. n for
nouns, v for verbs, adj for adjectives, etc.), excluding the base
form of words and morphological information.

Experiments
To investigate the extent to which our model can capture
information about language development, we implemented
our model using PyTorch (http://pytorch.org) and used the
dataset described in the previous section for training and
evaluation. All computation was performed on a workstation
with two 8-core Xeon processors, 256 Gb of RAM and an
Nvidia Titan X GPU. We compared the ability of our model
to track language development chronologically with how well
three baseline metrics perform the same tasks. Our baselines
are the Mean Length of Utterance (MLU; Brown, 1973), the
Developmental Sentence Score (DSS; Lee and Canter, 1971)
and the Index of Productive Syntax (IPSyn; Scarborough, 1990).
MLU, DSS and IPSyn scores were obtained for all language
samples used in our experiment using the implementations
available in the CLAN tools for language analysis (MacWhinney,
2000). These baselines are meant to represent what can be
obtained with a straightforward approach that does not require
structural analysis of language samples (MLU), and more precise

assessment instruments that were designed based on fine-grained
language-specific knowledge that require linguistic analysis (DSS
and IPSyn).

While scores for MLU, DSS, and IPSyn were obtained simply
by running the available tools on each of the language samples, to
obtain scores for our model we used our dataset in a leave-one-
child-out cross-validation scheme. This means that with a dataset
including data for 16 children, we trained 16 different models,
each excluding all data from one child. Transcripts for each of the
16 children were then scored using a model that was trained with
no data for that specific child. To score transcripts from children
outside of our dataset, we would simply train a single model using
data for all 16 children in our dataset. Our leave-one-child-out
cross-validation allows us to estimate how themodel performs on
unseen children by each time training with data from 15 children
and scoring transcripts from a child excluded from the model.

Unlike in previous work to automate measurement of
syntactic development (Sagae et al., 2005; Hassanali et al.,
2014; MacWhinney et al., 2020) or to obtain a data-driven
approximation to an existing metric (Lubetich and Sagae, 2014),
the target for the scores in our model is not simply another
value that can be derived for each transcript, such as an IPSyn
score or age in months. Since the goal of our model is to
track development over time and assign scores that reflect the
chronological order of language samples for a child, we evaluate
our model and compare it to baselines based on this task directly.
For each child, we compute the Spearman rank correlation
coefficient between the scores for each language sample and the
child’s age in whole months corresponding to each language
sample. The Spearman coefficient, or Spearman’s ρ, ranges from
−1 to +1 and reflects the strength of the correlation between
two rankings. Our reference ranking is the age in months. A
perfect Spearman rank correlation of +1 would indicate that the
scores assigned by our model perfectly sort the language samples
chronologically. A Spearman rank correlation of zero would
indicate that there is no correlation between the order derived
from the scores of our model and chronological order. The
stronger the correlation, the better suited for tracking language
development we consider a metric to be.

RESULTS

We compute Spearman coefficients for each child between age
and MLU, age and DSS scores, age and IPSyn scores, and age
and the scores assigned to transcripts by our model. Since we
compare these coefficients to each other directly, we obtain a
bootstrapped error estimate for each coefficient by resampling
the set of transcripts used to compute the Spearman coefficient
10,000 times.Table 1 shows the results obtained for each of the 16
children using MLU, DSS, IPSyn, and our neural network model.
For the convenience of having a single value that represents how
well each of these metrics correlate with language development
over time, we also provide the average values of all children per
metric. However, we caution that the meaning of such an average
value may not be straightforward to interpret in isolation, and
especially across different datasets. Since the set of transcripts for
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each child contains transcripts from a different range of ages, it
is expected that the rank coefficient from some children will be
higher than for others. Intuitively, it is easier for any of these
metrics to rank two samples 2 years apart than it is to rank two
samples 2 months apart. Therefore, these scores are meant to be
interpreted in relation to each other. For example, we would not
claim that IPSyn scores have an average rank correlation of 0.77
with age, and rather that the average rank correlation is 0.77 for
this specific dataset.

The results in Table 1 show that, while MLU is an effective
approach to approximate the level of language development over
time across a variety of children, both DSS and IPSyn perform
better, as expected. The average Spearman coefficient between
age and MLU is 0.662, the lowest correlation between age and
a tested metric. The coefficients for DSS and IPSyn are very close,
0.763 and 0.770, respectively. The average Spearman coefficient
between age and our model is 0.807. The scores obtained with
our model correlate with age to a higher degree than DSS or
IPSyn scores do in this dataset, but this is likely due at least in
part to the fact that the model was tuned with these transcripts
in mind. Although meta-parameter tuning was performed based
on results obtained using transcripts from children not used in
our evaluation, various factors such as the number of units and
layers in the network and the learning rate were influenced by
observing the training process itself, even if separate validation
transcripts were used. Still, our results indicate that our model,
which uses no pre-specified language-specific knowledge and
learns its parameters entirely from transcripts, performs on
par with metrics designed by experts to capture language-
specific phenomena. This is a significant result in that the
model derives all of its knowledge of the language and of the
task from the training dataset consisting of utterance sets from
various children.

In Table 1, we observe that for some children, there is a very
strong correlation between age and all of the different scoring
approaches we used. For example, among the three children in
the Brown (1973) corpus, all rank correlation coefficients are
above 0.9, with the single exception of DSS for one of three
children (Adam). The rank correlation between MLU and age is
strongest for the children in this corpus, perhaps not surprisingly
given the role of these data in establishing MLU as an effective
metric. On the other hand, the correlation between MLU and age
is weakest in the four children in the Weist corpus (Weist and
Zevenbergen, 2008). Among the other metrics, only our model
outperforms MLU across all four children in this set, although
the age correlation of our model for one of the children (Emily,
0.432) is substantially below the age correlation values for DSS
(0.643) and IPSyn (0.629).

DISCUSSION

Toward Data-Driven Metrics for Language
Development
The use of automated methods for computation of fine-grained
language development scores that take syntactic structure into
account is a promising application of current natural language

processing techniques. Despite some success in the application
of automatic syntactic analysis to this task (Sagae et al., 2005;
Hassanali et al., 2014; Lubetich and Sagae, 2014), these past efforts
served more to demonstrate feasibility than to provide practical
tools that can be used routinely in a variety of research situations.
Roberts et al.’s (2020) recent effort to perform an independent
evaluation of an implementation of automatic IPSyn scoring,
and the subsequent effort to improve automatic scoring based
on that evaluation (MacWhinney et al., 2020) highlight the
amount of care and engineering effort required to make reliable
automatic scoring widely available. The very small number of
languages for which a detailed metric such as IPSyn is available
further stresses the scale of the larger task of making resources
available for language development research in various languages,
allowing for both greater depth of language-specific findings and
cross-lingual research. We present a different way to approach
this situation through data. While our current goal is not to
provide a new metric for English or any specific language,
we show that current neural network language modeling is
capable of capturing some aspects of the language development
process to the extent necessary to track language development
in individual children at a level of precision substantially greater
than with MLU and comparable to that obtained with a detailed
language-specific metric such as IPSyn. Our results can serve as
the foundation for data-driven metrics in different languages,
requiring only longitudinal data in the form of transcripts.
Once the model is trained, it can be used to score a language
sample from a new child by first encoding the utterances using
the BiLSTM language model, and scoring the resulting using
the feed-forward network. Unlike the training process, which
requires several passes through a sizable collection of transcripts,
scoring new language samples can be done seemingly instantly
with a current consumer-grade general-purpose computer. The
amount of computation required for scoring a language sample
is greater than what would take to obtain the MLU score for
the same language sample, but it is comparable to the amount
of computation required for automatic IPSyn scoring.

The use of language samples from multiple children during
training results in a model that produces scores that are not
specific to any one child and are comparable across children.
Since training consists of repeated attempts to predict the order
of language sample pairs from different children using a single
scoring model, these scores can be used to compare the level
of development of a child to that of another child, or to a
mean value for a group, in a similar way to how MLU or IPSyn
scores are used. However, unlike MLU and IPSyn, which operate
on known scales defined explicitly, the scores from our data
driven model are dependent on the dataset used for training.
With the model as described above, there is not even a pre-
defined range for the scores produced by the model. In fact,
scores from models trained with different datasets may not be
directly comparable numerically. To keep the scores of a practical
language development metric that uses our approach and a
specific dataset within a pre-defined range, a sigmoid function
can be applied to the value produced by the scoring module.

The results in Table 1 provide a strong indication that neural
network language models trained with longitudinal data can
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TABLE 1 | Spearman rank correlation coefficients between age in months and four language development scores for the 16 children in our dataset.

Corpus: Child MLU DSS IPSyn Our model

Braunwald: Laura 0.732 ± 0.001 0.794 ± 0.001 0.867 ± 0.001 0.888 ± 0.001

Brown: Adam 0.942 ± 0.000 0.739 ± 0.001 0.906 ± 0.001 0.964 ± 0.000

Brown: Eve 0.976 ± 0.001 0.958 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Brown: Sarah 0.935 ± 0.000 0.953 ± 0.000 0.966 ± 0.000 0.959 ± 0.000

Clark: Shem 0.842 ± 0.002 0.855 ± 0.001 0.936 ± 0.001 0.889 ± 0.001

Demetras: Trevor 0.618 ± 0.003 0.567 ± 0.002 0.609 ± 0.003 0.727 ± 0.003

Kuczaj: Abe 0.855 ± 0.001 0.804 ± 0.002 0.943 ± 0.001 0.801 ± 0.001

MacWhinney: Ross 0.610 ± 0.002 0.588 ± 0.002 0.458 ± 0.002 0.604 ± 0.002

Sachs: Naomi 0.732 ± 0.002 0.869 ± 0.001 0.933 ± 0.001 0.92 ± 0.001

Snow: Nathaniel 0.190 ± 0.004 0.892 ± 0.001 0.905 ± 0.001 0.881 ± 0.001

Suppes: Nina 0.896 ± 0.001 0.896 ± 0.001 0.896 ± 0.001 0.974 ± 0.001

Weist: Benjamin 0.607 ± 0.004 0.927 ± 0.000 0.964 ± 0.001 1.000 ± 0.000

Weist: Emily 0.336 ± 0.003 0.643 ± 0.002 0.629 ± 0.002 0.432 ± 0.003

Weist: Jillian 0.321 ± 0.005 0.243 ± 0.005 0.126 ± 0.006 0.657 ± 0.003

Weist: Matt 0.685 ± 0.002 0.741 ± 0.001 0.622 ± 0.002 0.713 ± 0.001

Weist: Roman 0.311 ± 0.003 0.735 ± 0.003 0.566 ± 0.002 0.509 ± 0.002

Average 0.662 0.763 0.770 0.807

The four language development scores include our data-driven approach and three baselines: Mean Length of Utterance (MLU), the Developmental Sentence Score (DSS), and the

Index of Productive Syntax (IPSyn).

capture structures relevant to the measurement of language
development. In addition to adding to the growing body of
knowledge related to whether and how neural networks can
derive syntactic structure from text alone, our work also points
to an area of application of this apparent ability of recurrent
networks to model language structure. However, our experiment
involved data for only 16 children, and much work still needs to
be done toward a usable metric or a set of metrics for various
languages. Further validation of our approach through extrinsic
methods, such as verifying that previous research results obtained
with IPSyn, LARSP, or DSS scores can be replicated with scores
obtained from our fully data-driven model, would be needed to
examine the potential practical utility of the approach.

One aspect in which metrics such as IPSyn and DSS that
hold a considerable advantage over a fully data-driven approach
is interpretability of scores. With IPSyn and DSS, scores are
tied directly to a known procedure in a way that is fully
transparent. Furthermore, subscales can give additional insight
through a more detailed view of language development. While
neural networkmodels should not be considered uninterpretable,
and a growing body of research is dedicated specifically to
understanding what neural language models learn (Rogers et al.,
2020), this kind of work is still in its infancy, and not yet at a stage
that can provide clear information about what specific kinds of
information a model such as ours learns from language data.

The Role of Syntax in Measuring Language
Development
Previous research on interpreting what kind of syntactic
information is encoded in neural languagemodels and on explicit
modeling of syntax with neural networks suggest that ourmodel’s
ability to track language development over time must be due to

our BiLSTM encoder’s ability to capture at least some relevant
aspects of syntax, and the entire model’s ability to capture
what structures are expected to appear through the process
of language acquisition. Previous work has shown that even
with the simple language model objective of word prediction,

BiLSTM and related neural network architectures can learn some

syntactic structure (Futrell and Levy, 2019; McCoy et al., 2020;
Linzen and Baroni, 2021). In discussing structures that are not

learned well by recurrent neural networks using the next-word

prediction task, Linzen et al. (2016) suggest that even in those

cases, the use of other training objectives may result in learning
of these structures. In fact, the success of syntactic parsers

built on top of BiLSTM encoders with the explicit objective of

predicting syntactic structure of input strings (Kiperwasser and

Goldberg, 2016) shows convincingly that BiLSTMs are capable
of capturing syntactic structure, especially given an appropriate

objective. Beyond investigations into whether recurrent neural

networks encode syntax, the apparent fluency of LSTM language
models for language generation, including inmachine translation
(Sutskever et al., 2014), suggest these models learn a fair amount
of syntax, since fluent generation would be unlikely without it.
Still, the question remains if our model learns to score language
development based on syntax or other more superficial features
of the utterance strings, such as length.

While it is a safe assumption that our model does learn to
leverage utterance length in scoring, since it contains information
relevant to the task, as shown by MLU, it is unlikely that the
performance of the model can be attributed to superficial string
characteristics alone. The levels of rank correlation with age
obtained with scores produced by our model, compared to those
obtained withMLU, with DSS andwith IPSyn further suggest that
our model captures syntactic development. Given the similarity
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of the correlation coefficients obtained with our model and with
IPSyn and the extent to which IPSyn scores are based on syntactic
structures, it is reasonable to expect that our model’s success
is due to its modeling of syntax. Initial experiments with the
original word forms in the utterances produced very similar
results as the ones presented, but it was not clear if the model
learned what changes in the grammar as language development
progresses, or what children tend to talk about at different
ages. To isolate the effect of syntactic structure, we used only
plain part-of-speech tags to represent the words in the utterance
strings, completely removing any information about topic. This
makes it likely that the model does in fact rely on syntactic
structure, especially since our neural language model encoder is
trained not with the word prediction objective, but the language
sample ordering objective.

To examine the extent to which our model relies on utterance
length, we performed an ablation experiment where we remove
structure from the utterances used to train our model, but leave
utterance length intact. This is done simply by replacing each
token with the same arbitrary symbol, so that each utterance is as
long as before, but it is made of the same symbol (word) repeated
over and over. This ablated model that only considers length is
trained and evaluated in the same way as our model. Recall that
the levels of age correction for MLU and our model are 0.662
and 0.807, respectively (Table 1). The correlation coefficient for
age and our length model is 0.711, putting it closer to MLU than
to our full model. Although this ablated model scores language
samples based on length, like MLU, the advantage it has over
MLU is that it can consider the distribution of lengths of the
utterances in the sample, and not solely the mean. For each
child in our dataset, the coefficients for MLU and for the length
model were similar, with the exception of Naomi from the Sachs
corpus (0.732 with MLU vs. 0.910 with the length model) and
Nathaniel from the Snow corpus (0.190 with MLU vs. 0.476 with
the length model).

Although it is clear that our model captures more than
just utterance length, the question of what else it captures
remains. To examine our conjecture that the model identifies
syntactic information in utterances, we performed an additional
experiment using our fully trained model. Recall that our model
is composed of two modules: a BiLSTM network that encodes
utterances, and a feed-forward network that produces a score
based on the encoding produced by the BiLSTM network. If
the model learns syntactic structure, this information would
be present in the BiLSTM network. To test whether our
model in fact uses identifiable syntactic structure, we used the
syntactic structure annotation available in the American English
transcripts in the CHILDES database. Each utterance in these
transcripts is accompanied by a syntactic analysis in the form
of a dependency structure that represents grammatical relations
computed automatically by a data-driven parser (Sagae et al.,
2010). Using the same transcripts as in our evaluation of our
model, we find the 20 most common syntactic dependency
types across all utterances, and try to determine whether our
BiLSTM utterance encoder can detect the presence of each of
these dependency types in individual utterances. The 20 most
common syntactic dependency types in our dataset, ordered

more to less common, are: SUBJ (subject), ROOT (main
verb), JCT (adjunct), DET (determiner), OBJ (object), AUX
(auxiliary), POBJ (object of a preposition), PRED (predicate
nominal), LINK (complementizer, relativizer, or subordinate
conjunction), MOD (non-clausal nominal modifier), COMP
(clausal complement), COM (communicator), INF (infinitival
to), NEG (negation), QUANT (quantifier), NJCT (nominal
adjunct), COORD (coordination), CONJ (conjunction), CMOD
(clausal nominal modifier), and XMOD (non-finite nominal
modifier). Explanations for each of these dependency types in
the context of syntactic analysis of CHILDES transcripts can be
found at https://talkbank.org/manuals/MOR.html.

For each of these syntactic dependency types, we construct
a dataset containing an equal number of utterances where
the corresponding grammatical relation appears and utterances
where the corresponding grammatical relation does not appear.
We then encode each of these utterances using our BiLSTM
utterance encoder to obtain a vector representation for the
utterance, as described in section A Neural Network Model of
Child Language Development. This vector is the concatenation
of the encodings of the beginning of sentence token (BOS) and
the end of sentence token (EOS). We then train a classifier to
detect whether each of these fixed length vectors correspond
to an utterance where the grammatical relation in question
appears or does not appear. For example, we take an equal
number of utterances containing a CMOD dependency relation
(approximately, a relative clause) and not containing a CMOD
relation, and train a binary classifier (in this case, a feed-forward
network with 50 hidden units) to predict if the original utterance
contains a CMOD relation. These vector encodings do not
contain the tokens in the original utterance, so this prediction
must be made based on what information from the utterance the
model encodes once it is trained. Over the course of training of
the model, these vector encodings are expected to capture the
information necessary for ordering utterances chronologically. If
a specific syntactic structure, such as a relative clause represented
by the syntactic dependency type CMOD, is useful to the model
in the ordering task, we expect to be able to detect whether or not
the utterance contains a relative clause from the vector alone. We
use an equal number of utterances containing and not containing
each dependency type so that identification of dependency types
cannot be made based on frequency information. Finally, we test
each classifier on an unseen set of utterances also consisting of
an equal number of utterances containing and not containing the
dependency type in question.

The accuracy of these classifiers, shown in Table 2, confirm
that our model does capture a substantial amount of syntactic
information. Since each syntactic dependency type is tested with
an equal number of utterances containing and not containing
the dependency type, an accuracy of 50% would correspond
to no ability to detect the dependency type from the vector
encoding of the utterance, while an accuracy of 100% would
correspond to perfect ability to detect the dependency type, which
would require the presence of the syntactic dependency to be
encoded in the vector. Since the syntactic annotation used to
train our classifiers experiment is produced automatically, and
therefore noisy, it would be unrealistic to expect accuracy of
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TABLE 2 | Accuracy in detection of the 20 most common syntactic dependency

types in our dataset from utterance encodings produced by our model.

Syntactic dependency type Accuracy (%)

SUBJ 82.3

ROOT 84.4

JCT 74.1

DET 72.3

OBJ 73.6

AUX 79.2

POBJ 73.9

PRED 72.7

LINK 72.1

MOD 61.3

COMP 78.9

INF 81.8

NEG 75.1

QUANT 64.1

NJCT 74.3

COORD 72.5

CONJ 75.8

CJCT 85.9

CMOD 75.1

XMOD 69.2

AVERAGE 74.9

100%. Each dependency type was identified by its corresponding
classifier with accuracy of at least 60%. CJCT (85.9%), ROOT
(84.4%), and SUBJ (82.3%) were the dependency types identified
with highest accuracy, and MOD (61.3%), QUANT (64.1%), and
XMOD (69.2%) were the dependency types identified with lowest
accuracy. These results support our expectation that our model
encodes syntactic structure.

Language-Specific and
Population-Specific Considerations
Being completely data-driven, we expect our model to be suitable
for modeling language development in languages other than
English. However, since training our model requires a number
of transcripts from the same child over some period of time,
application of our method to the vast majority of languages is far
from trivial.While the CHILDESDatabase does contain a limited
amount of suitable data for a few languages, no languages have an
amount of data that even approaches what is available for English.
Although the apparent trade-off between a top-down approach
where structures are enumerated by an expert and a bottom-up
approach where relevant structures emerge from data may seem
to favor the top-down view for the moment, we are experiencing
an unprecedented increase in the availability of language data of
many different kinds. For many reasons, child language data is
not as readily available as many other kinds of language data,
but collection of the necessary data to create a model similar
to ours in other languages appears to be a feasible, although
non-trivial, task. Although concerns about safety and privacy
remain, the ability to record, store and share naturally occurring

language, and advances in automatic transcription (Gurunath
Shivakumar and Georgiou, 2020) make the effort to build the
necessary datasets increasingly more manageable. While we are
still in a situation where large areas of research are too heavily
focused on English, it is our hope that a data-driven approach
will create new opportunities for multilingual and cross-lingual
research, as has been the case with automatic syntactic parsing
(Zeman et al., 2018).

An exciting possibility created by a data-driven, bottom-
up modeling approach is that language development can
be considered not just from the perspective of different
languages, but from the perspective of different populations
with different varieties of the same language. Even within the
context of American English, one must consider that within the
United States alone there are substantial language differences
among populations, and the validity of metrics is usually
examined for one variety, with applicability to other varieties
being the topic of separate studies (Oetting et al., 2010). While
MLU values can be interpreted in the context of different
populations, this advantage is due to how coarse-grained the
metric is. More precise metrics based on inventories of specific
structures would need to be adapted based on expertise of
the relevant language structures for each population. Given the
appropriate datasets, the data-driven view allows for precise, fine-
grained scoring relative to a population represented in a specific
dataset, without the need for the assumption of a mainstream or
standard variant at the expense of other equally valid variants.
Although MLU is the most convenient approach for assessment
of language development, since it does not require a language-
specific scoring scheme like IPSyn does, and it does not require
a longitudinal dataset like our data-driven approach does, it is
not as precise as the alternatives considered. When considering
the application of an approach like IPSyn or our data-driven
approach to a new population whose language may not be
identical to that of populations used to validate these metrics, one
is faced with a typical top-down vs. bottom-up trade-off. If no
data is available and data collection is impractical, one might be
well-served by turning to language expertise to adapt ametric like
IPSyn. When considering the amount of variety in English, and
especially going beyond English, this approach may be difficult
to scale, and will continue to be difficult to scale. The data issue,
on the other hand, is likely to continue to become easier to deal
with, based on the trend observed for the past couple of decades.
While this brings non-trivial questions about best practices for
construction of datasets that represent a language or a specific
variant of a language, it is preferable to address these questions
imperfectly but explicitly than to leave them unacknowledged,
hiding the potential for inequity in research results.

CONCLUSION

Advances in natural language processing, and specifically in
language modeling using neural network approaches, create
exciting opportunities for modeling language development,
including how grammatical structures develop over time.
Motivated by recent work that shows that recurrent neural
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networks learn some aspects of syntactic structure when given
appropriate training objectives (Kiperwasser and Goldberg, 2016;
Futrell and Levy, 2019; Linzen and Baroni, 2021) and by previous
work on data-driven measurement of syntactic development
(Lubetich and Sagae, 2014), we show that a model composed
of a Bidirectional LSTM to encode language samples and
a feedforward network to score encoded samples can be as
effective at producing language development scores that can
track child language development over time as detailed language-
specific metrics designed by experts, such as the Index of
Productive Syntax (Scarborough, 1990). Although our goal is
not to create a new metric for language development in English,
and several issues remain unaddressed before our work can be
leveraged into metrics that can be used in practice, our work
is significant in that it shows that recurrent neural networks,
without any pre-specified knowledge about language beyond
the inductive bias inherent in their architecture, can learn the
child language acquisition process to the extent necessary to
track language development in sets of transcripts as accurately
as established metrics. We support our claim that our model
learns syntactic structure by showing that it outperforms a
baseline based on Mean Length of Utterance, and by removing
all semantic information from transcripts to prevent the model
from leveraging topic information and other cues.

In addition to demonstrating how neural language models
can capture the language development process successfully,
we hope that our work will serve as the basis for future
work on modeling and measuring language development
that, due to its bottom-up data-driven nature, will focus
on a wider variety of languages and language varieties,
creating the possibility for new language-specific and
cross-lingual research on child language and development
of syntax.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: http://childes.talkbank.org.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

ACKNOWLEDGMENTS

I am grateful to the reviewers for their insightful comments
and suggestions.

REFERENCES

Brown, R. (1973). A First Language: The Early Stages. Cambridge, MA: Harvard

University Press.

Fletcher, P., and Garman, M. (1988). Larsping by numbers. Int. J. Lang. Commun.

Disord. 23, 309–321. doi: 10.3109/13682828809011940

Futrell, R., and Levy, R. (2019). “Do RNNs learn human-like abstract word

order preferences?” in Proceedings of the Society for Computation in Linguistics

(New York, NY), 50–59.

Goldberg, Y. (2017). Neural Network Methods for Natural Language Processing.

Morgan and Claypool.

Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks.

Heidelberg; New York, NY; Dordrecht; London: Springer.

Gurunath Shivakumar, P., and Georgiou, P. (2020). Transfer learning from adult

to children for speech recognition: evaluation, analysis and recommendations.

Comput. Speech Lang. 63:101077. doi: 10.1016/j.csl.2020.101077

Hassanali, K., Liu, Y., Iglesias, A., Solorio, T., and Dollaghan, C. (2014). Automatic

generation of the index of productive syntax for child language transcripts.

Behav. Res. Methods 46, 254–262. doi: 10.3758/s13428-013-0354-x

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Kingma, D. P., and Ba, J. (2015). “Adam: a method for stochastic optimization,”

in 3rd International Conference on Learning Representations, ICLR 2015, eds Y.

Bengio and Y. LeCun (San Diego, CA: Conference Track Proceedings).

Kiperwasser, E., and Goldberg, Y. (2016). Simple and accurate dependency parsing

using bidirectional lstm feature representations.Trans. Assoc. Comput. Linguist.

4, 313–327. doi: 10.1162/tacl_a_00101

Lee, L. L., and Canter, S. M. (1971). Developmental sentence scoring: a clinical

procedure for estimating syntactic development in children’s spontaneous

speech. J. Speech Hear. Disord. 36, 315–340. doi: 10.1044/jshd.3603.315

Linzen, T., and Baroni, M. (2021). Syntactic structure from deep learning. Annu.

Rev. Linguist. 7, 195–212. doi: 10.1146/annurev-linguistics-032020-051035

Linzen, T., Dupoux, E., and Goldberg, Y. (2016). Assessing the ability of lstms

to learn syntax-sensitive dependencies. Trans. Assoc. Comput. Linguist. 4,

521–535. doi: 10.1162/tacl_a_00115

Lubetich, S., and Sagae, K. (2014). “Data-driven measurement of child language

development with simple syntactic templates,” in Proceedings of the 25th

International Conference on Computational Linguistics: Technical Papers

(Dublin), 2151–2160.

MacWhinney, B. (2000). The CHILDES Project: Tools for Analyzing Talk, 3rd Edn.

Mahwah, NJ: Lawrence Erlbaum.

MacWhinney, B., Roberts, J. A., Altenberg, E. P., andHunter,M. (2020). Improving

automatic ipsyn coding. Lang. Speech Hear. Serv. Sch. 51, 1187–1189.

doi: 10.1044/2020_LSHSS-20-00090

McCoy, R. T., Frank, R., and Linzen, T. (2020). Does syntax need to grow on trees?

Sources of hierarchical inductive bias in sequence-to-sequence networks. Trans.

Assoc. Comput. Linguist. 8, 125–140. doi: 10.1162/tacl_a_00304

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). “Efficient estimation of

word representations in vector space,” in Workshop Track Proceedings of the

First International Conference on Learning Representations (Scottsdale, AZ).

Oetting, J. B., Newkirk, B. L., Hartfield, L. R., Wynn, C. G., Pruitt, S. L.,

and Garrity, A. W. (2010). Index of productive syntax for children who

speak african american english. Lang. Speech Hear. Serv. Sch. 41, 328–339.

doi: 10.1044/0161-1461(2009/08-0077)

Roberts, J. A., Altenberg, E. P., and Hunter, M. (2020). Machine-scored syntax:

comparison of the clan automatic scoring program to manual scoring. Lang.

Speech Hear. Serv. Sch. 51, 479–493. doi: 10.1044/2019_LSHSS-19-00056

Rogers, A., Kovaleva, O., and Rumshisky, A. (2020). A primer in bertology: what

we know about how bert works. Trans. Assoc. Comput. Linguist. 8, 842–866.

doi: 10.1162/tacl_a_00349

Sagae, K., Davis, E., Lavie, A., Macwhinney, B., and Wintner, S. (2010).

Morphosyntactic annotation of CHILDES transcripts. J. Child Lang. 37,

705–729. doi: 10.1017/S0305000909990407

Sagae, K., Lavie, A., and MacWhinney, B. (2005). “Automatic measurement of

syntactic development in child language,” in Proceedings of the 43rd Annual

Meeting on Association for Computational Linguistics-ACL’05 (Ann Arbor, MI),

197–204.

Sagae, K.,MacWhinney, B., and Lavie, A. (2004). “Adding syntactic annotations to

transcripts of parent-child dialogs,” in Proceedings of the Fourth International

Conference on Language Resources and Evaluation (Lisbon).

Frontiers in Psychology | www.frontiersin.org 13 July 2021 | Volume 12 | Article 674402

http://childes.talkbank.org
https://doi.org/10.3109/13682828809011940
https://doi.org/10.1016/j.csl.2020.101077
https://doi.org/10.3758/s13428-013-0354-x
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1044/jshd.3603.315
https://doi.org/10.1146/annurev-linguistics-032020-051035
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1044/2020_LSHSS-20-00090
https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.1044/0161-1461(2009/08-0077)
https://doi.org/10.1044/2019_LSHSS-19-00056
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1017/S0305000909990407
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Sagae Tracking Language Development

Scarborough, H. S. (1990). Index of productive syntax. Appl. Psycholinguist. 11,

1–22. doi: 10.1017/S0142716400008262

Sundermeyer, M., Ney, H., and Schluter, R. (2015). From feedforward to recurrent

lstm neural networks for language modeling. IEEE/ACM Trans. Audio Speech

Lang. Process. 23, 517–529. doi: 10.1109/TASLP.2015.2400218

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). “Sequence to sequence learning with

neural networks,” in Proceedings of the 27th International Conference on Neural

Information Processing Systems (Montreal, QC), 3104–3112.

Turian, J., Ratinov, L., and Bengio, Y. (2010). “Word representations: a simple

and general method for semi-supervised learning,” in Proceedings of the 48th

Annual Meeting of the Association for Computational Linguistics (Uppsala),

384–394.

Weist, R. M., and Zevenbergen, A. A. (2008). Autobiographical memory and

past time reference. Lang. Learn. Dev. 4, 291–308. doi: 10.1080/154754408022

93490

Zeman, D., Hajic, J., Popel, M., Potthast, M., Straka, M., Ginter, F., et al. (2018).

“CoNLL 2018 shared task: multilingual parsing from raw text to universal

dependencies,” in Proceedings of the CoNLL 2018 Shared Task: Multilingual

Parsing from Raw Text to Universal Dependencies (Brussels), 1–21.

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Sagae. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 14 July 2021 | Volume 12 | Article 674402

https://doi.org/10.1017/S0142716400008262
https://doi.org/10.1109/TASLP.2015.2400218
https://doi.org/10.1080/15475440802293490
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles

	Tracking Child Language Development With Neural Network Language Models
	Introduction
	Materials and Methods
	Background: Recurrent Language Modeling
	A Neural Network Model of Child Language Development
	Implementation Details
	Data
	Experiments

	Results
	Discussion
	Toward Data-Driven Metrics for Language Development
	The Role of Syntax in Measuring Language Development
	Language-Specific and Population-Specific Considerations

	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


