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The present study investigated estimate biases in cross-classified random effect

modeling (CCREM) and hierarchical linear modeling (HLM) when ignoring a crossed factor

in CCREM considering the impact of the feeder and the magnitude of coefficients. There

were six simulation factors: the magnitude of coefficient, the correlation between the

level 2 residuals, the number of groups, the average number of individuals sampled from

each group, the intra-unit correlation coefficient, and the number of feeders. The targeted

interests of the coefficients were four fixed effects and two random effects. The results

showed that ignoring a crossed factor in cross-classified data causes a parameter bias

for the random effects of level 2 predictors and a standard error bias for the fixed effects

of intercepts, level 1 predictors, and level 2 predictors. Bayesian information criteria

generally outperformed Akaike information criteria in detecting the correct model.

Keywords: cross-classified random effect modeling, multilevel data, feeder, magnitude of coefficients, crossed

factor, Monte-Carlo simulation study

INTRODUCTION

Hierarchical linear modeling (HLM) can be used when the levels in a multilevel data structure are
strictly nested. TheHLM technique is a fairly common analysis method in educational settings (e.g.,
students are nested within schools). In the case of purely hierarchical data structures, lower-level
entities are nested into only one higher-level entity (Raudenbush and Bryk, 2002). However,
behavioral scientists frequently encounter cross-classified data structures, i.e., there are multiple
sources of membership for lower-level entities (Meyers and Beretvas, 2006). For example, in the
field of clinical and medical treatment, patients could have multiple sources of membership, such
as doctors or nurses, while in the field of education, students could have multiple sources of
membership, such as high schools and hometowns. HLM, which is purely a nested multilevel
model, requires extending to reflect cross-classified multilevel data structures.

Cross-classified random effect modeling (CCREM) includes two or more multilevel data
structures due to lower-level entities’ multiple sources of memberships and has arisen from the
prevalence of cross-classified datasets (Hox, 1998; Ecob et al., 2004; Hough, 2006; Ye and Daniel,
2017). In large-scale panel surveys, cross-classifications are common (Chung et al., 2018, Luo and
Kwok, 2009). For example, in longitudinal surveys for children and adolescents within educational
research, students’ affiliations shift upon their entrance to middle or high school. When students’
achievement is affected by both their middle school and high school variables, there are two crossed
factors in the upper-level structure. If this data structure is not reflected in the analysis, the results
could be misleading.
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Researchers have pointed out the problem of the
misspecification of a crossed factor in cross-classified data
(Meyers and Beretvas, 2006; Luo and Kwok, 2009; Ye and
Daniel, 2017). Meyers and Beretvas (2006) compared HLM
and CCREM and found that the standard error (SE) is biased
in HLM when the parameters are generated under CCREM.
The estimate of the random component of the remaining factor
was overestimated when a crossed factor was ignored. They
also found that Bayesian information criteria (BIC) identified
CCREM as the correct model under all conditions. Ye and
Daniel (2017) added a random slope to Meyers and Beretvas’
(2006) study and found that the SE of the misspecified level 1
predictor’s regression weight was underestimated in HLM when
the predictor originated from the level 2 variable. Luo and Kwok
(2009) examined a three-level CCREM with crossed factors at
the top and intermediate levels and revealed that the SE of fixed
effects was underestimated at the upper level and overestimated
at the lower level when a crossed factor was ignored at the
upper level. For predictors that are not related to the omitted
crossed factor, the regression weight under HLM did not show
significant biases.

The simulation studies mentioned above have two limitations
for realistic application. First, the effect sizes of the coefficients
were set to .50 in the previous studies. Effect size, here, denotes
the magnitude of the coefficient, and fixing a coefficient at .50
means the coefficient has a moderate effect size. However, small
effect sizes commonly occur in the field of education (Spybrook,
2008). As effect size affects statistical power along with sample
size (Meuleman and Billiet, 2009), effect size and sample size
should be considered together. Thus, effect size, which is the
magnitude of a coefficient, needs to be considered as a condition
to make research more useful in the real world.

Second, researchers have investigated the influence of
the number of feeders on bias, but the results have been
controversial. The feeder is information about the data structure
of multiple memberships in CCREM. The more feeders, the
more membership affiliations overlap with each other, making
the data structure more cross-classified. Meyers and Beretvas
(2006) manipulated the number of feeders from two to three and
concluded that the number of feeders did not affect the estimate
bias. However, other studies have produced contradictory results.
Luo and Kwok (2009) manipulated the number of feeders and
noted that cross-classified data structures influenced bias. Lee
and Hong (2019) also manipulated the number of feeders from
two to six and concluded that the coefficient of the CCREM
interaction term is affected by the number of feeder conditions.

Several previous studies have examined the effects of the
simulation factors we considered in this study. For example,
Lai (2019) considered the number of clusters at each cross-
classified factor, the degrees of imbalance, and cell sizes, and
Ye and Daniel (2017) examined the slope of level 1 predictors,
the relationships between level-2 residuals, the sample sizes
of each level, and the magnitudes of intra-class correlation.
However, given that all the relevant simulation conditions
were not evaluated simultaneously in an integrated manner, it
was difficult to understand the interaction effects among the
simulation factors. It could be possible that there were significant

main effects of each simulation condition, but the significance
of effect could be changed when conditions are joined at the
same time due to the interaction. We argue that our study
makes unique contributions at this point by simultaneously
considering the main and interaction effects of all the relevant
simulation conditions.

The purpose of the current study is to compare the statistical
performance of CCREM and HLM when the correct model
is generated by CCREM considering the magnitude of the
coefficients and the number of feeders. Estimate bias and SE bias
are investigated to ascertain the impact of ignoring a crossed
factor in a cross-classified multilevel analysis, and the accuracy
of information criteria indices is also examined. As there may
be real-world situations where it is better to use HLM instead
of CCREM due to survey design or data collection status (e.g.,
neighborhood ID is missing after collecting data), the degree of
estimate bias requires investigation under various conditions. It
is also unknown what pattern fit indices performance takes under
harsh conditions when comparing HLM and CCREM. Themajor
goal of this study is to establish practical guidelines for analyzing
cross-classified multilevel data structures by investigating what
conditions cause estimation problems from a comprehensive
perspective. The specific research questions (RQ) are as follows:

RQ 1. When a crossed factor is ignored, to what degree
does the accuracy of the estimates change depending on the
simulation conditions?

RQ 2. Are there interaction effects among simulation
conditions on estimation bias?

RQ 3. How accurately do relative fit indices detect the correct
model between HLM and CCREM?

METHOD

Based on the research questions above, a Monte Carlo simulation
was conducted. The procedures of the simulation study involved
generating population data, analyzing research models under
each simulation condition, and evaluating the results based on
the evaluation criteria. The datasets were generated by SAS 9.4
(SAS Inc., 2014). To analyze CCREM and HLM, the PROC
MIXED procedure in SAS was utilized, while to allow the
use of CCREM, a full maximum-likelihood (FML) estimation
was employed.

Data Generation and Analysis
To generate a population model, a two-way CCREMwas set with
two crossed factors. The two factors were labeled as row and
column factors in this study. The population model is shown in
Equations 1 and 2:

Level 1 :Yijk = π0jk + π1jkXijk + eijk (1)

Level 2 :π0jk = γ000 + γ010Wk + γ020Zj + b0j0 + c00k (2)

π1jk = γ100.

The subscripts i, j, and k represent the individual, group j, and
group k, respectively. For the sake of convenience, group j refers
to a specific entity of column factor, group k refers to a specific
entity of row factor, and i represents individuals. There is one
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outcome variable (Yijk) affected by each of the three covariates: a
predictor for the individual level (Xijk), a predictor for the column
factor level (Zj), and a predictor for the row factor level (Wk).
π0jk and π1jk in the level 2 model are from the level 1 model; π0jk

is a random coefficient, and π1jk is a fixed coefficient. γ100, γ010,
and γ020 are the coefficients of the three predictors. The intercept
(γ000) was fixed to 100. b0j0 and c00k were the error term from the
two crossed factors. The variance of eijk was set at 1.

After the population model was generated, the impact of
ignoring one of the crossed factors by comparing an appropriate
modeling (CCREM) vs. an inappropriate modeling (HLM) was
investigated. The CCREM analysis yielded the outcome variable
(Yijk), one individual level predictor (Xijk), and two cross-
classified level predictors (Wk and Zj). This analysis model
corresponds to the population model, as shown in Equations 1
and 2. The effect of individual level predictors was set as a fixed
effect across the cross-classified factors. Four fixed effects and
random effects were estimated in the analysis of CCREM.

For the HLM analysis, one of the cross-classified factors from
CCREM was ignored, and only the row factor was considered as
a level 2 data structure. The analysis model is shown in Equations
3 and 4:

Level 1 :Yij = β0j + β1jXij + β2jZij + rij (3)

Level 2 :β0j = γ00 + γ01Wj + uoj (4)

β1j = γ10

β2j = γ20.

The subscripts i and j represent the individual and the cluster.
There is one outcome variable (Yij), one cluster level predictor
(Wj), and two individual-level predictors (Xij and Zij) with
normal distribution following a mean of 50 and a standard
deviation of 10. Assuming i and j represent a specific individual
and a specific entity of the row factor,Wj would be the remaining
predictor of the row factor, which was Wk in the CCREM
in Equation 2. In addition, Zij is the ignored column factor
predictor, which was Zj in the CCREM in Equation 2. β0j, β1j,
and β2j in the level 2 model are from the level 1 model. β0j is a
random coefficient, and β1j and β2j are fixed coefficients. γ00 is an
intercept, and γ01 is a coefficient of a cluster-level predictor, while
γ10 and γ20 are the coefficients of individual-level predictors that
have no random parts varying across the level 2 clusters. Finally,
rij and uoj are error terms at the individual and cluster levels.
Four fixed effects (γ00, γ01, γ10 and γ20) and two random effects
were estimated.

Simulation Conditions
As shown in Table 1, six conditions were manipulated: the
magnitude of coefficient (0.20, 0.50, and 0.80), the number of
feeders (2, 4, and 6), the correlation between the level 2 residuals,
which are b0j0 and c00k in Equation 2 (0 and 0.40), the number
of groups of each cross-classified factor (30 and 50), the average
number of individuals sampled from the column factor (20 and
40), and the intra-unit correlation coefficient (0.05 and 0.15).
A total of 144 (3 × 3 × 2 × 2 × 2 × 2 = 144) conditions
were involved in the current study, with 500 replications for each

TABLE 1 | Simulation conditions.

Conditions Details

Magnitude of coefficients 0.2 (small), 0.5 (medium), 0.8 (large)

Number of feeders 2, 4, 6

Correlation between the level 2

residuals

0 (no relations), 0.4 (correlated)

Number of groups 30 (small), 50 (large)

Average group size of individuals 20 (small), 40 (large)

Intra-unit class correlation 0.05 (small), 0.15 (moderate)

FIGURE 1 | Example of the two-feeder structure when the number of

cross-classified factors is 30 and the number of samples per factor is 40.

condition. All of the values for each condition were based on
previous studies.

The Magnitude of Coefficient
In the current study, the detailed conditions of the magnitude
of coefficient were set as 0.20, 0.50, and 0.80, denoting small,
moderate, and large effect sizes, respectively (Cohen, 1988). In
previous studies, a moderate effect size was used for all the
predictors (Meyers and Beretvas, 2006; Luo and Kwok, 2009;
Ye and Daniel, 2017). However, in educational research, a small
effect size is common (Spybrook, 2008). To include realistic
conditions, small to large effect sizes have been considered in the
current study as the magnitude of coefficient.

The Number of Feeders
The structures of cross-classification affect the results (Luo and
Kwok, 2009). Generally, a structure of feeders implies a cross-
classified data structure. Figure 1 shows a two-feeder structure
where the row and column factors indicate feeders and receivers
(e.g., neighborhood and school), respectively. Here, each school
receives students from two randomly selected neighborhoods, the
feeder neighborhoods. For example, for the first column (school
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1), there are two feeders, rows 1 and 4 (neighborhoods 1 and
4). The current study sets the number of feeders at 2, 4, and 6,
while most previous studies have set the number of feeders as 2
or 3 (Meyers and Beretvas, 2006; Shi et al., 2010; Ye and Daniel,
2017). Wallace (2015) varied the number of feeders to 2 and 4,
and Lee and Hong (2019) varied them from 2 to 6. The larger the
number of feeders, the more individuals belonging to a jth cluster
are randomly distributed to several kth clusters.

The Correlation Between Level 2 Residuals
Generally, there are relationships between the residuals of level
2 crossed factors (Meyers and Beretvas, 2006; Shi et al., 2010),
shown in Equation 2 as b0j0 and c00k. For example, students from
an elementary school in a high-income area are likely to go to
a secondary school in a high-income area, demonstrating that
some patterns may be related to a combination of cross-classified
factors. For the current study, two conditions of correlation
coefficient were used. One is no correlation between the residuals
of two types of schools, and the other is a 0.40 correlation between
the residuals. The number 0.40 was chosen based on previous
research (Meyers and Beretvas, 2006).

The Number of Groups
Based on previous studies, the number of groups of each cross-
classified factor was set at 30 or 50. Some researchers have used 30
and 50 as the number of groups of cross-classified factors (Meyers
and Beretvas, 2006; Ye and Daniel, 2017), but in Luo and Kwok
(2009), the number of two cross-classified factors was 20 and 50.
Although a minimum sample of 50 is recommended for level 2
entities (Maas and Hox, 2002), in reality, the number of schools,
which is the number of groups in level 2, rarely surpasses 30
(Meuleman and Billiet, 2009).

The Average Group Size of Individuals
The average number of individuals sampled from the column
factor was set at 20 or 40, which means that the group sizes were
randomly generated with a mean of 20 or 40. Researchers have
insisted that at least 20 (Hox, 1998) or 30 individuals (Kreft and
De Leeuw, 1998) are required for multilevel analysis. Forty was
set as the large number of individuals because it is rare for there
to be more than 40 students in one class in educational contexts.
The number of individuals in each of the groups was randomly
generated so that the individuals were drawn from a normal
distribution that had amean of 20 or 40 with a standard deviation
of 2. For example, if the number of students in a school was
set at 40, the number of students in each school was distributed
around 40.

The Intra-unit Correlation Coefficient (IUCC)
The IUCC is a ratio of the upper-level variance from the two
membership sources out of the total variance when there are two
or more membership factors. Meyers and Beretvas (2006) stated
that the IUCC values range from 0.009 to 24%, while Wallace
(2015) set the IUCC conditions at 7 and 13%. In the current
study, conditions were set at 5% (small) and 15% (moderate). The

IUCC calculation formula is shown in Equation 5:

ρjk =
τ0j0 + τ00k

τ0j0 + τ00k + σ 2
. (5)

The formula ρjk denotes the IUCC when the subscripts j and k
represent two cross-classified factors, while τ0j0 is the variance
of the random effect associated with the factor j, and τ00k is the
variance of the random effect associated with the factor k. The
variance originating from level 1 individuals (σ 2) was fixed at
1.0, and the variances of the cross-classified factors (τ0j0 and τ00k)
were set to be the same value. Referring to Beretvas and Murphy
(2013), the variances of the cross-classified factors were set at
0.0556 for the small IUCC and at 0.2143 for the moderate IUCC.

Evaluation Criteria
There are two types of relative bias to be investigated: parameter
estimates bias and SE bias. The parameter bias is calculated as
shown in Equation 6, and the SE bias is calculated as shown in
Equation 7:

B(θ̂ r) =
θ̂ r − θ

θ
(6)

B
(

ŝ
θ̂r

)

=
ŝ
θ̂r
− s∗

θ̂r

s∗
θ̂r

. (7)

θ is the population value set for each condition, θ̂r is the rth

estimate in the 500 replications, and θ̂ r is the mean of the
estimates across replications. Where R (1, 2, . . . , r) represents
the number of replications, the parameter bias is the portion
of the difference between the mean of the estimates across

replication (θ̂ r) and the population value of estimate (θ) out
of the population value of the estimate (θ). Where s∗

θ̂r
is the

empirical value standard error that is used as the population value

and ŝ
θ̂r

is the mean of the standard error across replications,
SE bias is the portion of the difference between the mean of

the SE across replication (ŝ
θ̂r
) and the population value of the

SE (s∗
θ̂r
) out of the population value of SE (s∗

θ̂r
). The acceptable

amount of parameter bias is less than 0.05, i.e.,
∣

∣

∣
B

(

θ̂r

)∣

∣

∣
< 0.05,

and the acceptable amount of SE bias is less than 0.10, i.e.,
∣

∣

∣
B

(

ŝ
θ̂r

)
∣

∣

∣
< 0.10 (Hoogland and Boomsma, 1998).

An analysis of variance (ANOVA) was conducted focusing on
when either the parameter bias or the SE bias failed to meet the
evaluation criteria. The bias criteria were used as a dependent
variable, and the six conditions were used as factors for ANOVA.
For the effect size, partial eta-squared (η2p) were computed. The
guideline to interpret the effect size stipulated the values of
0.010, 0.059, and 0.138, denoting small, medium, and large effect
sizes, respectively.

For the information criteria, the Akaike information criterion
(AIC) (Akaike, 1973) and the Bayesian information criterion
(BIC) (Schwarz, 1978) were used. These criteria compare
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competing models when the compared models are not nested
(Gurka, 2006; Whittaker and Furlow, 2009; Beretvas and
Murphy, 2013). The equations for AIC and BIC are in Equations
8 and 9 below:

AIC = −2LL+ 2q. (8)

BIC = −2LL+ In (N) q. (9)

While −2LL (−2 log-likelihood) denotes the deviance statistic, q
means the number of parameters estimated, and N denotes the
number of level 1 samples. The smaller values indicate a better
fit. For the current study, the rate of detecting the correct model
is presented for CCREM with AIC and BIC.

RESULTS

CCREM and HLM were analyzed for each condition, and the
results were represented as follows. First, the biases of the fixed
effects were reported. In 144 conditions, the parameter biases
and the SE biases of fixed effect estimates of the two models
were compared. Second, the biases of the random effects were
reported. Similarly, the parameter bias and the SE bias of the
two models were compared. For the bias criteria, an ANOVA
was conducted to detect significant influences when either the
parameter bias or the SE bias was over the acceptable criteria.
Last, the percentages of the information criteria for choosing the
correct model (CCREM) were reported.

Parameter Bias and SE Bias for Fixed
Effects
All of the parameter biases for the fixed effects results were near
zero, which means there was no substantial parameter bias of
the estimates in the incorrect model (HLM) when the criterion
was less than absolute 0.05. Meanwhile, some of the SE biases for
the fixed effects did not meet the acceptable SE bias criterion of
less than absolute 0.10 (Hoogland and Boomsma, 1998). Notably,
the SE of the intercept and the predictor of both cross-classified
factors were underestimated.

The Intercept
The parameter biases of the intercepts for both models (γ000
for CCREM and γ00 for HLM) were below the absolute 0.10,
at almost zero. The SE bias for CCREM ranged from −0.160
to 0.030 (M = −0.04, SD = −0.04) and for HLM ranged from
−0.35 to −0.10 (M = −0.22, SD = 0.06), reflecting that most of
the estimates exceeded the acceptable level, as shown in Figure 2.
Since some SE bias values fell outside the acceptable range, an
ANOVA was conducted for SE biases to find the source of the
differences. For CCREM, the main effect of the number of feeders
(η2p = 0.026), the IUCC (η2p = 0.014), and the number of groups

(η2p = 0.042) showed a small effect size. The interaction effect

of the number of groups × the IUCC (η2p = 0.017), the number

of groups × the number of feeders (η2p = 0.026), and the IUCC

× the number of feeders (η2p = 0.025) showed a medium effect
size on the SE bias. Other effect sizes were smaller than 0.005.
For HLM, a two-way interaction effect of the number of groups

× the IUCC (η2p = 0.011), the main effects of the number of

groups (η2p = 0.026), the average group size (η2p = 0.030), the

IUCC (η2p = 0.114), and the number of feeders (η2p = 0.122) were
also found to have effects on the SE bias. The main effect of the
feeders and IUCC had medium to large effect sizes, and the main
effect of the number of groups and average group size had small
to medium effect sizes.

The Predictor for the Individual Level (X)
The parameter biases of predictors for the individual level (γ100
for CCREM and γ10 for HLM) were acceptable in all conditions.
The SE bias for CCREM ranged from −0.06 to 0.10 (M =

0.001, SD = 0.03) and for HLM ranged from −0.05 to 0.10
(M= 0.001, SD = 0.03). No bias surpassed the criteria for both
analysis models.

The Predictor for the Row Factor (Z)
The parameter bias of Z, the predictor for the row (γ010 for
CCREM and γ20 for HLM), was near zero, indicating it was
acceptable for all conditions. The SE bias for CCREM ranged
from −0.14 to 0.11 (M = −0.02, SD = 0.05), and a few values
did not meet the criteria. The SE bias for HLM ranged from
−0.81 to −0.26 (M = −0.58, SD = 0.15), and most of these
values did not meet the criteria of |0.10|, as shown in Figure 3. An
ANOVA was conducted for the SE biases of CCREM and HLM.
For CCREM, there was a two-way interaction effect for the IUCC
× the number of feeders (η2p = 0.042) and the number of groups

× the number of feeders (η2p =.011), and the main effect of the

IUCC (η2p = 0.013), which showed a small to medium effect size.
For HLM, a large effect size was found in the main effects of the
number of feeders (η2p = 0.668), the IUCC (η2p = 0.768), and the
average group size of individuals sampled from the row factor
(η2p = 0.501) on the SE bias. There was a two-way interaction

effect for the average group size × the IUCC (η2p = 0.013) and
a three-way interaction effect for the average group size × the
IUCC × the number of feeders (η2p = 0.015), which showed a
small effect size. In HLM, only the cross-classified factor of the
rows was modeled for analysis. The cross-classification of the
column factor structure was ignored, and a variable of the column
factor in CCREMwas considered a variable of the individual level
in HLM. This misspecification resulted in substantial biases in
the SE of the estimation on the coefficient of the predictor for the
column factor in HLM.

The Predictor for the Second Group Factor (W)
The parameter biases of W, the predictor for The Predictor for
the Second Group Factor (W)the second group factor, ranged
from −0.15 to 0.16 (M = 0, SD = 0.02) for CCREM and from
−0.19 to −0.17 (M = 0, SD = 0.02) for HLM. The SE bias
for CCREM ranged from −0.57 to 0.88 (M = −0.004, SD =

0.15) and for HLM ranged from −0.52 to 0.86 (M = −0.004,
SD = 0.15). An ANOVA was conducted on the SE bias for both
CCREM and HLM. For CCREM, there was a main effect for
IUCC (η2p = 0.030), with a small to medium effect size. The other

effects had an η2p < 0.009. For HLM, the main effect for the IUCC
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FIGURE 2 | Standard error bias of the intercept. Notes. The shaded area indicates the acceptable range. FD, number of feeders; IUCC, intra-unit correlation

coefficient; GS, average group size of individuals sampled from the row factor, NG, number of groups of each cross-classified factor; MC, magnitude of coefficients;

Corr., correlation between the level 2 residuals.

(η2p = 0.018) had a small effect size. The rest of the values of effect

sizes (η2p) were smaller than .009 in all conditions.

Parameter Bias and SE Bias for Random
Effects When the Correlation Condition Is
Zero
For the condition in which the correlation between the level 2
residuals is 0.40, the population value is not known (Meyers and
Beretvas, 2006). Thus, the bias results are reported only when the
condition of the correlation was zero.

Level 1 Model
As shown in Figure 4, the parameter biases range from −0.01
to 0 (M = 0, SD = 0.001) for CCREM and from 0.02 to 0.17

(M = 0.09, SD = 0.06) for HLM. An ANOVA for parameter bias
in HLM was conducted to find the source of the differences. The
ANOVA results showed a large effect size for the IUCC (η2p =

0.567), a medium effect size for the number of feeders (η2p =

0.136), and a small effect size for the two-way interaction of the
IUCC × number of feeders (η2p = 0.055). However, the effect
sizes of the interactions were small in terms of partial eta squared
value. The SE biases range from −0.06 to 0.09 (M = −0.003,
SD = 0.03) for CCREM and from −0.54 to 0.02 (M = −0.19,
SD = 0.17) for HLM. All values of the SE bias were within the
acceptable range for CCREM; however, approximately half of the
values exceeded the acceptable criterion for HLM, as shown in
Figure 5. The results of the ANOVA for the SE bias for HLM
showed the main effects, which were the number of feeders (η2p =
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FIGURE 3 | Standard error bias of fixed effect estimates for predictor for the row factor. Notes. The shaded area indicates the acceptable range. FD, number of

feeders; IUCC, intra-unit correlation coefficient; GS, average group size of individuals sampled from the row factor; NG, number of groups of each cross-classified

factor; MC, magnitude of coefficients; Corr., correlation between the level 2 residuals.

0.839), the IUCC (η2p = 0.941), and the average group size from

the row factor (η2p = 0.611), all having a large effect size. There
were several interaction effects. Focusing on the magnitude of the
coefficient, which was one of the main interests of this study, the
partial eta squared value of themain effect of themagnitude of the
coefficient was below the small effect size. The interaction effects,
including the magnitude of coefficient, however, showed small to
medium effect sizes. For example, the magnitude of coefficient×
the number of feeders (η2p = 0.017) showed a two-way interaction

effect with small effect size, and themagnitude of coefficient× the

average group size× the IUCC (η2p = 0.029) showed a three-way
interaction effect with small to medium effect sizes.

Only three interaction effects with partial eta squared values
were found to be over medium effect size. These were 3 two-way
interaction effects: the average group size × the IUCC (η2p =

0.254), the average group size × the number of feeders (η2p =

0.170), and the IUCC × the number of feeders (η2p = 0.622).
Considering the average group size × IUCC interaction effect,
when the IUCC was small, the SE bias was not problematic,
regardless of the average group size, but when the IUCC was
moderate, a more severe underestimation happened for the larger
average group size. Considering the average group size × the
number of feeders interaction effect, when the average group
size was small, the SE bias increased consistently, but when the
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FIGURE 4 | Parameter bias of the level 1 residual with 0 correlation. Notes.

The shaded area indicates the acceptable range. FD, number of feeders;

IUCC, intra-unit correlation coefficient; GS, average group size of individuals

sampled from the row factor; NG, number of groups of each cross-classified

factor; MC, magnitude of coefficients; Corr., correlation between the level

2 residuals.

average group size was large, a more severe underestimation
happened, especially if the number of feeders was four or
more. Finally, considering the IUCC × the number of feeders
interaction effect, when the IUCC was small, the SE bias was
not problematic, regardless of the number of feeders, but when
the IUCC was moderate for a larger number of feeders, the bias
became more severe.

Level 2 Model
The parameter bias for estimation ranged from – 0.02 to 0.03
(M = 0, SD = 0.01) for CCREM, which means all values
met the criterion. However, a serious problem appeared in the

FIGURE 5 | Standard error bias of the level 1 residual with 0 correlation.

Notes. The shaded area indicates the acceptable range. FD, number of

feeders; IUCC, intra-unit correlation coefficient; GS, average group size of

individuals sampled from the row factor; NG, number of groups of each

cross-classified factor; MC, magnitude of coefficients; Corr., correlation

between the level 2 residuals.

parameter bias for HLM, with the values ranging from 14 to
62 (M = 0.34, SD = 0.16). As shown in Figure 6, the biases
decreased as the number of feeders increased in HLM. The
ANOVA results showed that the main effect of the number
of feeders on the accuracy parameter estimates had a large
effect size (η2p = 0.139). Other effects’ η2p were less than 0.005.
The SE bias for CCREM appeared to range from −0.09 to
0.10 (M = 0.00, SD = 0.04), implying that a minority of
the estimates exceeded the acceptable range. For HLM, the
values ranged from −0.08 to 0.07 (M = −0.01, SD = 0.03),
indicating there was no problem in the SE bias in the level
2 model.
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FIGURE 6 | Parameter bias of the level 2 residual with 0 correlation. Notes.

The shaded area indicates the acceptable range. FD, number of feeders;

IUCC, intra-unit correlation coefficient; GS, average group size of individuals

sampled from the row factor; NG, number of groups of each cross-classified

factor; MC, magnitude of coefficients; Corr., correlation between the level

2 residuals.

Parameter Bias and SE Bias for Random
Effects When the Correlation Condition Is
0.40
The analysis revealed estimation results only and gave no results
about bias when the correlation condition was 0.40 because the
population values were unknown when the correlation between
the level 2 residuals was 0.40.

Level 1 Model
The estimates of CCREM ranged from 0.99 to 1.00 (M = 1.00,
SD = 0.002). However, the estimates in HLM were frequently

overestimated, and the parameter estimates ranged from 1.02 to
1.17 (M = 1.09, SD = 0.06), in which larger values appeared in
the IUCC = 0.15 condition. The standard deviation of CCREM
ranged from 0.02 to 0.06 (M= 0.03, SD= 0.01) and that of HLM
showed almost the same range and descriptive statistics. The
standard deviation decreased as the number of feeders increased.

Level 2 Model
Table 2 shows the results of the estimates when the correlation
was 0.40. The estimates in CCREM ranged from 0.06 to 0.25
(M = 0.15, SD = 0.09), and those in HLM ranged from 0.07 to
0.46 (M = 0.22, SD = 0.14). The standard deviations in CCREM
ranged from 0.01 to 0.10 (M = 0.04, SD = 0.02) and in HLM
from 0.02 to 0.14 (M = 0.06, SD = 0.04). The difference in
the estimates between CCREM and HLM resulted from ignoring
a cross-classified factor; HLM ignored the row factor and only
modeled the second group factor. This inappropriate modeling
resulted in overestimation in HLM.

Numbers in parentheses are standard deviations.

Information Criteria
AIC and BIC were used to investigate whether these information
criteria indicate that the CCREM is the correct model. The
proportions of the 500 replications for 144 conditions were
summarized. The proportions of identification of the correct
model were examined.

For all conditions, BIC perfectly identified CCREM as the
better model. This result is consistent with previous studies
which showed that BIC outperformed AIC in model selection
(Bickel et al., 1992; Zhang, 1993; Raftery and Zheng, 2003;
Acquah, 2010) In the case of AIC, the accuracy of identification
differed according to the condition. The percentage of correct
identification for six feeders was 100%, while the average of the
percentage decreased as the number of feeders decreased until the
percentage for two feeders fell to 97%. The average percentage for
correct identification was 98.51% when the IUCC was 0.05 and
99.98% when the IUCC was 0.15.

The ANOVA results revealed distinct effects on AIC
performance. The main effect of the number of feeders (η2p =

0.022) had a small to medium effect size, while the interaction
effect of the average group size × the number of feeders (η2p =

0.014) and that of the average group size× the IUCC× the
number of feeders (η2p = 0.013) showed a small effect size.

DISCUSSION

The present simulation study compared the performance of
estimates between CCREM and HLM. AMonte Carlo simulation
study was conducted in which the data were generated with
two cross-classified factors. Six conditions were manipulated: the
magnitude of coefficients, the number of feeders, the correlation
between the level 2 residuals, the number of groups of each
cross-classified factor, the average group size of the individuals
sampled from the row factor, and the IUCC. Overall, four
fixed effects and two random effects of both analysis models
were summarized for each condition and compared with the
counterpart model’s estimates. An ANOVA was conducted
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TABLE 2 | Means and standard deviations of Level 2 residuals when the correlation condition equals 0.40.

CCREM HLM

Feeder Feeder

2 4 6 2 4 6

MC NG GS IUCC M(SD) M(SD) M(SD) M(SD) M(SD) M(SD)

0.2 30 20 0.05 0.07 (0.04) 0.06 (0.02) 0.06 (0.02) 0.11 (0.04) 0.08 (0.03) 0.07 (0.02)

0.15 0.25 (0.10) 0.23 (0.07) 0.22 (0.06) 0.45 (0.14) 0.33 (0.10) 0.29 (0.08)

40 0.05 0.06 (0.03) 0.06 (0.02) 0.06 (0.02) 0.11 (0.04) 0.08 (0.03) 0.07 (0.02)

0.15 0.24 (0.08) 0.23 (0.07) 0.22 (0.06) 0.45 (0.13) 0.34 (0.09) 0.30 (0.08)

50 20 0.05 0.06 (0.03) 0.06 (0.02) 0.06 (0.02) 0.11 (0.03) 0.08 (0.02) 0.07 (0.02)

0.15 0.25 (0.08) 0.22 (0.05) 0.22 (0.05) 0.44 (0.10) 0.33(0.07) 0.29 (0.06)

40 0.05 0.06 (0.02) 0.06 (0.02) 0.06 (0.01) 0.11 (0.03) 0.08 (0.02) 0.07 (0.02)

0.15 0.24 (0.06) 0.22 (0.05) 0.22 (0.05) 0.45 (0.10) 0.33 (0.07) 0.29 (0.06)

0.5 30 20 0.05 0.07 (0.04) 0.06 (0.02) 0.06 (0.02) 0.11 (0.04) 0.08 (0.03) 0.07 (0.02)

0.15 0.25 (0.10) 0.23 (0.07) 0.22 (0.06) 0.45 (0.14) 0.33(0.10) 0.29 (0.08)

40 0.05 0.06 (0.03) 0.06 (0.02) 0.06 (0.02) 0.11 (0.04) 0.08 (0.03) 0.07 (0.02)

0.15 0.25 (0.09) 0.22 (0.07) 0.22 (0.06) 0.46 (0.13) 0.34 (0.09) 0.29 (0.08)

50 20 0.05 0.07 (0.03) 0.06 (0.02) 0.06 (0.02) 0.11 (0.03) 0.08 (0.02) 0.07 (0.02)

0.15 0.25 (0.08) 0.22 (0.05) 0.22 (0.05) 0.44 (0.10) 0.33 (0.07) 0.29 (0.06)

40 0.05 0.06 (0.02) 0.06 (0.02) 0.06(0.01) 0.11 (0.03) 0.08 (0.02) 0.07(0.02)

0.15 0.24 (0.06) 0.22 (0.05) 0.22 (0.05) 0.46 (0.10) 0.33 (0.07) 0.29 (0.06)

0.8 30 20 0.05 0.07 (0.04) 0.06 (0.02) 0.06 (0.02) 0.11 (0.04) 0.08 (0.03) 0.07(0.02)

0.15 0.25 (0.10) 0.23 (0.07) 0.22 (0.06) 0.44 (0.14) 0.33 (0.10) 0.29 (0.08)

40 0.05 0.06(0.03) 0.06 (0.02) 0.06 (0.02) 0.11 (0.04) 0.08 (0.03) 0.07 (0.02)

0.15 0.24 (0.09) 0.22 (0.06) 0.22 (0.06) 0.46 (0.13) 0.33 (0.09) 0.29 (0.08)

50 20 0.05 0.06 (0.03) 0.06(0.02) 0.06 (0.02) 0.10 (0.03) 0.08 (0.02) 0.07 (0.02)

0.15 0.25 (0.07) 0.22 (0.05) 0.22 (0.05) 0.44 (0.10) 0.33(0.07) 0.29 (0.06)

40 0.05 0.07 (0.02) 0.06 (0.02) 0.06 (0.01) 0.12 (0.03) 0.09 (0.02) 0.07 (0.02)

0.15 0.24 (0.06) 0.22 (0.05) 0.22(0.05) 0.45 (0.10) 0.33 (0.07) 0.29 (0.06)

Notes. Numbers in parentheses are standard deviations. M, means; SD, standard deviations; MC, magnitude of coefficients; COR, correlation between the level 2 residuals; NG, number

of groups of each cross-classified factor; GS, average group size of individuals sampled from the first group factor; IUCC, intra-unit correlation coefficient, Feeder: number of feeders.

when either the parameter bias or the SE bias fell outside
the criteria. In addition, the proportion of identification of
the correct model, AIC and BIC, were presented. The results
of this study are summarized below and their implications
are discussed.

First, for the fixed effects, there were no problems in the
parameter or SE biases in CCREM. In HLM, however, the SE
bias exceeded the acceptable range in the case of the intercept
and the predictor of the first cross-classified factor. As in
Meyers and Beretvas (2006), the results showed that the SE was
underestimated when one of the crossed factors was ignored in
an inappropriate model. According to Raudenbush and Bryk
(2002), the misestimated SE can occur when a researcher fails
to consider the homogeneity among individuals in multilevel
data, and the underestimation of the SE can cause the inflation
of a Type 1 error when the cross-classified data structure is
not considered. Generally, the SE of fixed effects estimates at
the upper level is underestimated. Consistent with Lai (2019),
Luo and Kwok (2009, 2012), and Meyers and Beretvas (2006),
the SE bias increased with an increased number of feeders or
increased IUCC.

The average group size of individuals sampled from the first
cross-classified factor was also found to have an effect on the
SE of the predictor of the first cross-classified factor. The larger
the group size became, the more severe the SE biases became. In
terms of the intercept and estimates of the predictor of the first
cross-classified factor, the SE biases increased as the group size
became larger because the within-group homogeneity is ignored
due to misspecification (Meyers and Beretvas, 2006). Known as
the design effect, this outcome means that the estimation bias
increases as the group size increases (Kalton, 2020). The IUCC
and the number of feeders were found to have effects on the SE
bias. The degree of underestimation of the SE became larger when
the IUCC and the number of feeders increased. In particular, the
number of feeders was found to have an effect on the SE bias. The
magnitude of coefficients, however, had no meaningful effect on
the SE biases for fixed effects.

Second, for the random effects, the estimates of the level 1
and level 2 models were affected by the model misspecification.
The parameter bias and the SE bias from CCREM appeared
to be in the acceptable range for both the lower and upper
levels. On the other hand, in HLM, the parameter estimates
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of the level 1 and level 2 models were overestimated, and
the standard errors of the level 1 model were underestimated.
SE biases corresponding to the level 1 residual model were
underestimated when the correlation between the level 2
residuals was zero, as in Luo and Kwok (2012). For the
estimation of the level 1 component, the results show that
when a crossed factor is ignored, the estimation of the lower
level is greatly affected. The severity mainly depends on the
data structure, i.e., the IUCC and the number of feeders.
In the level 1 model, there were medium-sized interaction
effects only on SE bias when ignoring cross-classified structures.
By considering various simulation factors simultaneously that
previous studies evaluated separately, this study investigated the
interaction effects as well as the main effects of the factors.
If each factor is tested separately, simulation results based
solely on main effects can be misleading. In the level 2 model
of HLM, the number of feeders had a large effect on the
parameter bias, and the biases became larger as the number of
feeders decreased.

Last, for the comparison of the performance of fit indices, BIC
outperformed AIC. While BIC identified the correct model in
all simulation conditions, the percentage of correct identification
differed by condition in AIC, where more feeders correlated
positively with better accuracy. This result was consistent with
previous studies which found that BIC outperforms AIC (Bickel
et al., 1992; Zhang, 1993; Raftery and Zheng, 2003; Acquah,
2010).

This study offers the following implications. First, it is
noticeable that the impact of misspecification was examined by
focusing on the magnitude of coefficients and the number of
feeders. Only some interaction effects, including the magnitude
of coefficients, showed a small effect size concerning the SE bias
of the level 1 model. The number of feeders, however, had a
substantial effect on all of the parameter and SE biases. This result
supports findings from previous research that the number of
feeders could be the cause of estimation bias. Ignoring a crossed
factor in cross-classified data structure resulted in problems for
estimation, and it is recommended that researchers consider
the feeder structure when the data have a cross-classified data
structure, especially in cases where the research interest is focused
on level 2 estimates. Luo and Kwok’s (2009) research model
design focused on the CCREM structure that occurred at the
top or intermediate levels in the case of three-level data. In the
current study, the SE bias of fixed effects did not depend on the

magnitude of coefficients. However, the SE bias of level 1 random
effects depended on some interaction effects, for example, the

magnitude of coefficient × the number of feeders. A researcher
designing a study to obtain an appropriate sample size for the use
of CCREM may wonder if the effect size does not affect the bias,
for example, whether the magnitude of coefficients affects the
estimation or not. In addition, the number of feeders, considered
one of the conditions in Luo and Kwok (2009), was 5, 25, and 45;
in such a large variation in conditions, the effect of the condition
easily appears. In this study, the range of the feeder condition was
smaller, yet were appropriate for investigating how much of the
feeder condition affects the estimation bias. This finding can offer
useful information for applied researchers.

Second, the results of this study are likely to help in choosing
an analysis model. In terms of the fit indices, the hit rate of
BIC was generally better than that of AIC, and there was a
tendency toward higher discrepancies in the hit rate as the
number of feeders decreased. These findings are significant for
researchers selecting between HLM and CCREM for an analysis
model. For instance, if the dependent variable were the academic
achievement of third-year high school students, high school
membership may influence the dependent variable much more
than middle school membership. In this case, there are the more
important cross-classified factor and the less important cross-
classified factor. CCREM is not always an available option, and
it is not always possible to obtain preplanned cross-classified data
with rich conditions. In such cases, there may be situations in
which a researcher should choose whether to consider the less
important cross-classified factor.
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