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Bayesian networks (BNs) can be employed to cognitive diagnostic assessment (CDA).

Most of the existing researches on the BNs for CDA utilized the MCMC algorithm to

estimate parameters of BNs. When EM algorithm and gradient descending (GD) learning

method are adopted to estimate the parameters of BNs, some challenges may emerge

in educational assessment due to the monotonic constraints (greater skill should lead

to better item performance) cannot be satisfied in the above two methods. This paper

proposed to train the BN first based on the ideal response pattern data contained in every

CDA and continue to estimate the parameters of BN based on the EMor the GD algorithm

regarding the parameters based on the IRP training method as informative priors. Both

the simulation study and realistic data analysis demonstrated the validity and feasibility

of the new method. The BN based on the new parameter estimating method exhibits

promising statistical classification performance and even outperforms the G-DINA model

in some conditions.

Keywords: Bayesian Networks, ideal response pattern, cognitive diagnostic model, parameter estimatingmethod,

cognitive diagnostic assessment

INTRODUCTION

Cognitive diagnosis models (CDMs) are psychometric models developed mainly to assess students’
specific strengths and weaknesses on a set of finer-grained skills or attributes within a domain.
Researchers have developed many kinds of CDMs for cognitive diagnostic assessment (CDA),
including the rule space model (Tatsuoka, 1985), the attribute hierarchy model (AHM, Leighton
et al., 2004), the deterministic inputs noisy and gate model (DINA, Junker and Sijtsma, 2001), the
Deterministic Input, Noisy Output “Or” gate model (DINO; Templin and Henson, 2006), the Log-
Linear Cognitive Diagnosis Model (LCDM, Henson et al., 2009), the General Diagnostic Model
(GDM, von Davier, 2005), the G-DINA model (de la Torre, 2011), and so on. In addition to these
traditional CDMs, some researchers also proposed to use Bayesian networks (BNs, Pearl, 1988) in
CDA (Mislevy, 1995; Mislevy et al., 1999; Almond et al., 2007, 2015; Wu, 2013; Levy and Mislevy,
2017). These literatures have documented the efficiency of BN used for diagnostic assessment,
especially in the construction of large-scale evaluation system (e.g., Steinberg et al., 2003; Levy and
Mislevy, 2004; Almond et al., 2015).
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In BNs for CDA, the observable variables are the item
responses and the latent variables are the knowledge states
that can be treated as missing data. In Bayesian Network, like
the traditional CDMs, the parameter estimation is also needed.
The parameter estimation algorithms include the Markov Chain
Monte Carlo (MCMC) method, the expectation maximization
(EM)method, and the gradient descent (GD) learningmethod. In
educational assessment, theMCMCmethod was used extensively
(Wu, 2013; Almond et al., 2015; Levy andMislevy, 2017), whereas
the EM and the GD algorithms are rarely used. Some researches
(Lauritzen, 1995; Russell et al., 1995; Korb and Nicholson,
2010) have described the algorithms. The EM algorithm is an
iterative method to find (local) maximum likelihood estimates of
parameters in BNs, in which the model depends on unobserved
latent variables. EM iteration alternates between performing an
expectation (E) step, which uses regular BN inference with the
existing BN to compute the expected value of all the latent
variables (missing data), and a maximization (M) step, which
computes parameters maximizing the log-likelihood of BN given
the resulting extended data (i.e., original data plus the expected
value of missing data). These parameter estimates are used to
determine the distribution of the latent variables in the next E
step. The GD learning method tries to minimize the objective
function of the negative log likelihood to determine the BN
parameters. This method can find a better BN by using BN
inference to calculate the direction of the steepest gradient and
to change the parameters to follow the steepest direction of the
gradient (i.e., maximum improvement). Actually, it uses a much
more efficient approach than always taking the steepest path, by
taking into account its previous path, which is why it is called the
conjugate gradient descent (Norsys Inc., 2004). However, both
the EM and the GD methods are sensitive to the initial condition
and liable to be trapped in a local optimization.Moreover, there is
a fundamental issue with using the EM and the GD algorithms in
BN. In educational applications, the variables (both proficiency
variables and observable outcomes) are usually ordinal, and the
parameters aremonotonic (greater skill should lead to better item
performance). However, most parameter estimation algorithms
do not force monotonicity constraints on the parameters. In the
case when informative priors are available, they might support to
keep the estimates from violating the monotonicity assumptions
(von Davier and Lee, 2019). Almond (2015) describes a flexible
parameterization for conditional probability tables based on item
response theory (IRT) that preserves monotonicity and extends
the EM algorithm to a generalized EM algorithm. However, this
method needs to map each configuration of parent variables to
an effective theta, a point on a latent normal scale, and calculate
the conditional probability tables using the IRT model. That is
to say, this method needs to introduce other models to assist
the parameterization.

Besides the above CDMs, researchers also proposed to use
machine learning algorithms for CDA, such as neural networks
(NNs, Gierl et al., 2008; Shu et al., 2013; Cui et al., 2016),
and support vector machines (SVMs, Liu and Cheng, 2018).
Gierl et al. (2008) were the first to propose using the ideal
response patterns (IRPs) and the corresponding attribute profiles
constructed in the cognitive model of the CDA as the training

data of NNs. The ideal response patterns are the students
with the knowledge states (attribute profiles) to answer the
questions with no slipping and guessing errors. The attribute
profiles are the entire possible attribute combinations in the
cognitive model. If there are K attributes in the test and the
attributes are independent, then the number of the attribute
profiles is 2K, while in the AHM, the number is <2K due to
the hierarchical relationship of the attributes. Shu et al. (2013)
also used this approach to train the NN and investigated its
performance in small samples. They pointed out that, “In doing
this all items are assumed to behave in the same way and so
no differentiation is made between items with respect to item
quality. A limitation of the use of a NN analysis with IRP
is that all ‘calibration’ of the model is based on connections
between response patterns and attribute patterns calibrated in
the training process, no empirical information (i.e., students’
response patterns) is used to influence the procedure.” Thus, they
proposed to combine the NN approach using IRP and a MCMC
estimation algorithm or a Joint Maximum Likelihood Estimation
(JMLE) algorithm. Inspired by this research, we propose to use
the IRP data to estimate the BN parameters first, then continue
to estimate the BN parameters by EM or GD methods, taking
the previously estimated parameters as informative priors. The
introduction of IRP into the EM or GD method can overcome
the inaccurate estimation limitation caused by the violations of
the monotonicity constraints. This combination also provides
suitable starting values to continue the EM or GD estimation to
overcome the local optimality problem. On the other hand, this
method can also improve the performance of the IRP method
without empirical information. And comparing to the solution in
Almond (2015), we propose to apply the information contained
in each CDA (IRP data) for the initial parameterization and do
not need to introduce othermodels to assist the parameterization.

To demonstrate the effectiveness of our proposed approach,
we performed a simulation study comparing the parameter
estimating algorithms in BN, including the EM method, the GD
method, the IRP training method, and the combinations of IRP
and EM or GD methods. We considered the classification rates
as the performance indicators of the algorithms and the G-DINA
model’s diagnostic classification performance as the evaluation
criterion. Also, we carried out a real data analysis to demonstrate
the validity of the proposed method.

Regarding the simulation method, usually various CDMs are
adopted as the data-generating models. The simulation data is of
great value in verifying the properties of the models. However,
there are also some limitations in the CDM-based data. Real data
do not necessarily conform to the assumptions of the CDMs.
Using a CDM to process the data conforming to the same
model assumption may overrate the properties of the model.
Thus, other data-generating methods are needed. Wu (2013)
proposed to generate data based on BNs, but the parameters
of BNs were determined based on traditional CDMs, and the
patterns of the simulated data by the BNs were essentially the
same as the CDM-generated data. This research introduced a
new simulation data generating method by using BNs to generate
data with the empirical data’s pattern and these simulated data
do not necessarily satisfy the G-DINA assumption. To evaluate
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the BN and G-DINA methods more objectively, we designed
the simulation study using both the G-DINA model and the BN
model to generate data.

OVERVIEW OF THE COGNITIVE
DIAGNOSTIC MODELS AND
BAYESIAN NETWORKS

The Cognitive Diagnostic Model
The G-DINA model is a general CDM and can be converted to
the constrained CDMs by setting appropriate constraints (de la
Torre, 2011). According to de la Torre (2011) notation, for a
test with J items and K attributes, let K∗

j represent the number

of required attributes for item j, and α∗

lj
be the reduced attribute

vector whose elements are the required attributes for item j. Then,
the item response function of the G-DINA model is expressed
as follows:

P(α∗

lj) = δj0 +

K∗
j

∑

k=1

δjkαlk +

K∗
j

∑

k′=k+1

K∗
j −1
∑

k=1

δjkk′αlkαlk′ ...

+δj12...K∗
j

K∗
j

∏

k=1

αlk

Where δj0 is the intercept for item j; δjk is the main effect due to
αk; δjkk′ is the interaction effect due to αk and αk′ ; and δj12...K∗

j
is

the interaction effect due to α1...αK∗
j
. This function is the identity

link function and the other two link functions can also be used
to express the G-DINA model according to de la Torre (2011),
namely, the logit link and the log link.

The Bayesian Networks
Bayesian networks (BN, Pearl, 1988) are a notation for expressing
the joint distribution of probabilities over both observed and
latent variables. They are used to represent knowledge in
an uncertain domain and have been successfully applied in
computer science, especially in artificial intelligence. A BN
consists of a directed acyclic graph (DAG) to represent their
structure and a corresponding set of conditional probability
distributions to represent the parameters (Culbertson, 2016;
Hu and Templin, 2019). In this graph, each node represents
a random variable and each edge constitutes the probabilistic
dependence relationship among the variables represented by
the two nodes that are joined. Each pair of connected nodes
has a directed edge flowing from a “parent” node to a “child”
node. A conditional probability distribution is specified for each
node, given its parent nodes. For discrete random variables, this
conditional probability is described with conditional probability
tables (CPTs). The structure of BNs effectively reflects the
conditional independent relationship between the variables.
According to the conditional independent relationship, a joint
probability distribution is decomposed into a product of a
series of conditional distributions, which reduces the number of
parameters required to define the joint probability distribution

of the variables, and to compute the posterior probabilities
efficiently, given the data.

A BN applied for cognitive diagnosis is shown in Figure 1. In
Figure 1, the item nodes (observed variables) can be connected
to the attribute nodes (hidden variables), similar to the Q-matrix
that represented relationships between attributes and items in
traditional CDMs (Tatsuoka, 1983; Almond, 2010). The attribute
nodes can also be connected to each other, denoting the attribute
hierarchical relationships. According to the specific structure of
the BN, the joint probability distribution of all the variables
can be factorized into a product of a series of conditional
probabilities. Once the structure of the BN has been determined,
we need to specify these parameters in the BN first in order to
make an inference, i.e., specify the conditional probabilities and
the marginal probabilities. If all the nodes of a discrete BN are
fully observed in a sample, the CPTs can be updated via a simple
counting algorithm. This is the case when we train the BN using
the IRP and the corresponding attribute profile data. If there are
missing values or latent variables, then the CPTs can be calculated
using the EM algorithm, the GDmethod, or the MCMCmethod.

After obtaining the structure and parameters of the BN, we
can use the BN to predict the students’ knowledge state by
probability inference. According to the Bayesian Theorem, the
probability inference is when the posterior probability of the
hidden variables (attributes) is calculated using the values of the
observed variables (e.g., item response) as input. This process is
also called network propagation or belief updating, which can
be realized by a number of algorithms, such as the message
passing algorithm (Pearl, 1988), or trees of cliques (Lauritzen and
Spiegelhalter, 1988; Jensen, 1996).

METHODS

Simulation Design
The study presented in this paper compared several parameters
estimatingmethods in Bayesian networks for cognitive diagnosis.
We conducted a simulation study to evaluate the performance
of different parameter estimating methods. The Q-matrix (see
Table 1) with 30 items and 5 attributes in de la Torre (2011) was
adopted. The interconnections between attributes and test items
in the Q-matrix could also be represented in a BN graph in which
the arcs connecting two nodes denoted the associations between
the corresponding items and the attributes.

The attribute patterns were generated in two different
methods. The first method sampled attribute patterns from a
uniform distribution with probability 1/2K of every possible
value. In the second method, the discrete attribute pattern α was
linked to an underlying multivariate normal distribution, MVN
(0K , Σ), with covariance matrix Σ , structured as

∑

=





1 ρ

...
ρ 1





and ρ = 0.5. Let θi = (θi1, θi2, . . . , θiK) denote the K-dimensional
vector of latent continuous scores for examinee i. The attribute
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FIGURE 1 | A Bayesian network applied for cognitive diagnosis.

TABLE 1 | The Q-Matrix of the simulation study.

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

I1 1 0 0 0 0 I16 0 1 0 1 0

I2 0 1 0 0 0 I17 0 1 0 0 1

I3 0 0 1 0 0 I18 0 0 1 1 0

I4 0 0 0 1 0 I19 0 0 1 0 1

I5 0 0 0 0 1 I20 0 0 0 1 1

I6 1 0 0 0 0 I21 1 1 1 0 0

I7 0 1 0 0 0 I22 1 1 0 1 0

I8 0 0 1 0 0 I23 1 1 0 0 1

I9 0 0 0 1 0 I24 1 0 1 1 0

I10 0 0 0 0 1 I25 1 0 1 0 1

I11 1 1 0 0 0 I26 1 0 0 1 1

I12 1 0 1 0 0 I27 0 1 1 1 0

I13 1 0 0 1 0 I28 0 1 1 0 1

I14 1 0 0 0 1 I29 0 1 0 1 1

I15 0 1 1 0 0 I30 0 0 1 1 1

pattern αi = (αi1,αi2, . . . ,αiK) was determined by

αik =

{

1, if θik ≥ 8−1( k
K+1 )

0, otherwise

The item response data that were used in our experiments were
generated using the G-DINA model.

The parameter setting include two conditions, one is that
both the g and s parameters in each item are fixed at 0.2, the
other is a mixed test with high-discriminating items and low-
discriminating items (10 items with g = 0.3, s= 0.3; 10 items with
g = 0.2, s= 0.2; and 10 items with g = 0.1, s= 0.1), which is more
realistic in practice. The success probabilities of the examinees
who master none and all attributes [i.e., P(0) and P(1)] were
fixed as g and 1 – s, and the success probabilities of examinees
with other attribute patterns were randomly generated from the

distribution of Unif [P(0), P(1)] with monotonic constraint. All
the above simulated data were generated by CDMs. We also

used BNs to generate the data. When using BNs to generate
the simulated data, the BN parameters need to be determined
first because these parameters reflect the patterns behind the
generated simulation data. Two datasets were used to estimate
the BN parameters (i.e., the CPTs), including the simulated data
previously generated by G-DINA, and the fraction subtraction
dataset. The fraction subtraction dataset contains 536 students,
15 items, and 5 attributes, and the Q-matrix was defined as
given by de la Torre (2009). Two BN models were constructed
to process the two datasets and the parameters of the BN models
were estimated based on the two datasets using IRP–EMmethod.
Then, we used the two BN models to generate two types of
simulated datasets. The patterns behind the two sets of simulated
data reflect the patterns of the two sets of data previously used to
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FIGURE 2 | A simple Bayesian network applied for cognitive diagnosis.

TABLE 2 | The ideal response pattern and the corresponding attribute profiles.

Attribute 1 Attribute 2 Item 1 Item 2

Case 1 1 1 1 1

Case 2 1 0 0 0

Case 3 0 1 0 1

Case 4 0 0 0 0

estimate the parameters. In other words, the BN-generated data
not only reflect the pattern of the G-DINA simulated data, but
also the pattern of the real test data.

Accordingly, four types of datasets were simulated by CDMs
(two level parameters × two different attribute profile sampling
method) and two types of datasets were simulated by BNs.
Each condition had two sample sizes of 500 and 1,000. And all
the simulations are repeated 30 times to compute the average
classification rate and the standard error.

The Realization of the IRP–EM and IRP–GD
Methods
The BN and G-DINA models were applied to analyze the data.
The parameter estimating method of BNs includes the EM
method, the GD method, the IRP training method, and the
combinations of IRP with EM or GD methods. The classification
rates are considered as the performance indicators of the
algorithms and the diagnostic classification performance of
the G-DINA model is considered as the evaluation criterion.
When using IRP and the corresponding attribute profiles to
train the BN, the CPT of the BN can be obtained through
counting the observed frequencies in the IRP training dataset
using algorithms (Neapolitan, 2004; Lee and Corter, 2011). A
sample BN based on the problem of diagnosing attributes is
shown in Figure 2. Table 2 presents the ideal response pattern
and the corresponding attribute profiles; Table 3 shows the
respective CPTs through counting the observed frequencies in
the training dataset.

The example with all the results presented above illustrated
the BN training process using the IRP information. Two different

TABLE 3 | The conditional probability table of the Bayesian network.

P (Attribute1) P (Attribute2)

Attribute 1 = 1 Attribute 1 = 0 Attribute 2 = 1 Attribute 2 = 0

2/4 2/4 2/4 2/4

P (Item 1|Attribute 1, Attribute 2)

Attribute 1 Attribute 2 Item 1 = 1 Item 1 = 0

1 1 1 0

1 0 0 1

0 1 0 1

0 0 0 1

P (Item 2|Attribute 1, Attribute 2)

Attribute 1 Attribute 2 Item 2 = 1 Item 2 = 0

1 1 1 0

1 0 0 1

0 1 1 0

0 0 0 1

types of IRP data were computed based on the DINA model
and the DINOmodel representing the non-compensatory model
and the compensatory model. After the BN was trained based on
the IRP data, the GD or EM algorithm were used to estimate
the parameters of BN treating the IRP parameters as priors.
Generally, the DINA–IRP data were used first and when the
GD or EM algorithms were trapped in the local optimality,
the algorithms transfer to use the DINO–IRP data to train the
BN model and continue to estimate the final parameters. No
matter which IRP was used to train the BN, they provided
the suitable starting values for the EM or the GD method
and this avoided the algorithms to be trapped in the local
optimality. The implementation of the parameter estimation
algorithm is realized by Netica (www.norsys.com), a professional
Bayesian network software. In this software, the IRP and the
corresponding attribute patterns information is first entered into
the constructed BN structure and the prior of the parameters in
BN is obtained. After that, it continues to incorporate empirical
data to update the BN posterior parameters based on the EM or
GD algorithm.

RESULTS

We evaluated the performance of each algorithm under the
conditions mentioned in the simulation design, using the average
attribute classification rate (AACR) and the pattern classification
rate (PCR) as the performance index for each condition. The
standard error of each classification rate indicator is computed
to evaluate the consistency of the methods. From Table 4, we
could observe that in each condition, the PCRs of BNs based
on EM or GD method were very low because the monotonic
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TABLE 4 | The PCR of BNs and G-DINA from the data generated by G-DINA.

gs Level Distribution Sample size EM_BN GD_BN IRP_BN IRP_EM_BN IRP_GD_BN G-DINA

g=s=0.2 Uniform 1,000 0.196 0.162 0.320 0.611 0.627 0.622

500 0.138 0.091 0.348 0.577 0.598 0.593

Mvnorm 1,000 0.064 0.013 0.374 0.647 0.654 0.698

500 0.112 0.084 0.344 0.627 0.641 0.681

Mixed gs (0.3, 0.2, 0.1) Uniform 1,000 0.076 0.024 0.197 0.536 0.574 0.567

500 0.002 0.000 0.190 0.471 0.536 0.533

Mvnorm 1,000 0.036 0.038 0.263 0.582 0.644 0.677

500 0.006 0.000 0.184 0.579 0.590 0.629

TABLE 5 | The AACR of BNs and G-DINA from the data generated by G-DINA.

gs Level Distribution Sample size EM_BN GD_BN IRP_BN IRP_EM_BN IRP_GD_BN G-DINA

g=s=0.2 Uniform 1,000 0.741 0.740 0.816 0.902 0.908 0.906

500 0.350 0.307 0.829 0.896 0.898 0.898

Mvnorm 1,000 0.736 0.660 0.831 0.916 0.921 0.933

500 0.358 0.421 0.831 0.910 0.916 0.924

Mixed gs (0.3, 0.2, 0.1) Uniform 1,000 0.740 0.714 0.757 0.880 0.887 0.885

500 0.412 0.275 0.763 0.862 0.872 0.871

Mvnorm 1,000 0.738 0.431 0.782 0.898 0.916 0.922

500 0.371 0.287 0.696 0.894 0.898 0.907

constraint was not satisfied. When the IRP training method
was applied to estimate the parameters of BNs, the PCR was
improved to some extent but still very low. In all these datasets,
the effect of sample size on accuracy was not straightforward.
When we used the IRP data to estimate the BN parameters
first and continue to estimate the BN parameters by EM or GD
methods by regarding the previously estimated parameters as
informative priors, the PCRs of the BNs based on these two
methods were significantly improved compared to the former
three methods. The PCR of BN based on the combination of
IRP and GD methods (denoted as BN–IRP–GD method) was
higher than the BN based on the combination of IRP and
EM method (denoted as BN–IRP–EM method) in these G-
DINA datasets. The sample size had a certain influence on the
accuracy rate, especially in the four G-DINA datasets processed
by the IRP–EM method. The performance gap between the
1,000 and 500 samples of the other conditions was not so high.
When comparing with the G-DINA analysis, in the four datasets
generated by G-DINA, the PCR of BN–IRP–GD method was a
little higher than the PCR of G-DINA if the attribute patterns
of the students conformed to the uniform distribution, and the
PCR of G-DINA was higher than the BN–IRP–GD method if the
attribute patterns of the students conformed to the multivariate
normal distribution.

From Table 5, the results of AACR were similar to the PCR
results. The AACRs of BNs based on EM or GD methods
were very low and it was improved by training the BNs with
the IRP data. The AACRs of BN–IRP–EM and BN–IRP–GD
methods were improved further and the best result was achieved
through the BN–IRP–GD method. When comparing with the

G-DINA analysis, in the four datasets generated by G-DINA,
the AACR of BN–IRP–GD method was a little higher than the
AACR of G-DINA if the attribute patterns students conformed
to the uniform distribution, and the AACR of G-DINA was
higher than that of the BN-IRP-GD method if the attribute
patterns of the students conformed to the multivariate normal
distribution. We have also evaluated the consistency of the BN–
IRP–EM method, the BN-IRP-GD method and the G-DINA
method through standard errors of the PCR and AACR in
Tables 6, 7. The standard errors of the AACR were lower than
that of the PCR. Most conditions are lower than 0.01. The
BN–IRP–GD method and the BN–IRP–EM method have the
similar level of standard errors as the G-DINA method in
all conditions.

The PCR and AACR by BN and G-DINA models from the
data generated by G-DINA and the data generated by BN based
on the G-DINA data and fraction data are shown in Table 8.
And the standard errors of each PCR and AACR are given in
parentheses. In the initial BN construction, the BN parameters
were estimated by IRP–EM method, then the BN models with
determined parameters were used to simulate two types of
datasets for analyzing. It can be expected that the results of the
simulated datasets analyzed by the IRP–EM method to be higher
than that analyzed by the IRP–GDmethod. Thus, these data were
not analyzed by IRP–EMmethod to avoid overrating the IRP–EM
method. The BN–IRP–GD method and the G-DINA model were
used to process these data. In the dataset generated by BN based
on the G-DINA data, the PCR and AACR of BN-IRP-GDmethod
was lower than the G-DINA model, and this result was similar to
the dataset directly generated by G-DINA as shown in Table 6.
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TABLE 6 | The standard error of PCR by BNs and G-DINA from the data generated by G-DINA.

gs Level Distribution Sample size IRP_EM_BN IRP_GD_BN G-DINA

s=g=0.2 Uniform 1,000 0.025 0.025 0.019

500 0.032 0.024 0.030

Mvnorm 1,000 0.014 0.027 0.019

500 0.038 0.036 0.044

Mixed gs (0.3, 0.2, 0.1) Uniform 1,000 0.027 0.021 0.024

500 0.061 0.069 0.037

Mvnorm 1,000 0.050 0.032 0.020

500 0.030 0.036 0.050

TABLE 7 | The standard error of AACR by BNs and G-DINA from the data

generated by G-DINA.

gs Level Distribution Sample size IRP_EM_BN IRP_GD_BN G-DINA

s=g=0.2 Uniform 1,000 0.006 0.007 0.005

500 0.002 0.008 0.009

Mvnorm 1,000 0.006 0.006 0.005

500 0.011 0.009 0.011

Mixed gs (0.3,

0.2, 0.1)

Uniform 1,000 0.008 0.007 0.007

500 0.020 0.023 0.011

Mvnorm 1,000 0.025 0.011 0.026

500 0.008 0.060 0.067

These two datasets were essentially conforming to the ideal G-
DINA model assumption. However, when empirical data is used
to estimate the BN parameters and generate data based on this
BN model, the simulated data pattern might violate the G-DINA
assumption or at least does not conform to the assumption of
the G-DINAmodel as ideally as the G-DINA generated data. The
BN-IRP-GD method provides higher classification rate than the
G-DINA model.

REAL DATA EXAMPLE

To demonstrate the real-world applicability of the BN method,
we used the dataset on the buoyancy concept developed by
Gao et al. (2020) for cognitive diagnosis. These data have seven
attributes, namely, (A1) know that the buoyancy direction is
vertically upward, (A2) identify not only the gravity but also
the buoyancy exerted on an object that is afloat, suspended, or
immersed in liquid, (A3) know that the density is an object
property, whose value is the mass divided by the volume, but
still invariant to mass or volume changes, (A4) understand
the meaning of a displaced liquid volume, (A5) calculate the
buoyancy magnitude by analyzing the forces on objects, (A6)
understand Archimedes’ Principle, and (A7) decide whether
objects will float or sink by comparing the object and liquid
densities. These seven attributes have the hierarchy relationship
as displayed in Figure 3. The Q-matrix with 14 items is shown
in Table 9. A total of 1,089 eighth-grade students were chosen
as subjects from 10 schools located in five east-coast cities in

China. After excluding the subjects with blank test answers,
1,036 subjects remained. Two physics experts were invited to
label the 50 randomly selected students on their mastery of the
above attributes.

According to the attribute hierarchy relationships and the
Q-matrix, we constructed a BN structure and trained the BN
based on the IRP data first, and continued to estimate the BN
parameters by GDmethod by regarding the previously estimated
parameters as informative priors. The attribute patterns of the
students could be predicted by BN based on the item response
data. These data were also analyzed by the G-DINA model.
From the previously selected 50 subjects, the estimated attribute
patterns by the BN and G-DINA methods were compared
with the labeling results obtained by the experts, and the PCR
and AACR were calculated. Table 10 showed the agreement
percentage of the BN and G-DINA analysis with the experts’
labeling attribute patterns in the randomly selected 50 samples.
We can see that the BN–IRP–GD method can achieve promising
classification performance, and even higher than the G-DINA
model in PCR. The agreement percentage between the BN and
experts’ labeling in each attribute was also a little higher than
that observed between the G-DINA and experts’ labeling. These
results demonstrated the validity and feasibility of the BN–IRP–
GD method.

DISCUSSION

In this research, we conducted a simulation study comparing
the parameter estimating algorithms in BN, including the EM
method, the GD learning method, the IRP training method,
and the combinations of IRP and EM (IRP–EM) or GD (IRP–
GD) methods. The classification rates are considered as the
performance indicators of the algorithms and the performance of
G-DINA was adopted as a criterion to evaluate the performance
of the improved parameter estimating method in BN. Real data
analysis is followed to demonstrate the validity of the proposed
method. The results show that the classification performances
of the BN–IRP–EM and BN–IRP–GD methods are promising
and even higher than the G-DINA model in certain conditions.
The classification rates of EM and GD method are very low due
to the reason that monotonic constraints may not be upheld.
Moreover, both the EM and the GD methods are sensitive to the
initial condition and liable to be trapped in a local optimality. We
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TABLE 8 | The PCR and AACR by BNs and G-DINA from the data generated by G-DINA and the data generated by BNs based on the G-DINA data and Fraction data.

DATA/model PCR AACR

GDINA IRP_GD_BN GDINA IRP_GD_BN

G-DINA-gen 0.701 (0.020) 0.658 (0.029) 0.931 (0.005) 0.919 (0.007)

BN-gen-based on-GDINA data 0.643 (0.015) 0.618 (0.008) 0.910 (0.046) 0.901 (0.008)

BN-gen-based on-Fraction data 0.502 (0.082) 0.670 (0.004) 0.850 (0.033) 0.908 (0.002)

FIGURE 3 | The attribute hierarchy relationship of the buoyancy.

introduce the IRP training method to estimate the parameters
of BN first, then continue to update the posterior values of
the parameters by taking the previously estimated parameters
as informative priors. The initial parameters estimated by IRP
training are better starting values for EM and GD algorithms and
can also solve the local optimality problems. The IRP data are
constructed theoretically in every CDA and reflect a fair amount
of test information. However, the IRP training method has no
empirical information and the IRP–EM and IRP–GD methods
can also solve these limitations and improve the classification
rate of the IRP training method if be provided enough empirical
samples.

This study demonstrated that, in the data generated by CDMs
condition, the analysis by G-DINA was a little higher than the

BN analysis based on the IRP–EM or IRP–GD method, which

was as expected because the pattern of the data conformed to
the assumption of G-DINA. However, in the data generated by
BN based on the empirical data condition, the BN analysis based
on the IRP-GD method outperformed the G-DINA analysis. But
we cannot conclude that the BN methods are superior than
the G-DINA model, just as we cannot claim that the G-DINA
model are better than the BN methods in the first condition of
the G-DINA simulated data. These two simulation conditions
jointly demonstrated that the BN and G-DINA models each has
their own advantages in the simulated data. From the above two
conditions, we can see that the BN-data-generating method is
more flexible. Different from the traditional CDMs, there are no
explicit assumptions in BN. The parameters of BN reflect the
patterns of the generated data and the parameters are determined
by the data used to estimate the BN model. When the G-DINA
data were used to estimate the parameters of the BN model, the
generated data based on this BN model are conforming to the G-
DINA assumption. Similarly, when the empirical data were used
to estimate the parameters of the BN model, the generated data

based on this BN model reflect the pattern of the empirical data,
and these data do not necessarily satisfy the G-DINA assumption.

In the empirical study, the consistency of classification
between BN and experts’ judgment are higher than that between
G-DINA and experts’ judgment. Although both the average
attribute classification rate and the pattern classification rate
in BN are higher than the G-DINA model in this case, we
are not intended to advocate that the BN model is more
beneficial than the G-DINA model. These results are merely
implying that the effectiveness of improved parameter-estimating
method in BN is validated. In fact, the G-DINA model is a
powerful framework that covers a wide variety of psychometric
models, and through the comparison with the G-DINA, it
demonstrates that if there are appropriate parameter-estimating
methods, BN is also another great modeling framework that is
compatible withmany different types of data patterns in cognitive
diagnostic assessment.

Shu et al. (2013) proposed to combine the NN trained by
IRP with the traditional CDM to improve the performance
of the traditional CDM. In their study, the IRP information
cannot directly be used in traditional CDM, and the NN cannot
incorporate the empirical information of samples. However, in
BN, the parameter estimation can be accumulated according
to the Bayesian theorem. First, the IRP and the corresponding
attribute profile data are used to train the BN as a supervised
learning method. Then the parameters obtained by the IRP
training are regarded as the prior of the next stage of parameter
estimation. When using EM or GD to continue the estimation,
only the practical item responses are available, and the values of
attributes are unknown and can be regarded as latent variable,
thus this estimation stage is an unsupervised learning method.
And the final parameters are the posterior probability according
to the Bayesian theorem. An independent and complete model
can accommodate the functions of both the NN and the
traditional CDM (Shu et al., 2013). In other words, the supervised
learning and unsupervised learning can be realized in the
same model. From this perspective, the proposed method is a
new progress.

BNs have been used extensively in the artificial intelligence
community as student models for intelligent tutoring systems.
The review article by Culbertson (2016) outlined many existing
research studies on BN in educational assessment and it
pointed that “BNs readily lend themselves to modular model
building in which fragments of BN may be developed separately
and combined freely based on a wide variety of types of
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TABLE 9 | The Q-matrix for buoyancy concept learning.

Item/attribute A1 A2 A3 A4 A5 A6 A7

1 1 0 0 0 0 0 0

2 0 1 0 0 0 0 0

3 0 0 1 0 0 0 0

4 0 0 0 1 0 0 0

5 0 0 1 0 0 0 1

6 0 0 1 0 0 0 1

7 1 1 0 0 1 0 0

8 1 1 0 0 1 0 0

9 0 0 1 1 0 0 0

10 0 0 1 1 0 1 0

11 1 1 1 0 1 0 1

12 0 0 1 1 0 1 1

13 1 1 1 1 0 1 0

14 1 1 1 1 1 1 1

TABLE 10 | The agreement of BN or G-DINA analysis with the experts’ labeling attribute patterns in randomly selected 50 samples.

A1 A2 A3 A4 A5 A6 A7 AACR PCR

G-DINA 0.96 0.96 0.92 0.94 0.88 0.76 0.88 0.90 0.50

BN 0.98 0.98 0.96 0.94 0.86 0.82 0.96 0.93 0.62

relationships.” This aspect of a BN renders it a great potential
for constructing the intelligent diagnostic assessment system
to realize personalized learning. And this goal of realizing
personalized learning is shared by CDA. But the BN can
accommodate more node variables (e.g., Levy and Mislevy,
2004; Shute et al., 2008), which is more attractive to the
educational assessment practice. In fact, in CDA, the MCMC
method was used extensively for estimating the parameters of
BNs (Wu, 2013; Almond et al., 2015; Levy and Mislevy, 2017).
However, the MCMC method has some limitations. The first
concern is the computational complexity and the efficiency,
especially in cognitive diagnosis that needs immediate feedback
of diagnostic information for instructions and learnings. Also,
this method depends on the starting values to obtain stable and
reliable estimates. The improved parameter-estimating method
proposed in this article provides another approach to realize
CDA based on BNs. And this method can be embedded
into the diagnostic assessment system to achieve immediate
feedback for personalized instruction. From the practical view,
the optimization of the EM or GD method can provide more
efficient computation compared to the MCMC method and
can promote the CDA to be used in classroom assessment in
which the instant feedback is needed. Moreover, due to the
feature of modular model building and freely combining, BN can
accommodate more attributes than traditional CDMs, which is
needed for a practical diagnostic assessment system.

Naturally, we are aware of certain limitations in this study.
The evaluation indicator of the BNs is relatively single and
only the classification rate is adopted as the criteria of the BN’s
performance in this article, similar to what Sinharay (2006)
described, “Model checking for BNs is not straightforward.

For even moderately large number of items, the possible
number of response patterns is huge, and the standard χ2 test
of goodness of fit does not apply directly.” Sinharay (2006)
applied the posterior predictive model checking (PPMC, Rubin,
1984) method to assess several aspects of fit of BNs applied
in educational assessment. The PPMC method is a popular
Bayesian model checking tool and combines well with the
MCMC algorithms (e.g., Gelman et al., 2003). From the model
comparison perspective, the most popular model fit indices
are the AIC (Akaike, 1973) and BIC (Schwarz, 1978) criteria,
which require knowing the number of free parameters to be
estimated in the model. It is not so straightforward in complex
BN model to count the number of parameters. Spiegelhalter
et al. (2002) introduce a measure called DIC, which includes
a Bayesian notion of dimensionality. But the DIC measure is
also based on the MCMC algorithms. Thus, developing the
new model fit indices of BN based on the IRP–EM or IRP–GD
parameter-estimating method is a desired investigation area for
future studies.

Additionally, Shu et al. (2013) combined the NN analysis
based on the IRP data with the MCMC method to estimate the
DINA model parameters in a small sample size. In traditional
CDMs, the item parameters can be estimated to reflect the test
quality. However, BNs have no straightforward item parameters
to evaluate test quality. In future studies, we plan to apply the
sensitivity analysis of BNs to determine the key attributes that
influence each item response performance and the key items that
determine each attribute diagnosis. Sensitivity analysis refers to
an uncertain analysis technique to quantify the contribution of an
observation node towards the uncertainty of the node of interest
in BN. The sensitivity analysis results might provide insights into
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the knowledge structure and cognitive process of the students
and assist in instruction design and personalized learning.
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