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In missing data analysis, the reporting of missing rates is insufficient for the readers to

determine the impact of missing data on the efficiency of parameter estimates. A more

diagnostic measure, the fraction of missing information (FMI), shows how the standard

errors of parameter estimates increase from the information loss due to ignorable missing

data. FMI is well-known in the multiple imputation literature (Rubin, 1987), but it has

only been more recently developed for full information maximum likelihood (Savalei and

Rhemtulla, 2012). Sample FMI estimates using this approach have since then been made

accessible as part of the lavaan package (Rosseel, 2012) in the R statistical programming

language. However, the properties of FMI estimates at finite sample sizes have not been

the subject of comprehensive investigation. In this paper, we present a simulation study

on the properties of three sample FMI estimates from FIML in two common models in

psychology, regression and two-factor analysis. We summarize the performance of these

FMI estimates and make recommendations on their application.

Keywords: missing data, full information maximum likelihood, regression, factor analysis, fraction of missing

information

1. INTRODUCTION

Missing data can often occur in psychological research, whether due to dropouts in longitudinal
studies, skipped questions in surveys, or equipment limitations (e.g., eye-trackers failing to capture
certain eye movements). Missing data can also result from the strategic use of a planned missing
data design (Graham et al., 2006). For example, in studies with prohibitively lengthy questionnaires,
researchers may want to administer only a subset of the questions to each participant, and treat
the rest as missing, in order to reduce survey fatigue. Traditionally, psychological researchers
who encounter missing data would most typically apply ad-hoc missing data techniques, such as
listwise deletion or pairwise deletion. These methods are advantageous in their expedience, but will
often lead to inconsistent estimates and power loss, resulting in bad inference. In the past decade
or so, modern missing data techniques with better statistical properties, such as full information
maximum likelihood (FIML; Allison, 1987; Muthén et al., 1987; Arbuckle, 1996) and multiple
imputation (MI; Rubin, 1987), have become increasingly accessible via computer programs like
lavaan (Rosseel, 2012) and mice (van Buuren and Groothuis-Oudshoorn, 2011), available in R (R
Core Team, 2019).

Rubin (1976) defined three types of missing data mechanisms: missing completely at random
(MCAR), when the reason data are missing is independent of any variable in the dataset,
whether missing or observed; missing at random (MAR), when the reason data are missing is
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dependent only on observed data known as conditioning
variables; and missing not at random (MNAR), when the reason
data are missing is dependent on data that are not observed,
even after conditioning on observed data. When data are
missing in psychological studies, researchers typically assume
ignorable missing data, which refers to MCAR or MAR missing
mechanism, plus an additional technical assumption that the
parameters describing the missing mechanism are independent
of the model parameters (Little and Rubin, 2002). This article
will focus on the impact of ignorable MAR mechanism on
FIML parameter estimates. When describing the possible impact
of missing data, researchers typically report only the rate of
missing data per variable, in the dataset as a whole, or the
proportion of incomplete cases. However, the missing rates alone
are insufficient to determine the efficiency of the estimates under
a general MAR mechanism.

The MAR assumption is very general, and there is a wide
range of specific missing mechanisms that can generate MAR
data. For example, the relationship between the conditioning
variable and the missing probability can be monotonic or not
monotonic (linear vs nonlinear MAR; see Collins et al., 2001;
Yoo, 2009; Savalei and Rhemtulla, 2017). Further, the missing
mechanism can be more deterministic or more probabilistic
(strong vs weak MAR; see Yucel et al., 2011; Sullivan et al.,
2018; Chen et al., 2020). When MAR mechanisms differ, the
statistical properties of the FIML parameter estimates can differ
even when the missing rates are the same. Although MCAR, a
special case of MAR, does not involve any conditioning variables,
thus avoiding some of these issues, it could still lead to parameter
estimates with varying efficiency when the number of missing
data patterns differ (e.g., Savalei and Bentler, 2005; Savalei and
Falk, 2014).

Differential performance of FIML estimates under different
MAR mechanisms can translate into differences in efficiency,
and therefore different power when used to perform null
hypothesis tests. In light of the replication crisis, there has
been a renewed call for researchers to better understand
the power of their analyses. The impact of missing data
on power can only be understood if we adopt a more
informative diagnostic measure than missingness rates.
In this article, we argue that the appropriate diagnostic
measure is a quantity known as the fraction of missing
information (FMI). We evaluate the performance of several
estimates of FMI in the context of FIML estimation within
the structural equation modeling (SEM) framework. This
framework is quite general and includes regression models,
path analysis, confirmatory factor analysis, and general
linear models involving any combination of observed and
latent variables.

SEMs are usually fit as mean and covariance structure models.
Given a set of p variables, a particular model implies that the
mean and covariance structure of these variables is given by
µ(θ) and 6(θ), where θ is a q × 1 vector of model parameters.
Under the assumptions that the missing data mechanism is MAR
and that data are multivariate normally distributed, the FIML
parameter estimates θ̂FIML can be obtained by maximizing the
observed data normal-theory log-likelihood logL(θ |Y), given by

(Little and Rubin, 1987):

logL(θ |Y) =
N

∑

i=1

logLi(θ |Y) (1)

= −
N

∑

i=1

pi

2
log(2π)− 1

2

N
∑

i=1

log|6i(θ)|

− 1

2

N
∑

i=1

(xi − µi(θ))
′6−1

i (θ)(xi − µi(θ)),

whereN is the sample size, pi is the number of variables observed
for case i. µi(θ) is the pi × 1 model-implied vector of means, and
6i(θ) is the pi×pi model-implied covariance matrix, both for the
variables that are not missing in case i.

Parameter estimates θ̂FIML are asymptotically fully efficient if
the distributional assumptions are met. However, they are not as
efficient as they would have been had there been no missing data.
If for the same sample of N observations, we write X = (Y ,Z),
where Y is the observed data, Z is the missing data, and X is the
complete data, then the hypothetical complete data parameter
estimates θ̂ML obtained by maximizing L(θ |X) would be more
efficient than the FIML parameter estimates θ̂FIML to the extent
that the missing data Z contains information about θ .

1.1. Fraction of Missing Information
The FMI measure quantifies the amount of information missing
in the estimation of a particular parameter (i.e., element of
θ) by considering the drop in efficiency when that parameter
is estimated from the observed data Y rather than from the
hypothetical complete data X. Although the FMI computation
was originally introduced in the context of MI (Rubin, 1987), its
theoretical roots can be traced back to the missing information
principle, laid out by Orchard and Woodbury (1972). This
principle states that the likelihood of the complete data, L(θ |X),
can be factored into the likelihood of the observed data,
L(θ |Y), and the density of the missing data given the observed
data, f (Z|θ ,Y):

L(θ |X) = L(θ |Y)f (Z|θ ,Y). (2)

It follows that the first derivative of the complete data log-
likelihood, or the score vector, can be written as

∂ logL(θ |X)
∂θ ′

= ∂ logL(θ |Y)
∂θ ′

+ ∂ logf (Z|θ ,Y)
∂θ ′

. (3)

The information matrix can be defined as the covariance matrix
of the score vector (Rao, 1973). Let JX = Cov(

∂ logL(θ |X)
∂θ ′ ),

JY = Cov(
∂ logL(θ |Y)

∂θ ′ ), and JX|Y = Cov(
∂ logf2(Z|θ ,Y)

∂θ ′ ), the missing
information principle can then be stated as

JX = JY + JX|Y . (4)

When the model is correctly specified and the multivariate
normality assumption is met, it is the case that JX =
−E

( ∂2logL(X|θ)
∂θ∂θ ′

)

, i.e., the information matrix for complete data
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is also the negative expectation of the second derivative of
the log-likelihood of the data (Rao, 1973). Similarly, JY =
−E

( ∂2logL(Y|θ)
∂θ∂θ ′

)

is the information matrix for observed data. The
quantity JX|Y is known asmissing information. Equation (4) states
that complete information can be written as a sum of observed
information and missing information.

When the distributional assumptions are met and the model is
correct, the asymptotic covariance matrix of the FIML estimates
θ̂FIML (multiplied by

√
n to stabilize the asymptotic distribution1)

is given by J−1
Y , whereas the asymptotic covariance matrix of the

hypothetical ML estimates θ̂ML from complete data is given by
J−1
X . The increase in the sampling variability of the jth parameter

estimate (i.e., the jth element of θ̂FIML) due to missing data is
therefore {J−1

Y }jj − {J−1
X }jj, where the subscript jj indicates jth

diagonal element of a matrix. The FMI for the jth parameter
estimate θ̂FIML,j, can then be defined as the proportion of its
sampling variability that is due to missing data (Savalei and
Rhemtulla, 2012):

δj =
{J−1
Y }jj − {J−1

X }jj
{J−1
Y }jj

= 1−
{J−1
X }jj

{J−1
Y }jj

= 1−
SE2j,C

SE2j,O
, (5)

where SEj,O is the standard error of θ̂FIML,j, and SEj,C is what the
standard error would have been under complete data (i.e., the
standard error of the hypothetical estimate θ̂ML,j that would have
been obtained from complete data).

Savalei and Rhemtulla (2012) gave an applied interpretation
of the FMI in terms of its relationship to the width inflation
factor (WIF). The WIF is the increase in the standard error and
the width of the confidence interval due to missing information.

Define the WIF for the jth parameter as WIFj = SEj ,O

SEj ,C
. Then,

from Equation (5), we have the relationship WIFj = 1√
1−δj

.

This equation shows that there is a one-to-one correspondence
between the FMI and the impact missing data have on the
property of the parameter estimate. For example, when δj = .75,
WIFj = 2, which means the standard error of the jth parameter
is twice as large as it would have been under complete data.
Consequently, the confidence interval of that parameter estimate
also becomes twice as wide. When δj = .5, the same computation
gives us WIFj = 1.5, which shows the standard error and the CI
are 50% larger due to missing data.

1.2. Sample Estimates of FMI
To obtain sample estimates of FMIs following FIML estimation
from Equation (5), which provides the population definition, we
need standard error estimates corresponding to complete and
incomplete data. However, as we only have incomplete data, it
may appear that we only have standard error estimates based on
incomplete data. To bypass this problem, Savalei and Rhemtulla
(2012) proposed to estimate what the complete data standard
errors for each parameter would have been by evaluating the
theoretical formulae for ML standard errors under complete data

1As the sample size approaches infinity, all parameter estimates approach their

true values, and therefore all standard errors approach 0. Multiplying the standard

errors by
√
nmakes them converge to nonzero numbers.

at the FIML parameter estimates. To do so, the model-implied
means and covariances µ(θ̂FIML) and 6(θ̂FIML), are first obtained
by analyzing the data via FIML. SEM softwares are then able
to use these means and covariances to perform a complete data
estimation routine, which produces standard errors to be used
as complete data standard error estimates in the computation
of FMI. This computation appeared to work well, and has since
been automated in lavaan. However, the initial implementation
had problems, in that negative estimates of FMIs were often
produced, particularly in small samples. The reason for this
poor performance was that by default, SEM software packages
compute so-called “expected” standard errors for complete data
and “observed” standard errors for incomplete data (Savalei,
2010), and the estimates proposed and studied in Savalei and
Rhemtulla (2012) relied on these defaults. However, in small
samples, the differences between these types of standard errors
can be large enough to create problems, resulting in negative FMI
estimates. Starting with lavaan version 0.6-7, the package now
uses the same type of information matrix, leading to the same
type of standard error estimates, when estimating FMIs using
Equation (5)2. Because standard errors for incomplete MAR data
are not consistent unless they are based on observed information
(Little and Rubin, 2002), we recommend always using observed
information to compute FMIs; this is in fact the default in lavaan.

There are three computational variations that fall under the
broad label of “observed” standard errors, all of which remain
consistent when the missing mechanism is MAR and the model
is true. These three computational variations will be identical
for saturated models (i.e., models that have zero degrees of
freedom, such as regressionmodels), but they will generally differ
for structured models, i.e., models that have positive degrees
of freedom and that impose some constraints on the means
and/or the covariance matrix of the data. These variations are
described in Appendix B, and they are implemented in lavaan
version 0.6-7 (for further details, see Savalei and Rosseel, ress).
These variations lead to three different computational estimates
of FMI, which we will call δ̂1,j, δ̂2,j, and δ̂3,j. Briefly, the estimate

δ̂1,j uses the numeric Hessian (the second derivative of the log-
likelihood) in both complete and incomplete standard error
estimates. Standard errors based on the Hessian are the default in
lavaan when the FIML estimator is requested, and these will be
the default FMI estimates. The second estimate, δ̂2,j, is obtained
analytically by approximating the second derivative of the log-
likelihood with the first (dominant) term and dropping the
second term that depends on the second derivatives of the model
(this second smaller term is cumbersome to obtain analytically).
The third estimate, δ̂3,j, has the same analytic form as δ̂2,j, but
uses unstructured estimates of means and covariance matrix in
all parts of the computation that rely on these estimates.

When the proposed structured model is true, the three
estimates are consistent estimates of the same quantity and
therefore asymptotically equivalent (seeAppendix B; Savalei and
Rosseel, ress). However, they will diverge when the model is

2See Appendix A for how to request FMI estimates in lavaan. We would like to

thank Yves Rossel, the developer of lavaan, for implementing these variations in

the computation of FMI, permitting us to carry out this study.
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TABLE 1 | The population FMIs.

Model Parameter πmis δpop,j

MCAR MAR-L MAR-NL

Regression β 0.2 0.15 0.29 0.35

Regression β 0.4 0.33 0.51 0.65

Regression β 0.6 0.52 0.63 0.79

Two-factor φ 0.2 0.15 0.29 0.35

Two-factor φ 0.4 0.33 0.51 0.65

Two-factor φ 0.6 0.52 0.63 0.79

Two-factor λ 0.2 0.15 0.29 0.35

Two-factor λ 0.4 0.33 0.51 0.65

Two-factor λ 0.6 0.52 0.63 0.79

Numbers computed from N =1,000,000. πmis is the probability of missing value in each

variable with missingness. The overall missing rate is πmis/2. β, the regression coefficient.

φ, the factor correlation. λ, the factor loading. The population FMIs of the four factor

loadings corresponding to variables containing missingness are all within 0.01 of each

other, and therefore only the FMIs of the λ for X2 is reported.

false, and only the estimate δ̂1,j, based on the Hessian, will
remain consistent. As this is the first study of these estimates, we
only evaluate the scenarios where the proposed model is either
saturated or true. In such situations, the estimate δ̂1,j may have
the disadvantage that it is more complicated to compute and may
thus lead to less accurate FMI estimates in small samples, but this
is a prediction that needs to be empirically evaluated.

2. SIMULATION STUDY

While the idea for how to obtain sample FMIs following FIML
estimation was published a number of years ago (Savalei and
Rhemtulla, 2012), we are not aware of any simulation studies
that have been conducted to evaluate the performance of sample
FMIs. Furthermore, it was not until recently that FMI estimates
with better properties (using the same type of standard errors in
both numerator and denominator), have become automated in
lavaan. In order to evaluate the performance of these sample FMI
estimates, we conducted a simulation study with two commonly
used models in psychology, a simple regression model and a two-
factor model. The main objective was to determine whether the
population FMI values can be estimated with reasonable accuracy
under a realistic sample size. The three estimates, δ̂1,j, δ̂2,j, and δ̂3,j,
were expected to be practically equal in the saturated regression
model. It was unclear, however, how they would differ in the two-
factor model. Therefore, another objective for the study was to
compare their performance.

2.1. Method
The study was conducted in R v3.6.1 (R Core Team, 2019). All
FMIs were computed from lavaan 0.6-7 (Rosseel, 2012), using
options specified in Supplementary Table 1. Example code of
how to use lavaan to compute the three FMI estimates is given in
Appendix A. Simulations were conducted with 1,000 replications
in each cell. An example of the simulation code is available on
OSF at https://osf.io/xyzt8/.

TABLE 2 | The bias, RMSE, and the 95% equal-tailed interval width of the

regression coefficient FMI estimate (δ̂β ).

πmis N MCAR MAR-L MAR-NL

Bias RMSE ETI Bias RMSE ETI Bias RMSE ETI

0.2 50 0.01 0.07 0.28 −0.01 0.12 0.45 −0.02 0.14 0.52

0.4 50 0.00 0.10 0.39 −0.02 0.15 0.54 −0.05 0.19 0.64

0.6 50 0.00 0.11 0.43 −0.02 0.14 0.52 −0.07 0.19 0.57

0.2 100 0.00 0.05 0.19 0.00 0.09 0.34 −0.01 0.10 0.39

0.4 100 0.00 0.07 0.28 −0.01 0.11 0.43 −0.03 0.15 0.56

0.6 100 0.01 0.08 0.30 −0.01 0.11 0.42 −0.06 0.16 0.53

0.2 200 0.00 0.03 0.13 0.00 0.06 0.25 0.00 0.08 0.30

0.4 200 0.00 0.05 0.19 −0.01 0.09 0.35 −0.02 0.12 0.45

0.6 200 0.00 0.06 0.22 0.00 0.08 0.31 −0.03 0.12 0.44

0.2 500 0.00 0.02 0.09 0.00 0.04 0.16 0.00 0.05 0.19

0.4 500 0.00 0.03 0.12 0.00 0.06 0.22 −0.01 0.08 0.29

0.6 500 0.00 0.04 0.14 0.00 0.05 0.21 −0.01 0.07 0.28

πmis is the probability of missing value in each variable with missingness. The overall

missing rate is πmis/2. ETI denotes the 95% ETI width, which is the distance between

the 2.5 and 97.5 percentile of the sampling distributions. Bias values with magnitudes

>0.05, RMSEs>0.05, and ETI widths>0.20 are indicated with bold fonts. The conditional

formatting was applied prior to rounding.

2.1.1. Model 1: Simple Regression
The simple regression model simulations contained 4 (sample
size) × 3 (missing mechanisms) × 3 (missing rates) = 12
conditions. For each condition, we examined the three sample
FMIs (δ̂1,j, δ̂2,j, δ̂3,j) of the regression coefficient (β). Data were
simulated from the path model Y = βX + E, where X and
Y followed standard normal distributions (i.e., means of 0 and
standard deviations of 1), β was always 0.4. E was therefore a
normal distribution with a mean of 0 and standard deviation
of

√

1− β2 = .92. The sample sizes were N=50, 100, 200, and
500. In order to compute the bias of the sample FMI estimates,
pseudo-population values of the FMIs were computed from an
additional single replication simulation with N = 1, 000, 000.

The missing data mechanism conditions were MCAR, linear
MAR (MAR-L), and nonlinear MAR (MAR-NL), with values
missing on X at population rates of 0.2, 0.4, and 0.6. To avoid
the NMARmechanism, missingness was only assigned to X, with
missing rates πmis = 20, 40, and 60%. Since missingness was only
assigned to one of the two variables, the overall missing rates
were therefore 10, 20, and 30%, respectively. In the special case of
MCAR, each value of X was assigned an independent πmis chance
of missing. ForMAR conditions, we specifically chose very strong
selection mechanisms in the MAR conditions, as weak MAR
mechanisms tend to behave similarly to each other and toMCAR.
The choice of strong selection mechanisms allows us to contrast
the differences between the different MAR conditions. For these
MAR conditions, the missingness in X was conditioned on Y .

Under MAR-L, values of X were set to be missing with a high
probability when the corresponding values of Y were above a
certain cutoff. A single cutoff rule was used to implement this
mechanism. When Y was above the percentile cutoff value ycut ,
themissing rate onX was π1 = 90%; below that cutoff, themissing
rate on X was π2 = 10%. In each condition, the value ycut was
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FIGURE 1 | The sampling distribution of FMI for regression coefficients in MCAR. The panel rows correspond to sample sizes of N = 50, 100, 200, and 500. The

panel columns correspond to per variable missing rates of 20, 40, and 60%, or overall population missing rates of 10, 20, and 30%. The population FMI value in each

panel is given as a vertical black dotted line. The sampling distributions of the three estimates are virtually identical in simple regression.

computed from the theoretical πc percentile of the population
distribution of Y , where πc = (πmis − π1)/(π2 − π1) = 0.875,
0.625, and 0.375. This produces a linear MAR mechanism with
per variable missing rates of πmis = 20, 40, and 60%, respectively.
SinceY followed a standard normal distribution, the cutoffs were,
for each missing rate condition respectively, ycut = 1.15, 0.32,
and−0.32.

MAR-NL was simulated using two cutoffs, ycut1 and ycut2.
When Y was either above ycut1 or below ycut2, the missing rate
was π1 = 90%; between those two cutoffs, the missing rate was π2

= 10%. The cutoffs were the theoretical 50%±0.5πc percentiles of
the population distribution of Y , where 0.5πc = 0.4375, 0.3125,
and 0.1875. Since Y followed a standard normal distribution,
the cutoffs were, for each condition respectively, ycut1 = 1.53,
0.89, and 0.49 and ycut2 = −1.53, −0.89, and −0.49. This type
of nonlinear MAR resulted in missing values on both ends of
the distribution of X, which would theoretically lead to more
information loss.

2.1.2. Model 2
The two-factor model simulations contained 4 (sample size) ×
3 (missing mechanisms) × 3 (missing rates) = 12 conditions.
For each condition, we investigated the properties of the three
sample FMIs (δ̂1,j, δ̂2,j, δ̂3,j) for the factor correlation (φ) and
factor loadings (λs). The two latent factors were F1 and F2,
and each factor included with four indicators: X1, X2, X3, X4

measured F1, and Y1, Y2, Y3, Y4 measured F2. All indicators,
factors, and measurement errors followed standard normal
distributions. The two factors were correlated at φ = 0.4. The
measurement model was set to have equal loadings, with all
loading values set to λ = 0.49 (see Supplementary Table 2 for
a summary of the study design). As factor analysis is typically
conducted with a larger sample size than regression, the sample
sizes were set to N=100, 200, 500, and 1,000, excluding the
N = 50 condition and adding the N =1,000 condition. The
“population”-level FMIs were once again computed from a single
sample with N = 1, 000, 000.
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FIGURE 2 | The sampling distribution of FMI for regression coefficients in linear MAR. The panel rows correspond to sample sizes of N = 50, 100, 200, and 500. The

panel columns correspond to per variable missing rates of 20, 40, and 60, or overall population missing rates of 10, 20, and 30%. The population FMI value in each

panel is given as a vertical black dotted line. The sampling distributions of the three estimates are virtually identical in simple regression.

Three missing data mechanism conditions, MCAR, MAR-
L, and MAR-NL, were included in the two-factor model
simulations. Half the variables were assigned to contain missing
values: X2, X4, Y2, and Y4. The variables X1, X3, Y1, and Y3

were fully observed. Where the missing data mechanism was
not MCAR, missingness on X2 and X4 was conditioned on the
value of CX = X1 + X3. Similarly, missingness on Y2 and Y4

was conditioned on the value of CY = Y1 + Y3. The cutoffs for
MAR-L and MAR-NL were based on the standardized values of
CX and CY , and were the same as those in the regression model.
For each variable containing missing values, the missing rate on
that variable was πmis = 20, 40, and 60%. Since only half the
variables contained missingness, these per variable missing rates
corresponded to overall missing rates of 10, 20, and 30%.

2.1.3. Evaluation Criteria
In order to assess the properties of the sample estimates of FMIs,
we computed the raw bias, root mean squared error (RMSE),

and 95% equal-tailed interval (ETI) width based on the 1,000

replications. The raw bias was computed as δ̂e,j − δ̂pop,j, where

δ̂e,j was the mean of the sample FMI estimates produced in all
replications, and e = 1, 2, or 3, as the evaluation criteria were
computed in the same when for all three FMI estimates. δ̂pop,j was
the pseudo-population FMI value generated from the additional
single replication with N = 1,000,000. The raw bias indicated
how much the sample FMI deviated from the population on
average, in the long run.We expected these estimates to be largely
unbiased, and therefore we considered a bias of more than 0.05 (δ
ranged from 0 to 1) to be notable.

The RMSE was computed as

√

1
Nrep

6
Nrep

i=1 (δ̂e,j,i − δ̂pop,j)2,

where Nrep was the number of replications and δ̂e,j,i was
the sample FMI estimate on the ith replication. The
RMSE captured the bias and variability of the estimate
from run to run, and could be roughly interpreted as
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FIGURE 3 | The sampling distribution of FMI for regression coefficients in nonlinear MAR. The panel rows correspond to sample sizes of N = 50, 100, 200, and 500.

The panel columns correspond to per variable missing rates of 20, 40, and 60%, or overall population missing rates of 10, 20, and 30%. The population FMI value in

each panel is given as a vertical black dotted line. The sampling distributions of the three estimates are virtually identical in simple regression.

the average difference from the true population value.
Given that we expected the estimates to be largely
unbiased, the RMSE was mainly used as a measure
of efficiency.

As the RMSE is not very easily interpretable, we included
an additional efficiency measure, the 95% ETI width, defined
as the difference between the 2.5th quantile and the 97.5th
quantile of the observed δ̂ values across all replications. The
ETI width therefore indicated where most of the sample
estimates lied across all replications, and a low ETI width
suggests the parameter estimate is more precise. In the case
of a symmetrical sampling distribution, 95% of the estimates

in all replications fall within an interval of δ̂e,j plus and
minute half the ETI width. For example, if the mean of a
symmetrical FMI sampling distribution is 0.5, an ETI width
of 0.2 shows that 95% of the sample FMIs fall within,
0.5± 0.2/2, or [0.4, 0.6].

2.2. Results
In this study, we examine the FMIs of three parameters, namely,
the regression coefficient (β), the factor loading (λ), and the
factor correlation (φ). For simplicity of notation, the numeric
subscript j is substituted by the name of the parameter when
a specific FMI is referenced. For example, the numeric Hessian
FMI estimate δ̂1,j for the regression coefficient β will be denoted

as δ̂1,β . The result summary of each simulation condition is
available on OSF at https://osf.io/xyzt8/.

2.2.1. Population Values
As was theoretically expected, the three FMI computations were
identical at N =1,000,000. Therefore, for the population values,
we do not distinguish between δ1,j, δ2,j, and δ3,j, and simply refer
to the value as δpop,j.

In Model 1 (regression), the FMIs of the regression coefficient
(β) under per variable missing rates of πmis =0.2, 0.4, 0.6,
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TABLE 3 | The bias, RMSE, and the 95% equal-tailed interval width of factor

correlation FMIs under MCAR.

πmis N Bias RMSE 95% ETI width

δ̂1,φ δ̂2,φ δ̂3,φ δ̂1,φ δ̂2,φ δ̂3,φ δ̂1,φ δ̂2,φ δ̂3,φ

0.2 100 0.01 0.00 0.01 0.10 0.06 0.06 0.31 0.23 0.24

0.4 100 0.02 0.00 0.03 0.16 0.12 0.11 0.67 0.44 0.39

0.6 100 0.07 −0.02 0.05 0.25 0.17 0.16 0.93 0.66 0.58

0.2 200 0.00 0.00 0.00 0.04 0.04 0.04 0.17 0.16 0.15

0.4 200 −0.01 0.00 0.01 0.09 0.08 0.08 0.34 0.30 0.29

0.6 200 −0.02 −0.01 0.02 0.15 0.12 0.12 0.56 0.46 0.43

0.2 500 0.00 0.00 0.00 0.03 0.03 0.03 0.10 0.10 0.10

0.4 500 0.00 0.00 0.00 0.05 0.05 0.05 0.20 0.19 0.18

0.6 500 −0.01 −0.01 0.01 0.08 0.07 0.07 0.30 0.28 0.28

0.2 1000 0.00 0.00 0.00 0.02 0.02 0.02 0.07 0.07 0.07

0.4 1000 0.00 0.00 0.00 0.03 0.03 0.03 0.13 0.13 0.13

0.6 1000 −0.01 0.00 0.01 0.05 0.05 0.05 0.19 0.19 0.20

πmis is the probability of missing value in each variable with missingness. The overall

missing rate is πmis/2. Distribution width is the distance between the 2.5 and 97.5

percentile in the sampling distributions. Bias values with magnitudes >0.05, RMSEs

>0.05, and ETI widths >0.20 are indicated with bold fonts. The conditional formatting

was applied prior to rounding.

TABLE 4 | The bias, RMSE, and the 95% equal-tailed interval width of factor

correlation FMIs under linear MAR.

πmis N Bias RMSE 95% ETI width

δ̂1,φ δ̂2,φ δ̂3,φ δ̂1,φ δ̂2,φ δ̂3,φ δ̂1,φ δ̂2,φ δ̂3,φ

0.2 100 0.03 0.01 0.02 0.12 0.07 0.07 0.38 0.26 0.25

0.4 100 0.07 0.02 0.04 0.20 0.13 0.13 0.87 0.49 0.45

0.6 100 0.12 0.01 0.08 0.28 0.19 0.17 0.91 0.73 0.61

0.2 200 0.01 0.00 0.00 0.06 0.05 0.05 0.20 0.19 0.18

0.4 200 0.01 0.01 0.01 0.10 0.09 0.08 0.38 0.33 0.31

0.6 200 −0.01 0.00 0.04 0.16 0.13 0.12 0.61 0.52 0.46

0.2 500 0.00 0.00 0.00 0.03 0.03 0.03 0.12 0.11 0.11

0.4 500 0.00 0.00 0.00 0.06 0.05 0.05 0.21 0.21 0.20

0.6 500 0.00 0.00 0.01 0.08 0.08 0.08 0.32 0.29 0.30

0.2 1000 0.00 0.00 0.00 0.02 0.02 0.02 0.08 0.08 0.07

0.4 1000 0.00 0.00 0.00 0.04 0.04 0.04 0.14 0.14 0.14

0.6 1000 0.00 0.00 0.01 0.05 0.05 0.05 0.20 0.20 0.20

πmis is the probability of missing value in each variable with missingness. The overall

missing rate is πmis/2. Distribution width is the distance between the 2.5 and 97.5

percentile in the sampling distributions. Bias values with magnitudes >0.05, RMSEs

>0.05, and ETI widths >.20 are indicated with bold fonts. The conditional formatting

was applied prior to rounding.

respectively, were δpop,j =0.15, 0.33, and 0.52 under MCAR.
Under MAR-L, they were δpop,β =0.29, 0.51, 0.63, and MAR-
NL, they were δpop,β =0.35, 0.65, 0.79 (as seen in Table 1).
As expected, the population FMIs increased as the missing
rate increased in all three missing data mechanism conditions.
However, the missing rates did not capture all the information
loss. When the missing rates were equal, the FMIs could vary
greatly across the three missing data mechanism conditions.
Most notably, due the loss of data at the tail ends of the

TABLE 5 | The bias, RMSE, and the 95% equal-tailed interval width of factor

correlation FMIs under nonlinear MAR.

πmis N Bias RMSE 95% ETI width

δ̂1,φ δ̂2,φ δ̂3,φ δ̂1,φ δ̂2,φ δ̂3,φ δ̂1,φ δ̂2,φ δ̂3,φ

0.2 100 0.04 0.02 0.02 0.12 0.07 0.08 0.42 0.28 0.26

0.4 100 0.10 0.04 0.06 0.23 0.15 0.14 0.90 0.54 0.47

0.6 100 0.17 0.05 0.11 0.30 0.20 0.19 0.90 0.76 0.59

0.2 200 0.01 0.00 0.00 0.06 0.05 0.04 0.22 0.19 0.18

0.4 200 0.02 0.01 0.03 0.13 0.11 0.09 0.48 0.40 0.34

0.6 200 0.04 0.02 0.06 0.19 0.15 0.14 0.82 0.56 0.47

0.2 500 0.00 0.00 0.00 0.03 0.03 0.03 0.12 0.12 0.11

0.4 500 0.01 0.01 0.01 0.07 0.06 0.05 0.28 0.26 0.20

0.6 500 0.00 0.00 0.02 0.11 0.10 0.08 0.43 0.37 0.32

0.2 1000 0.00 0.00 0.00 0.02 0.02 0.02 0.08 0.08 0.07

0.4 1000 0.00 0.00 0.01 0.05 0.05 0.04 0.18 0.18 0.15

0.6 1000 0.00 0.00 0.01 0.07 0.07 0.06 0.28 0.26 0.21

πmis is the probability of missing value in each variable with missingness. The overall

missing rate is πmis/2. Distribution width is the distance between the 2.5 and 97.5

percentile in the sampling distributions. Bias values with magnitudes >0.05, RMSEs

>0.05, and ETI widths >0.20 are indicated with bold fonts. The conditional formatting

was applied prior to rounding.

distribution in the nonlinear MAR condition, this missing data
mechanism was associated with the highest FMIs.

In Model 2 (two-factor model), there were 4 factor loadings
associated with variables that contained missing data, namely
the factor loadings of X2, X4 on F1, and the factor loadings of
Y2, Y4 on F2. As these loadings were of the same size, and the
missing rate was the same for all four variables, only the FMI on
the loading of X2 is reported here. Under MCAR, the FMIs of
the factor loading (λ) were δpop,λ =0.20, 0.40, and 0.60 for per-
variable missing rates of πmis =0.2, 0.4, and 0.6, respectively.
Under MAR-L, the FMIs were δpop,λ =0.37, 0.60, 0.71. Under
MAR-NL, they were δpop,λ =0.44, 0.71, 0.83. Once again, we
observed that in each condition, the FMI increased as the missing
rates increased, and the MAR-NL condition lead to the highest
FMIs, followed by MAR-L, and then MCAR.

The pattern of differences between the missing data
mechanisms, however, did not hold for the FMIs of the factor
correlation (φ) in Model 2. The FMIs under per variable missing
rates of πmis =0.2, 0.4, and 0.6, respectively, were δpop,φ =0.13,
0.26, 0.38 in MCAR, δpop,φ =0.14, 0.27, 0.38 in MAR-L, and
δpop,φ =0.14, 0.28, and 0.39 in MAR-NL. The FMIs of the factor
correlation, unlike the FMIs of other parameters, did not differ
notably across the missing mechanisms. Even within the same
model, parameters affected by the same missing rates and the
same missing data mechanism could see drastically different
amounts of information loss. For instance, under πmis = 0.2 and
MAR-NL, the FMI on φ was δpop,φ = 0.14, but the FMI on λ in
the same model was δpop,φ = 0.44. These results emphasize the
point that information loss is not predictable from the missing
rates and whether the missing data mechanism is MCAR or
MAR. Information loss can only be quantified by computing the
FMI for a particular mechanism and parameter of interest.
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FIGURE 4 | The sampling distribution of FMI for factor correlations in MCAR. The panel rows correspond to sample sizes of N = 50, 100, 200, and 500. The panel

columns correspond to per variable missing rates of 20, 40, and 60%, or overall population missing rates of 10, 20, and 30%. The population FMI value in each panel

is given as a vertical black dotted line.

2.2.2. Model 1
For the regression coefficient β , the three sample FMI estimates,
δ̂1,β , δ̂2,β , and δ̂3,β were identical, due to the regression model
being saturated. We refer to the resulting estimate simply as
δ̂β in Table 2. As we can see in the tables, the sample FMI

estimates were largely unbiased, with the long run means of δ̂β

over the 1,000 replications falling within 0.05 of the population
value in practically all conditions. Notable bias (i.e., >0.05)
only arose when the missing data mechanism was NL-MAR,
the sample size was small, and the missing rate was high,
where the sample FMI could underestimate the population
value by as much as 0.07 (near the top of Table 2 under the
MAR-NL columns).

The sample FMI estimates were not particularly efficient
at the smaller sample sizes typical of regression analyses, and
would produce highly variable results from run to run. At
N = 50 and 100, the RMSEs were around 0.10 or higher
across nearly all missing rates and missing data mechanisms.

At N = 100, the estimate was the most precise estimate under
MCAR with πmis = 0.2, with RMSE of 0.05 and 95% ETI
width of 0.19. For larger sample sizes N = 200 and 500, the
performance of δ̂β was overall acceptable under MCAR, but
not for MAR-L and MAR-NL. Under both MAR conditions,
good performance was only achieved when N = 500 and
πmis = 0.2.

For a more intuitive illustration of bias and variability,
the smoothed densities of the 1,000 replications in each
condition are shown in Figures 1–3. We can see that almost
all sampling distributions centered around the population
value, with the exception of the top right panels of Figure 3,
which correspond to the small sample size, high missing
rate, nonlinear MAR conditions. These distributions,
however, do not pack very tightly around the population
value, except when the sample size is 500, and only when
either the missing rate was low, or the missing mechanism
was MCAR.
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FIGURE 5 | The sampling distribution of FMI for factor correlations in linear MAR. The panel rows correspond to sample sizes of N = 50, 100, 200, and 500. The

panel columns correspond to per variable missing rates of 20, 40, and 60%, or overall population missing rates of 10, 20, and 30%. The population FMI value in each

panel is given as a vertical black dotted line.

2.2.3. Model 2
In the two-factor model, not all replications were usable. In
some cases, the model would fail to converge. In other cases,
when FMIs were requested, lavaan would sometimes produce an
error, leading to NAs or negative values for the FMI estimates.
These issues were exacerbated by higher missing rates, and
were particularly pronounced in δ̂1,j when the sample size was
small. Under N = 100 and πmis =0.6 (overall missing rate
0.3), δ̂1,j would encounter more issues in more than 30% of

the runs. In this regard, the best performing estimate was δ̂3,j,
which almost never produced negative values, and had the lowest
rate of NA occurrences. However, even for δ̂3,j, the rate of
failed or improper estimates was often close to or above 10%
at N = 100. At N = 200, δ̂3,j would encounter this issue at
most 3% of the time, even when the per variable missing rate
was 0.6. See Supplementary Tables 3, 4 for the rate of failed
or improper estimates for the factor correlations and factor
loadings, respectively. The following results were obtained by

excluding all occurrences of NAs and negative values when
aggregating the sample FMI estimates.

The sample FMIs of factor correlation (φ) were largely
unbiased in MCAR, or when the mechanism was MAR but the
sample size was 200 or above (see Tables 3–5). Bias was also
generally small at N = 100 when the missing data mechanism
was MCAR, but notable bias could occur in MAR-L and MAR-
NL. Among the three estimates, δ̂1,φ showed the largest amount
of bias overall, severely overestimating the FMI (0.17 above the
true value on average) when the missing data mechanism was
nonlinear MAR and the per variable missing rate was πmis =0.6.
δ̂3,φ also showed some notable bias under N = 100, but only up

to 0.11 in the worst case. δ̂2,φ showed the least amount of bias,
producing raw bias values very close to 0.05 or below across all
the conditions.

Although the population FMIs of the factor correlations
were quite low, they proved difficult to estimate precisely. As
illustrated in Figures 4–6, the sampling distributions of the FMI
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FIGURE 6 | The sampling distribution of FMI for factor correlations in nonlinear MAR. The panel rows correspond to sample sizes of N = 50, 100, 200, and 500. The

panel columns correspond to per variable missing rates of 20, 40, and 60%, or overall population missing rates of 10, 20, and 30%. The population FMI value in each

panel is given as a vertical black dotted line.

estimates were very wide, and showed considerable bias at small
sample sizes. Although the bias was absent at larger sample sizes,
the estimates would only fall closely around the population value
when the missing rate was low. As seen in Tables 3–5, when the
per variable missing rate was πmis =0.4, a sample size of 500
is required for δ̂3,φ to provide a precise estimate, with δ̂1,φ and

δ̂2,φ giving worse performances. Under the high missing rate of

πmis = 0.6, a sample size of 1,000 was required. Overall, δ̂3,φ
gave the best performance, showing the lowest RMSE and 95%
ETI width.

Compared to the factor correlation FMIs, the factor loading
FMIs performed much better in Model 2. Similar to the
population simulation, here we report on the FMIs of the X2

loading on F1. The results for the other loadings X4, Y2, and
Y4 are largely identical. Overall, as illustrated in Figures 7–9,
the sample FMIs of factor loadings showed little bias and would
typically fall much closer to the population values. As shown in
Supplementary Tables 5–7, the bias, RMSE, and 95% ETI width

were satisfactory for all three estimates when the sample size was
N = 500 or greater. At N = 200, the FMIs only performed well
when the missing mechanism was MCAR and the per variable
missing rate was 0.2. At N = 100, all three estimates performed
poorly, but δ̂3,λ was closer to acceptable performance, producing
95% ETI widths of 0.30 when δ̂2,λ would produce widths close to
0.50, and δ̂1,λ would produce widths close to 0.70. Once again,
δ̂3,λ showed the best performance overall, with the lowest RMSE
and 95% ETI width, and a similar bias to δ̂2,λ.

3. EXAMPLE ANALYSIS

Here we provide an example on how to obtain FMIs from the
lavaan package (version 0.6-7 and up) in R, using the Holzinger
and Swineford (1939) dataset and simulatedMCARmissing data.
The example is adapted from Savalei and Rosseel (ress). The
dataset, available through the lavaan package, contains cognitive
performance test scores from 301 school children. The data for
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FIGURE 7 | The sampling distribution of FMI for factor loadings in MCAR. The panel rows correspond to sample sizes of N = 50, 100, 200, and 500. The panel

columns correspond to per variable missing rates of 20, 40, and 60%, or overall population missing rates of 10, 20, and 30%. The population FMI value in each panel

is given as a vertical black dotted line.

this example can be loaded into the R workspace using the
following code.

library(lavaan)
data <- HolzingerSwineford1939[, paste0
(‘‘x,’’ 1:9)]

For the purpose of this demonstration, we will conduct a
confirmatory factor analysis with three correlated factors: visual
skills, verbal skills, and mental speed. Each factor is measured
by three tests, with variable names x1 to x9 in the datasets,
following a model given by the lavaanmodel syntax below.

model <- "visual =~ x1 + x2 + x3
verbal =~ x4 + x5 + x6
speed =~ x7 + x8 + x9"

As the dataset does not contain missing data, we will introduce
MCAR missingness by randomly removing 61 values from

each variable independently, resulting in an overall missing
rate of 20%.

set.seed(202104) # for reproducibility
dataMiss <- as.data.frame(lapply(data,

function(x) { x[sample
(1:length(x), 61)] <- NA
x }))

With the example data andmodel syntax prepared, we fit the data
to the CFA model and obtain the FMIs with the following code.

fitm1 <- cfa(model, data = dataMiss,
std.lv = TRUE, missing = "ml")
parameterEstimates(fitm1, fmi=TRUE,
remove.nonfree = TRUE)

The option std.lv = TRUE fixes all variances of the latent
factors to 1, allowing all loadings to be freely estimated, while
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FIGURE 8 | The sampling distribution of FMI for factor loadings in linear MAR. The panel rows correspond to sample sizes of N = 50, 100, 200, and 500. The panel

columns correspond to per variable missing rates of 20, 40, and 60%, or overall population missing rates of 10, 20, and 30%. The population FMI value in each panel

is given as a vertical black dotted line.

the missing = "ml" asks lavaan to handle the missing data
using FIML. The function parameterEstimates extracts
the results from the model fit, where the option fmi = TRUE
requests FMI estimates from lavaan alongside the parameter
estimates. The remove.nonfree = TRUE option omits
parameters that are not freely estimated from the output—In
this case, the latent factor variances are not printed in the
output table, as they were fixed to 1. By default, lavaan uses
Hessian numeric estimation of the observed information matrix,
which yields δ̂1 for the FMI estimates. To produce δ̂2, the
observed.information input must be specified to request
the analytic approximation of the information.

fitm2 <- cfa(model, data = dataMiss,
std.lv = TRUE, missing = "ml",

observed.information = "h1")
parameterEstimates(fitm2, fmi=TRUE,
remove.nonfree = TRUE)

By default, the analytic approximation is based on structured
information, to obtain δ̂3, the h1.information input must
be provided to request the unstructured information.

fitm3 <- cfa(model, data = dataMiss,
std.lv = TRUE, missing = "ml",

observed.information =
"h1", h1.information =
"unstructured")

parameterEstimates(fitm3, fmi=TRUE,
remove.nonfree = TRUE)

The three FMI estimates provide largely similar values (see
Table 6). They agree on which loading estimates have the highest
FMIs, namely the loadings of X1 (δ̂1 = 0.29, δ̂2 = 0.27, δ̂3 =
0.29), X2 (δ̂1 = 0.26, δ̂2 = 0.25, δ̂3 = 0.28), X3 (δ̂1 = 0.28,
δ̂2 = 0.28, δ̂3 = 0.31), and X7 (δ̂1 = 0.27, δ̂2 = 0.27, δ̂3 = 0.28).
The three estimates also agree on which factor correlation has
the highest FMI, namely the correlation between visual skill and
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FIGURE 9 | The sampling distribution of FMI for factor loadings in nonlinear MAR. The panel rows correspond to sample sizes of N = 50, 100, 200, and 500. The

panel columns correspond to per variable missing rates of 20, 40, and 60%, or overall population missing rates of 10, 20, and 30%. The population FMI value in each

panel is given as a vertical black dotted line.

mental speed, δ̂1 = 0.23, δ̂2 = 0.24, δ̂3 = 0.29. The FMI of
the factor correlation between visual skill and mental speed also
shows the largest difference among the FMI estimates, between
0.23 and 0.29. The three estimates disagree on which factor
correlation has the lowest FMI, but the differences are small:
For the correlation between visual and verbal skills, δ̂1 = 0.18,
δ̂2 = 0.15, δ̂3 = 0.18; for the correlation between verbal skill and
mental speed, δ̂1 = 0.18, δ̂2 = 0.18, δ̂3 = 0.20.

Overall, the highest FMI estimate in the model is 0.31. The
associated WIF is 1/

√
1− 0.31 = 1.2, which indicates an

estimated 20% increase of the width of the confidence interval
due to missing data. Reporting these FMIs alongside analyses of
empirical data will provide readers with a better sense of how
much the presence of missing data has affected the efficiency
of the parameter estimates, especially when comparing across
studies where FMIsmay differ even under the samemissing rates.
The full R code of this example is provided in Appendix A, and a
summary of the lavaan options of the three estimates is given in
Supplementary Table 1.

4. DISCUSSION

The current simulation study suggests that a relatively large
sample size may be necessary for the estimation of the FMIs.
Sample FMI estimates were largely unbiased, even in very
small samples with N = 50, which are typical of regression
analyses. However, at such a small sample size, the estimates
were imprecise, varying greatly from sample to sample, especially
when the missing rate was high. When the missing rates
were reasonably low (πmis = 0.2, 0.4; corresponding to 10–
20% overall missing rate), sample sizes of several hundreds,
which are typical in structural equation models, were able to
produce reasonably efficient estimates. However, at an overall
missing rate of 30%, it would require sample sizes exceeding
1,000 to produce precise estimates. It is worth noting that
we used very strong selection mechanisms in the MAR-L
and MAR-NL conditions to contrast the results from MCAR.
In applied settings, the MAR selection mechanism would
typically be weaker, which would lead to sample FMI estimate
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TABLE 6 | Results from the example analysis.

Parameter Variables δ̂1 δ̂2 δ̂3

Loading Visual, X1 0.29 0.27 0.29

Loading Visual, X2 0.26 0.25 0.28

Loading Visual, X3 0.28 0.28 0.31

Loading Verbal, X4 0.24 0.22 0.24

Loading Verbal, X5 0.17 0.17 0.19

Loading Verbal, X6 0.19 0.18 0.19

Loading Speed, X7 0.27 0.27 0.28

Loading Speed, X8 0.23 0.24 0.26

Loading Speed, X9 0.19 0.22 0.22

Factor correlation Visual, verbal 0.18 0.15 0.18

Factor correlation Visual, speed 0.23 0.24 0.29

Factor correlation Verbal, speed 0.18 0.18 0.20

performances that are closer to better performances we saw in the
MCAR conditions.

The three estimates are identical for saturated models, such
as regression. However, the choice makes a difference when the
model is not saturated. In the two-factor model, δ̂1,j, the estimate
via numeric Hessian, showed a distinct disadvantage as it was
more likely break down when the sample size was small, or when
the missing rate was high. In contrast, δ̂3,j, the analytic estimate
based on the unstructured model, was much less likely to break
down in all cases, and was more precise than δ̂2,j. Although δ̂3,j

occasionally showed a slightly higher bias than δ̂2,j, which was
based on the structured model, its performance was overall more
favorable in these simulations.

The simulation study investigated FMI in FIML, but the
results should generalize to FMI computed from MI with a large
number of imputations. In MI, the FMI is conceptually given by
the ratio of the between-imputation variance over the sum of the
within- and between- imputation variances. As the number of
imputations approaches infinity, this ratio becomes equivalent to
the ratio of variance increase due to missing data over variance
in the observed data as estimated from FIML. For simulation
studies, FMI can be more computationally expensive in MI, as
the estimate is produced in the final pooling stage of the analysis,
and often requires a large number of imputations (more than
100) to achieve an acceptable level of accuracy (Harel, 2007). For
substantive research, the researcher may simply choose between
FIML and MI as the estimation method of FMI based on the
missing data technique they are already using to produce the
estimates of the model parameters.

As far as we are aware, this study is the first to look at the
properties of sample FMIs computed using FIML. As such, we
focused on two relatively simple and commonly used models,
with three missing data mechanisms selected to contrast the
impact of the specific mechanism on the FMI values and to stress
that these values are not the same as the rates of missing data.
Future research may wish to expand on the study conditions,
for example, by controlling for the number of missing patterns,
examining how changing the values of parameters in the model
(such as the regression coefficient) would change the properties of
the FMI estimates. It would also be worthwhile to investigate the
relative performance of the three FMI estimates under incorrect

models. When the model is wrong, the Hessian-based estimate,
δ̂1,j, is theoretically superior, as it is the only consistent estimate.
However, whether this theoretical advantage would translate into
a practical advantage needs to be examined in simulation studies.
It would also be helpful to develop bootstrap SE/CI for the
sample FMIs, so that researchers would have a better sense of the
precision of the FMI estimates in their particular sample.

While our focus was on evaluating the properties of sample
FMI estimates in terms how well they served as estimates of
the corresponding population FMIs, the properties of population
FMIs themselves may be of interest, and is a topic we are
exploring in other work. In this ongoing work, we are finding
that information loss can occur in unintuitive and unpredictable
ways, and patterns in population FMIs observed in one context
do not always generalize to other context. For example, based on
the population-level FMI values we obtained for the conditions in
this study, one may be tempted to conclude that the population
FMIs of factor correlations are, in general, insensitive to missing
data mechanisms (e.g., the middle rows of Table 1). However,
this was not always the case. In conditions not reported here,
when the indicators of F1 were all completely observed, and
the indicators of F2 contained missingness conditioned on the
indicators of F1, the FMI of the factor correlation became
more sensitive to the missing data mechanism. Although the
population quantities estimated by the sample FMIs may exhibit
different patterns, we do not expect the sample FMI estimates
themselves to show drastically different properties in these
alternative scenarios.

The FMI estimates via FIML are available in most recent
releases of lavaan (version 0.6-7 and up), and example R
code for how to retrieve them is given in Appendix A. We
recommend empirical researchers to routinely examine and
report FMIs for key parameters in substantive analysis. FMIs
capture the complex interplay between numerous factors such as
missing rates, missing data mechanisms, and model parameters,
sometimes in unintuitive ways. They can provide critical
additional insights into how the standard errors, confidence
intervals, and hypothesis tests may have been impacted by
the presence of missing data. For methodologists conducting
simulation studies with missing data, the population FMIs in
the different study design conditions should be computed and
reported, in order to provide better context of the performance
of missing data techniques being studied.
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