AUTHOR=García-Batista Zoilo Emilio , Guerra-Peña Kiero , Garrido Luis Eduardo , Cantisano-Guzmán Luisa Marilia , Moretti Luciana , Cano-Vindel Antonio , Arias Víctor B. , Medrano Leonardo Adrián
TITLE=Using Constrained Factor Mixture Analysis to Validate Mixed-Worded Psychological Scales: The Case of the Rosenberg Self-Esteem Scale in the Dominican Republic
JOURNAL=Frontiers in Psychology
VOLUME=12
YEAR=2021
URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2021.636693
DOI=10.3389/fpsyg.2021.636693
ISSN=1664-1078
ABSTRACT=
A common method to collect information in the behavioral and health sciences is the self-report. However, the validity of self-reports is frequently threatened by response biases, particularly those associated with inconsistent responses to positively and negatively worded items of the same dimension, known as wording effects. Modeling strategies based on confirmatory factor analysis have traditionally been used to account for this response bias, but they have recently become under scrutiny due to their incorrect assumption of population homogeneity, inability to recover uncontaminated person scores or preserve structural validities, and their inherent ambiguity. Recently, two constrained factor mixture analysis (FMA) models have been proposed by Arias et al. (2020) and Steinmann et al. (2021) that can be used to identify and screen inconsistent response profiles. While these methods have shown promise, tests of their performance have been limited and they have not been directly compared. Thus the objective of the current study was to assess and compare their performance with data from the Dominican Republic of the Rosenberg Self-Esteem Scale (N = 632). Additionally, as this scale had not yet been studied for this population, another objective was to show how using constrained FMAs could help in the validation of mixed-worded scales. The results indicated that removing the inconsistent respondents identified by both FMAs (≈8%) reduced the amount of wording effects in the database. However, whereas the Steinmann et al. method only cleaned the data partially, the Arias et al. (2020) method was able to remove the great majority of the wording effects variance. Based on the screened data with the Arias et al. method, we evaluated the psychometric properties of the RSES for the Dominican population, and the results indicated that the scores had good validity and reliability properties. Given these findings, we recommend that researchers incorporate constrained FMAs into their toolbox and consider using them to screen out inconsistent respondents to mixed-worded scales.