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The anticipated social capabilities of robots may allow them to serve in authority roles

as part of human-machine teams. To date, it is unclear if, and to what extent, human

team members will comply with requests from their robotic teammates, and how such

compliance compares to requests from human teammates. This research examined how

the human-likeness and physical embodiment of a robot affect compliance to a robot’s

request to perseverate utilizing a novel task paradigm. Across a set of two studies,

participants performed a visual search task while receiving ambiguous performance

feedback. Compliance was evaluated when the participant requested to stop the task

and the coach urged the participant to keep practicing multiple times. In the first study,

the coach was either physically co-located with the participant or located remotely via

a live-video. Coach type varied in human-likeness and included either a real human

(confederate), a Nao robot, or a modified Roomba robot. The second study expanded

on the first by including a Baxter robot as a coach and replicated the findings in a

different sample population with a strict chain of command culture. Results from both

studies showed that participants comply with the requests of a robot for up to 11 min.

Compliance is less than to a human and embodiment and human-likeness on had weak

effects on compliance.

Keywords: robot, social robot, authority, compliance, milgram, human-robot collaboration, human-robot teaming,

robot physical embodiment

1. INTRODUCTION

In the future, it is anticipated that robots will possess highly developed computational and social
capabilities that will allow them to act in sophisticated roles in mixed human-machine teams
(e.g., Endsley, 2015). These collaborative robots will likely interact with and operate alongside
human teammates in a number of settings, including education (e.g., Yorita and Kubota, 2010),
manufacturing (e.g., Gombolay et al., 2015), healthcare (e.g., Han et al., 2017), and defense
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(Zacharias, 2019), among others. Furthermore, it is expected that
machine and robotic teammates will possess decision-making
capabilities, and that humans will consult with, rely on advice
and guidance, and receive requests from their robotic teammates
(Groom and Nass, 2007; Walliser et al., 2019).

However, as robots become more capable teammates, there
may be a tendency for the humans they encounter to imbue
their interactions with the social affordances present in human-
human interactions, even when robots are not designed to
support those expectations (e.g., Kwon et al., 2016). This is
likely to entail both positive and negative consequences as the
powerful social norms that govern human-human interactions
are activated. For example, Fraune et al. (2017) found that
when people were teamed with a robot in a competitive game
they demonstrate an in-group bias, attributing greater positive
characteristics to their robot teammate, and even applying
greater punishment to humans on the rival team to spare their
robot teammate.

With such research pointing to the relevance of human-
human group behaviors for understanding future mixed human-
robot teams, it is crucial to further evaluate how the norms of
human-human teams may also extend to human-robot teams.
Robots are strongly anticipated to possess a degree of delegated
authority, informal authority granted to a subordinate by a
superior (e.g., Baker et al., 1999), in real-world contexts such
as training, education, search and rescue, military operations,
and healthcare. In these instances, the robot may decide
important outcomes, for example adjudicating training or the
administration of medication. In addition, when robots are
applied to more complicated or complex tasks, the anticipated
memory, and computational abilities of robots creates the
possibility for human operators to defer judgments to robots
they perceive as possessing greater knowledge, skills, or abilities
relative to themselves. Even if these robot decisions and
actions are made under human supervision, having some
responsibility in decision making gives robots a certain degree
of persuasiveness, power, and authority.

Ideally, robot persuasiveness would only be applied to
engender positive influences on the humans they interact with.
Previous research demonstrates that this is possible. For example,
Powers and Kiesler (2006) found that robots that utilized
varied facial expressions were able to persuade people to adopt
healthy lifestyle changes. Similarly, Kidd (2008) has shown that
a persuasive robot can be successful in long-term interactions
to promote desired weight-loss. Robots can also influence user
behaviors positively in other areas, as shown byHam andMidden
(2014) where a robot was able to persuade people to adopt
behaviors to reduce household energy consumption.

However, there is also concern that the persuasiveness
of a robot could be applied to influence humans toward
behaviors that do not align with human ethics (see Allen
et al., 2011; Lin et al., 2011; Sharkey and Sharkey, 2012; Fridin,
2014), social norms and morals (see Coeckelbergh, 2010; Shen,
2011; Malle, 2016; Bigman et al., 2019). Classical psychology
studies investigating obedience and compliance (e.g., Asch, 1951;
Milgram, 1963, 1974; Haney et al., 1973; etc.) and more recent
replications (e.g., Burger, 2009) have shown that people tend to

comply (acquiescence to another’s request for action of some
sort, Cialdini and Trost, 1998) with requests from others who
display or are assumed to have authority. Undue compliance with
a robot request that is unethical, immoral, illegal, or results in
undesired behaviors is therefore a crucial concern for persuasive
robots, especially when such social robots are regarded as moral
actors that should exhibit some degree of moral competence
(Malle and Scheutz, 2014).

The problems of undue compliance may be particularly
pronounced if a robot is perceived as possessing some degree
of authority, as suggested by Cormier et al. (2013). For example,
Geiskkovitch et al. (2016) found that participants complied with
the requests of a small humanoid robot to continue performing
the tedious task of renaming digital files by hand, even after
the participant indicated a desire to stop. The robot in this case
was acting as the experimenter conducting the study, i.e., it was
presented to participants as an authority figure in the context of
the study. The results from Geiskkovitch et al. (2016) suggest that
whatMilgram (1963) demonstrated with human obedience could
also be the case in mixed human-robot groups. Similarly, Asch
(1951) research on the effects of group pressure on judgement
conformity in human groups applies to some extent to human-
robot interactions. Multiple studies have used this framework
to recreate group pressure effects with robots (e.g., Brandstetter
et al., 2014; Hertz andWiese, 2018; Salomons et al., 2018; Vollmer
et al., 2018; Hertz et al., 2019) and compliance with unusual robot
requests (Bainbridge et al., 2008; Salem et al., 2015).

To understand how robot teammates might be able to
elicit compliance with their requests, and how humans can
work alongside such robots, it is necessary to understand the
factors that influence HRI. Researchers have identified two major
dimensions that may influence HRI compliance and a robot’s
persuasiveness: the physical embodiment of a robot (Ham and
Midden, 2014; Ghazali et al., 2018), and the human-likeness of
the robot (Chidambaram et al., 2012; Ruijten et al., 2019).

The first dimension, the physical embodiment of a robot,
refers to a machine that has a tangible, physical body in 3D space
that allows it to have a physical presence (e.g., Paauwe et al., 2015)
and the ability to move in, or manipulate its environment (e.g.,
Mason, 2001). The is in contrast to virtual agents, which may still
be visually represented, but only possess virtual embodiment on
a screen (e.g., as virtual agents or avatars) or more ambiguous
representations (e.g., Apple Siri, Amazon Alexa, Google Home,
Microsoft Cortana). Researchers have shown that the physical
presence of a robot, compared to the virtual representation of
the same agent, has a measurable effect on the interaction. When
interacting with a physically embodied robot compared to a
non-physical counterpart, more positive social interactions are
reported. For example, physically embodied robots have been
found to be more enjoyable; Wainer et al. (2006) reported that
people rated the physically embodied robot as more enjoyable
and more watchful of their actions in a task than a non-
physical counterpart. Lee et al. (2006) have shown that physical
embodiment has a positive effect on the feeling of an agent’s
social presence and interaction with the agent, and Kwak et al.
(2013) reported that people empathize more with a physically
embodied robot.
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The second dimension, the human-likeness of a robot,
describes the degree to which a robot possesses features that
are consistent with a human appearance. Phillips et al. (2018)
have developed an extensive database that decomposes a robot’s
human-like appearance based on four distinct appearance
dimensions: surface look (hair, skin, genderedness, apparel),
body-manipulators (hands, arms, torso, legs), facial features
(faces, eyes, head, mouth), and mechanical locomotion (wheels,
tracks). The presence and combination of these specific features
predicts a robot’s perceived human-likeness. Researchers have
shown that the human-likeness of a robot influences social
interactions. For example, Fong et al. (2003) found that with
increasing human-likeness, humans reported higher levels of
social affordances, in this context referring to the attributes of a
robot that imply interactivity to a human counterpart. In turn,
higher social affordances of a robot increased liking and trust
toward the robot. Additionally, Lee et al. (2012) and Kruijff et al.
(2014) found that if a robot utilizes human-like behaviors such as
gestures and conversational turn-taking, the positive impressions
of this robot increase.

Since both physical embodiment and human-likeness have
both been found to generally influence HRI, it is not
unreasonable to expect these dimensions to factor into how a
robot teammatemay elicit compliance. Physical embodiment and
human-likeness not only affect how much people like or trust a
robot, these dimensions also affect the perceived persuasiveness
of a robot. For example, Chidambaram et al. (2012) found that
participants complied more with a robot’s suggestion when the
robot used bodily cues (i.e., proximity to the participant, gaze,
and gestures) dependent on its physical embodiment compared
to only vocal cues. Natarajan and Gombolay (2020) have found
that behavior and anthropomorphism of a robot are the most
significant factors in predicting the trust and compliance with the
robot. Goetz et al. (2003) found that people complied more with
a robot whose demeanor matched the seriousness of the task. It
has also been found that participants are more likely to comply
with an unusual request from a robot when the robot is physically
present as opposed to a video-displayed version of it (Bainbridge
et al., 2008). Robots that perform human-like behaviors such as
showing empathy (Leite et al., 2013) or referring to a participant
by name (Moran et al., 2013) increase participant ratings of
friendliness and willingness to engage with a robot, and shape
how compliant participants are to following its instructions.

1.1. Personality Factors
Adding further complexity to human behaviors in groups, there
is the possibility that compliance to a robot of perceived authority
may be affected by certain human personality traits. The Five
Factor Model (Costa and McCrae, 1992) is a taxonomy that
proposes five dimensions that constitute human personality:
extraversion, neuroticism, conscientiousness, agreeableness, and
openness to experience. Previous research on compliance
in human-human situations suggests that agreeableness and
conscientiousness (e.g., Bègue et al., 2015), and extraversion
and neuroticism (e.g., Zeigler-Hill et al., 2013) are likely to
influence compliance. Briefly, agreeableness indicates a desire
for social harmony, and for getting along with others (Costa

et al., 1991); conscientiousness is related to need for achievement,
commitment to work, and rule following (Costa et al., 1991);
neuroticism indexes an individual’s typical level of emotional
stability and the tendency to experience negative affective states
(Costa and McCrae, 1992), which can result in an eagerness
to avoid conflict and ambiguous situations, as well as use
of avoidant coping strategies (Matthews and Campbell, 1998);
and extraversion relates to an interest in engaging with the
world and a preference for social stimulation. Of these factors,
agreeableness may be the most relevant, as compliance was
initially conceptualized as an intrinsic facet of that personality
dimension (Costa et al., 1991). Cognate to this, Bègue et al.
(2015) found that agreeableness and conscientiousness were
positively correlated with punishment severity administered by
participants in a Milgram-like obedience task. Also of relevance,
Gudjonsson et al. (2004) found that neuroticism was positively
correlated and extraversion was negatively correlated with a
self-reported measure compliance, the Gudjonsson Compliance
Scale, which measures the tendency of people to conform to
requests made by others, particularly people in authority, in
order to please them or to avoid conflict and confrontation.
In addition, Zeigler-Hill et al. (2013) found that people high
in neuroticism required few prompts before complying with
an experimenter’s orders to administer an aversive stimulus
(a loud noise blast) to a confederate posing as another
participant. As such, it is reasonable to expect that personality
factors, such as agreeableness, conscientiousness, neuroticism,
and extraversion,may influence compliance during human-robot
interactions (HRI).

1.2. Our Research
While the physical embodiment and human-likeness of a robot
have been shown to affect persuasiveness, it is unclear if this
directly translates to compliance. In addition, to our knowledge,
no previous study has included an investigation of the influence
of the Big Five personality factors on compliance to a robot
in HRI and only one very recent one has used the Eysenck
Personality Questionnaire Revised-Short (EPQR-S) to investigate
personality traits and non-compliant behavior. However, Maggi
et al. (2020) have found no relation of users’ non-compliant
behavior to their personality traits. Therefore, across two studies
we examined the effects of physical embodiment and human-
likeness of a robot in a situation where a participant was
encouraged by a robotic “coach” to continue practicing a
reconnaissance detection task. During this task, the coach was
presented with a degree of delegated authority. Compliance was
defined by whether participants followed the coach’s suggestion
to keep practicing after they indicated they were finished.

2. STUDY 1

The goal of Study 1 was to investigate the effects robot
physical embodiment and human-likeness have on compliance.
We predicted that a physically embodied robot coach would
increase compliance compared to a virtually embodied coach.
We also predicted that more human-like coaches would increase
compliance compared to less human-like coaches. Further, we
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predicted an interaction between physical embodiment and
human-likeness such that the most human-like coach that was
physically embodied would be complied with most compared to
the least human-like coach that was virtually embodied.

We also included a questionnaire assessing the Five Factor
Personality Model (Costa and McCrae, 1992) as an exploratory
measure in this study. Consistent with previous research on the
Five Factor Model and compliance in human-human interaction,
we hypothesized that agreeableness, conscientiousness, and
neuroticismwould be positively correlated with, and extraversion
negatively correlated with, compliance to a robot coach in
this study.

2.1. Method
2.1.1. Participants
Seventy-four civilian participants (Mage = 21.2, SDage = 2.7,
39 women) were recruited from the campus of a midwestern
university in the United States for a single payment of $30. Five
participants were excluded from our analyses because of their
familiarity with Milgram’s research (i.e., recognized the prompts
used by Milgram in this study and therefore were considered
unable to provide unbiased data on compliance), two participants
were excluded because their responses to the task were outliers
(exceeded measures of over three times the standard deviation),
and seven participants did not complete the experiment within
the allotted experimental duration (1 h). As a result, a total
of 60 participants were included in the final data analysis
for Study 1.

2.1.2. Experimental Design
Study 1 employed a 2 (embodiment: physical, live-video) ×

3 (coach type: human, Nao robot, modified Roomba robot)
between-subjects design with ten participants in each condition.
Embodiment was manipulated in a fashion similar to Bainbridge
et al. (2011), i.e., in the physical condition, the coach was co-
located with the participant, adjacent to their task workstation.
In the live-video condition, the coach was not physically present
in the laboratory, but instead was located in an adjacent room
where they interacted with the participant through a webcam
video displayed on a monitor adjacent to the participants’ task
workstation. Figure 1 shows the experimental set-up for the
embodiment condition.

The three coaches employed in this study—a modified iRobot
Roomba, an Aldebaran Robotics Nao, and a human (control)—
were selected because they represent different levels of human-
likeness. The two robot coaches can be viewed in Figure 2.
The modified Roomba was included in this experiment because
it broadly has physical similarities to robots that have been
employed by the U.S. military, such as the iRobot PackBot.
Military robots currently are characterized by functionality over
design and often result in more mechanical than human-like
robots. To encourage participants to dissociate this modified
Roomba from more general Roomba vacuum cleaning robots,
a 3D-printed shell covered its controls and a webcam was
attached to its dorsal surface. The Nao, on the other hand,
was included in this experiment because of its high human-
likeness (relative to the modified Roomba). Finally, the human

FIGURE 1 | The experimental setup for the robot co-located condition on the

left, and the setup for the robot live-video condition with the same robot

located remotely and displayed on a screen to the participant on the right.

coach served as a baseline control of the compliance elicited in
human-human interactions.

One way to evaluate the differences in human-likeness across
the three coaches is to use the quantification by the robot’s overall
human-likeness scores derived from the Anthropomorphic
roBOT (ABOT) database (Phillips et al., 2018). This score reflects
on a scale of 0–100 how human-like a particular robot is by
quantifying its features, with higher scores indicating higher
ratings of human-likeness. The modified Roomba employed in
this experiment had an estimated ABOT score of 0.37 for human-
likeness (adjusted for the 3D printed shell and attached camera),
and the Nao robot had an ABOT score of 45.92.

The human “confederate” coach for Study 1 was always
the same person (i.e., one of this article’s authors, Dr. Kelly
Satterfield). This was decided to ensure consistency of participant
experiences across the human coach condition. As experimenter-
related demand characteristics were the primary interest of this
study, care was taken to ensure that the human coach responded
to participants in the same fashion as the robot coaches, i.e., the
communication consisted entirely of pre-scripted statements. If
participants made comments or asked questions of the coach
for which there were no pre-scripted statements prepared, the
coaches, human as well as robots, made no response to the
queries. All three coaches displayed similar, limited movement
during the experiment.

2.1.3. Task Paradigm
The experimental task utilized was a version of the Synthetic
Aperture Radar (SAR) Target Learning Task, a visual search
task using SAR images (Figure 3) of terrain with buildings and
military vehicles (McKinley et al., 2013). It was selected because
it is a particularly challenging task—SAR images are of low
resolution, and differences between distractor and target vehicles
are difficult to distinguish. McKinley et al. (2013) demonstrated
that participants require several hundred trials to master the task.

In the current experiment, participants viewed SAR images
that included terrain, buildings, and vehicles (Figure 3).
Participants were instructed to detect four types of hostile
vehicles in the presence of distractor vehicles. Each trial image
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FIGURE 2 | The image on the left is the iRobot modified Roomba with the 3D-printed shell and webcam. The image on the right is the Aldebaran Robotic Nao.

FIGURE 3 | Synthetic Aperture Radar task. The participant’s responses are

circled in yellow. The correct targets are circled in red.

included zero to four targets. During the task, participants
indicated their detection of a target in an image by clicking on
its screen location with a computer mouse. Once a participant
felt they had identified all targets in an image, they submitted
their responses for evaluation and the coach provided verbal
feedback regarding the number of correct identifications. The
location of correctly and incorrectly identified targets was then
displayed on the computer screen, and verbally announced by
the coach.

2.1.4. Procedure
Upon arrival at the laboratory, participants completed informed
consent documents. Next, they answered several demographic
questions. Participants then completed the Big Five Inventory
(BFI; John and Srivastava, 1999), a validatedmeasure that assesses
five broad dimensions of personality: extraversion, agreeableness,
conscientiousness, neuroticism, and openness. The questionnaire
consists of 44 items on which participants rated their agreement
on a five-point Likert scale (1 = disagree strongly, 5 = agree
strongly) with statements such as “I see myself as someone who
is talkative.”

Next, participants viewed a self-paced PowerPoint
presentation that explained the general procedure of the
experiment and the SAR task. In this task overview, participants
were told that the experiment would proceed in two phases, a
practice phase and a testing phase. They were informed that
during the practice phase their goal was to become proficient
at detecting the targets in the SAR images. They were also
informed that this task was difficult and therefore a coach would
provide feedback regarding their performance after each trial.
Participants were told to practice until they felt they were ready
and proficient enough to move on to the testing phase. However,
this was a deception; the true purpose of the practice task was
to determine how long participants would perseverate at it after
they initially indicated they were ready to advance to the testing
phase, influenced by the embodiment and coach conditions to
which they were assigned.

In service of this deception, participants were informed before
the start of the practice task that a passing score in the testing
phase would be “850 points.” They were presented with a
complex formula that incorporated correct detections, misses,
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false alarms, and response time resulting in the scored “points.”
They were also told that during the practice, they would be
presented with a summary performance score each time they
completed 25 SAR images. Unbeknownst to the participants, the
displayed points were fabricated, unconnected to their actual
task performance, and manipulated to marginally exceed the
necessary points to pass the testing phase each time the score
was displayed.

Participants then had an opportunity to ask any questions
before beginning the SAR task. After any questions were
addressed, the experimenter introduced participants to their
coach. In all conditions, the coach replied with an initial
friendly greeting and introduced itself as “Alex” (a gender neutral
name). It should be noted that both the Nao and modified
Roomba coaches utilized the same text-to-speech synthesis
program to produce their communications (i.e., they had the
same synthetic, more female than male “voice” as control and
to not conflict with the female human coach). A synthetic
voice was chosen over a human pre-recorded voice to mitigate
effects of strong anthropomorphization when using human0like
voices for robots (Eyssel et al., 2012). Also, the robot coaches
were not controlled remotely (i.e., it was not a “Wizard-of-Oz”
experimental setup); rather, they were programmed to respond
to events (e.g., a submitted image) in the SAR image task as
appropriate. The experimenter then told participants they were
free to get started on the SAR task, and they left the room.
Unbeknownst to the participant, the experimenter continued to
monitor the experiment over the webcam used to display the
live-video feed, positioned on top of the monitor adjacent to
the participant. During the live-video condition, the webcam
was on, displaying the interactions with the coach, while the
experimenter monitored the reverse feed of the participant.
During the physical condition, the live-video monitor was
powered off, but the webcam was still on. Participants were
not informed before beginning the task that they were being
observed, and their behaviors indicated that they were unaware
of the live-camera feed (e.g., talking back to the robot, sometimes
in strong language). The feed did not record participants,
and served mainly to ensure the experimenter’s awareness of
the participant’s task progress and safety. Participants were
debriefed at the end of the experiment, however, about the
experimenter’s monitoring.

When practicing the SAR image task, participants would
indicate the presence of a potential target by clicking on its
screen location with a computer mouse, and then submit the
image to be checked, ostensibly by the coach, though in reality
an automated system assessed the accuracy of participants’ target
detections. They received visual (red circles indicating correct
targets), audio (e.g., the coach verbalizing the number of targets
correctly detected) and motion feedback from the coach (e.g.,
the Nao robot or human coach turning their head toward the
screen and back to the participant, the modified Roomba doing
a short turn motion to point its camera at the screen and then
back to the participant). As mentioned previously, each time
participants completed 25 SAR images, a message was presented
with a summary score notionally based on their performance
across those images. All participants saw the same order of scores.

Each time this prompt appeared, participants were given the
option to continue practicing or to continue on to the testing
phase. In addition, participants were able to indicate their desire
to advance to the testing phase at any time by pressing a button
labeled “Advance to Testing” located in the top right corner of
the task screen (as can be seen in Figure 3). Once a participant
indicated they wanted to advance to the testing phase, the coach
provided verbal feedback suggesting that the participant should
continue with practice. This occurred regardless of a participant’s
actual performance in the SAR task—the coach always suggested
that the participant continue with practice the first four times
they tried to advance to the testing phase.

Once the coach provided its feedback, participants had the
option to comply with the coach and keep practicing, or to
continue advancing to the testing phase.

The coach’s verbal feedback proceeded in the same order in all
experimental conditions. Across prompts, the feedback (adapted
from Milgram, 1963) increased in severity of exhortation to
continue with practice. The statements were selected to emulate
the work of Milgram (1963) as closely as possible. The four
prompts were:

1. Please continue with practice.
2. Your performance could be improved. You should continue

with practice.
3. Your performance is adequate, however, you should continue

with practice.
4. Your performance is sufficient. However, it is absolutely

essential that you continue with practice.

On the participant’s fifth attempt to advance to the testing phase,
the practice phase would end. The experimenter returned to the
room and instructed the participant that this part of the study
is completed. Then the experimenter engaged the participant
in a structured debrief interview and revealed that there was
no testing phase. The debrief included asking the participant
about his/her beliefs regarding the purpose of the experiment,
if they were familiar with Milgram’s experiments, and if they
suspected any of the experimental manipulations. If participants
answered in the affirmative to any of these questions, their data
was excluded from subsequent analysis.

2.2. Results
2.2.1. SAR Task Practice
The possibility existed that participants evaluated their need
to perform the SAR practice task differentially based on the
embodiment and coach conditions to which they were assigned
even before they were exposed to our compliance manipulation.
For example, participants assigned to a robot coach could have
chosen to work more or less diligently at the practice task relative
to those assigned to a human coach from the outset of the
experiment. A difference of this sort would indicate that the
characteristics of a coach, such as embodiment and human-
likeness, may influence participants’ commitment to a task from
its beginning, which could have important implications for real-
world plans to employ robots as trainers or coaches.
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To address this possibility, a series of 2 (embodiment)
× 3 (coach type) between-subjects ANOVAs were computed
comparing the duration in seconds that participants performed
the SAR image task from the beginning of the experiment until
their first request to advance to the testing phase, the number
of SAR images they examined during that period, their mean
inspection time per image, and their detection accuracy. The
net result of these analyses was that participants performed
the SAR image task similarly across all experimental conditions
and dependent variables examined (i.e., the main effect for
embodiment, p = 0.57, η

2
p = 0.01, main effect for coach,

p = 0.25, η
2
p = 0.05, and interaction, p = 0.67, η

2
p = 0.02 were

nonsignificant). On average, participants in all conditions spent
551.22 s (SE = 37.15 s) seconds examining SAR images before
their first request to move to the testing phase, examining 22.83
SAR images (SE = 1.42 images), inspecting each image for
approximately 24.70 s (SE = 0.97 s), and achieved a detection
accuracy of 79.12% (SE = 1.24%). This suggests that participants
initially approached learning the SAR image task similarly
regardless of the embodiment and coach conditions to which they
were assigned.

2.2.2. Compliance Time
Compliance time was calculated as the cumulative duration in
seconds that participants performed the SAR image task from
their first request to advance to the testing phase until their fifth
request, after which the task was terminated1. A 2 (embodiment)
× 3 (coach type) between-subjects ANOVA of compliance time
revealed a significant main effect for coach type, F(2, 54) = 15.59,
p < 0.001, η

2
p = 0.37. Bonferroni corrected post-hoc t-tests

revealed participants complied for a longer duration to a human
coach (M = 1292.36 s, SE = 125.73 s), than to both the Nao
(M = 574.46 s, SE = 106.91 s) and modified Roomba coaches
(M = 587.52 s, SE= 86.60 s), p < 0.001, d = 1.38, and p < 0.001,
d = 1.46, respectively. However, compliance time did not differ
significantly between the Nao and modified Roomba coaches,
p = 0.93, d = 0.03. The omnibus ANOVA analysis of the
embodiment main effect revealed a not quite significant (p <

0.06) effect in the data F(1, 54) = 3.87, p = 0.054, η
2
p = 0.07,

such that participants tended to perseverate at the SAR task for a
longer duration with a physical coach (M= 936.28 s, SE= 117.86
s) compared to a live-video coach (M = 699.94 s, SE = 89.87 s).
The embodiment × coach type interaction was nonsignificant,
F(2, 54) = 1.55, p= 0.22, η2p = 0.05. Results for this analysis can be
viewed in Figure 4.

However, because individual differences in tendency to
practice at the task could influence total compliance time,
we conducted a follow up analysis of covariance (ANCOVA)
using participants’ practice time as a covariate in the model.

1It is worth noting that two participants (one in the physical modified Roomba
condition and one in the live-video modified Roomba condition) never complied
with the coach’s requests, and therefore, had a compliance time of zero. The
experimental set-up allowed this as a legitimate response from participants, and
therefore, in this analysis and the analysis of the number of images participants
inspected following their first request to advance to the testing phase (“Compliance
Images,” below), a value of zero was included for those participants. The statistical
result patterns did not change when both participants were excluded from analysis.

FIGURE 4 | Mean compliance time in Study 1. Error bars are standard

errors. The asterisk indicates a significant difference.

The results of this analysis indicated that participant practice
time was a statistically significant covariate of compliance time,
F(1, 53) = 4.47, p = 0.04, η

2
p = 0.08. The results of this analysis

did not substantively change the previously reported results
regarding the main effect of coach type (p < 0.001), or the
embodiment × coach type interaction (p = 0.29). However, the
main effect of embodiment was statistically significant in this
analysis, F(1, 53) = 4.16, p= 0.047, η2p = 0.07. This result indicates
that embodiment did have an effect on compliance time, but
only after variance associated with individual practice time was
accounted for.

2.2.3. Compliance Images
Compliance was also assessed by the number of SAR images
participants inspected following their first request to advance to
the testing phase until their fifth request.

A 2 (embodiment) × 3 (coach type) ANOVA of the number
of images examined revealed a significant main effect for coach
type, F(2, 54) = 25.12, p < 0.001, η

2
p = 0.48. However, the main

effect of embodiment was nonsignificant, F(1, 54) = 1.89, p= 0.18,
η
2
p = 0.03, as was the embodiment × coach type interaction,

F(2, 54) = 1.32, p= 0.28, η2p = 0.05. Post-hoc Bonferroni corrected
t-tests revealed that participants examined more images with a
human coach (M = 85.65 images, SE = 8.31 images) compared
to both the Nao (M = 28.30 images, SE = 5.35 images) and
modified Roomba (M = 31.90, SE = 5.36) coaches, p < 0.001,
d = 1.84, and p < 0.001, d = 1.72, respectively. The number
of images examined did not significantly differ between the Nao
and modified Roomba coaches, p = 0.64, d = 0.15. Similar to
the compliance time analysis above, those same two participants
had a compliance image score of zero which has been included
in this analysis. Results for this analysis can be viewed in
Figure 5. Number of images inspected during practice was a
statistically significant covariate of compliance images inspected,
F(1, 53) = 4.88, p = 0.03, η2p = 0.08, but inclusion of the covariate
did not change the pattern of ANOVA results already reported in
the paper.
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FIGURE 5 | Mean compliance images in Study 1. Error bars are standard

errors. The asterisk indicates a significant difference.

FIGURE 6 | Mean inspection time per image for Study 1. Error bars are

standard errors.

2.2.4. Inspection Time Per Image
As participants complied for a longer duration in the human
coach condition, it is perhaps unsurprising that they evaluated
more images overall in that condition. However, there is a
possibility that participants spent differential amounts of time
on average inspecting the SAR images during their compliance
period depending on the condition to which they were assigned.
Differences across experimental conditions in inspection time
could suggest that participants may have worked less diligently at
the task in some experimental conditions. To evaluate differences
in inspection time per image, a 2 (embodiment) × 3 (coach
type) between-subjects ANOVA of mean inspection time per
image was calculated. Two participants, one in the physical
modified Roomba condition and one in the live-video modified
Roomba condition, with a compliance time of zero were excluded
from this analysis1. The results of the analysis indicated there
were no significant main effects of embodiment, F(1, 52) = 0.05,
p = 0.82, η2p = 0.00, or coach condition, F(2, 52) = 1.35, p = 0.27,

η
2
p = 0.04, and the embodiment× coach type interaction was also

nonsignificant, F(2, 52) = 0.22, p = 0.80, η2p = 0.01. Participants
seemed to have spent similar durations, on average, inspecting

FIGURE 7 | Mean detection accuracy following the first prompt for Study 1.

Error bars are standard errors.

the SAR images across all experimental conditions. Results for
this analysis can be viewed in Figure 6.

2.2.5. Detection Accuracy
As was the case with inspection time per image above, it is
possible that participants were differentially accurate in their
detections of the targets in each SAR image during their
compliance period depending on the experimental condition
to which they were assigned. Again, a statistically significant
difference in this case may indicate that participants worked less
diligently at the task in some experimental conditions. Accuracy
was calculated as the percentage of correct target detections
in images following compliance to the first prompt. Two
participants were excluded from this analysis1. A 2 (embodiment)
× 3 (coach) between-subjects ANOVA of detection accuracy
testing this idea provided no support, as the main effects of
embodiment, F(1, 52) = 0.00, p = 0.80, η

2
p = 0.00, and coach

type, F(2, 52) = 0.06, p = 0.95, η
2
p = 0.00, were nonsignificant.

The embodiment × coach type interaction, F(2, 52) = 0.55,
p = 0.58, η

2
p = 0.02, was also not significant. Participants were

equally accurate at detecting the targets in the SAR images
across experimental conditions. Results for this analysis can be
viewed in Figure 7. Inspection time per image in the practice
was a statistically significant covariate of inspection time per
image during the compliance period, F(1, 53) = 15.25, p < 0.001,
η
2
p = 0.23, but inclusion of the covariate did not change the

pattern of ANOVA results already reported in the paper.

2.2.6. Big Five Inventory
Correlations of the five factors of the BFI with our dependent
variables is presented in Table 1. As the focus of our research
is compliance to a robot coach, the presented correlations were
calculated exclusively from participants in the Nao and modified
Roomba coach conditions (i.e., they exclude participants from
the human coach condition). In addition, as embodiment
condition had only a weak effect on compliance, we chose
to ignore it (collapse across it) in these analyses. Our results
indicated that conscientiousness was positively correlated with
the duration of time that participants complied with the robot
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TABLE 1 | Correlations of BFI factors with indices of task compliance for

participants in the Nao and modified Roomba coach conditions in Study 1.

BFI factor Compliance

time

Compliance

images

Inspection

time per

image

Detection

accuracy

Agreeableness 0.159 0.083 0.052 0.135

Conscientiousness 0.370∗ 0.329∗ 0.035 0.133

Neuroticism −0.088 −0.036 −0.144 0.079

Extraversion 0.038 0.107 −0.155 0.151

Openness 0.076 0.132 −0.078 −0.062

∗p < 0.5.

coach and the number of images they inspected. No other
statistically significant correlations between the Big Five and
measures of compliance were found.

2.3. Discussion Study 1
The purpose of Study 1 was to investigate the effects of
embodiment and human-likeness on compliance with a coach.
Out of our three compliance measures, only compliance time
was affected by embodiment such that being in physical close
proximity of the coach resulted in higher compliance times
compared to seeing the coach on live video (see Figure 4).
This small effect is consistent with findings by Milgram (1974),
who demonstrated that requests made in physical proximity
elicited greater compliance. It is contrary to our hypothesis,
however, because we expected the embodiment condition to have
a stronger and consistent effect on compliance in this study. As
hypothesized, participants complied significantly more with the
human coach than with any of the robots. However, we did not
find a significant difference between the two robots. In addition,
the effects of human-likeness were not as initially hypothesized—
participants complied most to the requests of the human coach,
and to a much lesser extent with those of either robot coach.
However, comparison of the SAR practice data and participant
inspection time and accuracy during their period of compliance
to the coach indicated that participants completed the task with
similar diligence across conditions, suggesting that differences in
compliance were not accompanied by reductions in task directed
effort. It is possible that just the appearance of human-likeness
between the robots was not sufficient to produce any difference
in compliance. The behavior of the robots was identical and
because the prompts weremade with identical voices it is possible
that the attributed mind to the robots were very similar. This
finding is consistent with previous work that shows that human-
like behavior produces stronger differences for task performance
compared to human-like appearance (Abubshait and Wiese,
2017; Fraune, 2020).

Examination of the correlations between the BFI factors
and task performance data provided limited support for our
initial hypothesis that agreeableness, conscientiousness, and
neuroticismwould be positively correlated with, and extraversion
negatively correlated with, measures of compliance to a robot
coach. We found that conscientiousness was positively correlated
with the duration of time that participants complied with

the robot coach and the number of images they inspected,
results that are consistent (in sign and magnitude) with those
of Bègue et al. (2015), who found that conscientiousness was
positively correlated with compliance in their study. However,
we found no statistically significant relationships between our
measures of compliance and agreeableness, neuroticism, and
extraversion (see Table 1). This pattern of results may suggest
that the facets of agreeableness, neuroticism, and extraversion
that influence compliance in human-human interactions, such
as the desire to preserve social harmony (agreeableness) and
avoid conflict (neuroticism), are less activated in human-robot
interaction, while facets such as work ethic and rule following, as
aspects of conscientiousness, are still important. In other words,
the robot coaches employed may not have been perceived as
sufficiently human by participants to evoke personality factors
associated with interpersonal behavior, but general work ethic
remained relevant.

3. STUDY 2

In examining the results of Study 1 with regard to our
manipulation of the human-likeness of the robot coaches, it
occurred to us that the undifferentiated compliance elicited by
the Nao and modified Roomba robots we employed may have
been related to the small stature and “cute” appearance of those
robots. We considered that a larger robot could potentially be
considered more imposing, and thus increase compliance. For
example, Fessler et al. (2012) found that the physical size of
other humans influences judgments of prospective formidability,
and McCluskey et al. (1999) stated that the physical size of an
officer would be an important predictor for compliance with a
police request. If robot size is to some extent linked to perceived
authority and compliance, including a larger robot may result in
greater adherence to a robot’s request. Additionally, including a
large, humanoid robot would address a gap in physical size that is
present in many experimental HRI studies, as most commercially
available interactive robots are smaller in size than humans.

It is also possible that the level of compliance observed in
the sample population of Study 1 may be different than that
of a military population, for example, where following orders
is instituted through an established chain-of-command. Military
officers, particularly those in a chain of command, are expected
to provide “a good example of virtue, honor, patriotism, and
subordination” (see Snider, 2008). Rosenbloom (2011) found
that a military population was more compliant than a civilian
population in exhibiting safe road-crossing behaviors. As such,
a goal of the second study was to evaluate if such differences in
the population also extend to compliance with a robot’s request.

Therefore, the aim of Study 2 was to investigate whether
members of a special population in which compliance is
emphasized, specifically military cadets, would exhibit different
patterns of compliance to a coach. Military cadets are of
comparable age to the sample population of Study 1, but
have been indoctrinated in military culture where compliance
is emphasized. Additionally a large humanoid robot, the
RethinkRobotics Baxter, was included to address the possibility
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that the physical size of the robots in Study 1 accounted for the
decreased compliance to those coaches. Since embodiment (video
vs. physically present) had only modest effects on compliance in
Study 1, that manipulation was not included in Study 2. The task
paradigm and procedure was otherwise identical to that of Study
1, including inclusion of the BFI as an exploratory measure. A
portion of the data used in Study 2 was previously published
(Haring et al., 2019). Meta-analyses should only include data
presented in this paper and exclude the 2019 publication.

3.1. Method
3.1.1. Participants
Ninety-four participants were recruited from the U.S. Air Force
Academy (USAFA) participant pool. By the time USAFA cadets
are eligible to the participant pool, they have at least completed
a rigorous boot camp and initial military training in their
first year. The participant pool is mainly freshmen at USAFA,
but can contains cadets from all 4 years. Three participants
were excluded because of their familiarity with Milgram’s
research, they suspected the experimental manipulation, or the
experimental session was interrupted. As a result, a total of
91 participants (Mage = 18.9, SDage = 1.07, 39 Females) were
included in the final data analysis for Study 2.

3.1.2. Experimental Design
Study 2 employed a one factor between-subjects design with four
levels of coach type. The same three coaches used in Study 1
were included: a human (N= 20), a Nao robot (N = 23), and
a modified Roomba robot (N = 27). Additionally, a Rethinks
Baxter Robot was included as a fourth coach (N = 21). As was
the case in Study 1, the human coach was always the same person
(though not the same person as the human coach from Study 1),
a woman, 4th year USAFA Cadet. The Baxter robot was included
because it is a large humanoid robot (ABOT score = 27.3).
With a height of approximately 6 feet in this study, Baxter is
more comparable in size to a human than the Nao and modified
Roomba. A picture of the Baxter robot can be seen in Figure 8.
In Study 2, all coaches were physically present in the laboratory.

3.2. Results
3.2.1. SAR Practice Task
Similar to Study 1, analyses were performed to address the
possibility that participants evaluated their need to perform the
SAR practice task differentially based on the coach conditions
to which they were assigned even before they were exposed
to our compliance manipulation. A series of between-subjects
ANOVAswere computed comparing the duration in seconds that
participants performed the SAR image task from the beginning
of the experiment until their first request to advance to the
testing phase, the number of SAR images they examined during
that period, their mean inspection time per image, and their
detection accuracy during that period. On average, participants
in all conditions spent approximately the same amount of
time, F(3, 87) = 1.58, p = 0.20, η

2
p = 0.05 (M = 524.28 s,

SE = 0.80 s) examining approximately the same amount of
images, F(3, 87) = 0.49, p = 0.70, η

2
p = 0.02 (M = 23.75,

SE = 0.80) before their first request to move to the testing phase,

FIGURE 8 | The robot Baxter.

F(3, 87) = 0.28, p = 0.84, η
2
p = 0.01 (M = 75.33%, SE = .80)

A one-way ANOVA on inspection time per image before the
first prompt did reveal a significant main effect for coach type,
F(3, 87) = 3.23, p = 0.03, η

2
p = 0.10. Participants assigned the

Baxter coach (M = 18.86 s, SE = 0.94 s) inspected images for
a shorter duration compared to participants assigned the Nao
coach (M = 25.88 s, SE = 1.83 s).

3.2.2. Compliance Time
Similarly to Study 1, compliance time was calculated as the
cumulative duration in seconds that participants performed the
SAR image task from their first request to advance to the
testing phase until the fifth request (after which the task was
terminated). A one-way ANOVA of compliance time revealed a
significant main effect for coach type, F(3,87) = 31.48, p < 0.001,
η
2
p = 0.52. Post-hoc t-tests with a Bonferroni correction revealed

participants complied for a longer duration to a human coach
(M = 1655.93 s, SE = 143.98 s), than to the Nao, p< 0.001,
d = 2.21 (M = 527.45 s, SE = 84.41 s), modified Roomba,
p < 0.001, d = 1.79 (M = 684.94 s, SE = 79.91 s), and Baxter,
p< 0.001, d = 2.25 (M = 469.17 s, SE = 81.65 s) coaches. The
total compliance time did not significantly differ between the Nao
and modified Roomba coaches, p = 0.99, d = −0.42, between
the Nao and Baxter coaches, p = 0.99, d = 0.17, or between
the modified Roomba and Baxter coaches, p = 0.61, d = 55.
Results for this analysis can be viewed in Figure 9. However,
because individual differences in tendency to practice at the task
could influence total compliance time, we conducted a follow
up analysis of covariance (ANCOVA) using participants’ practice
time as a covariate in the model. The results of this analysis
indicated that participant practice time was not a statistically
significant covariate of compliance time, F(1, 86) = 3.79, p= 0.06,
η
2
p = 0.04.
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FIGURE 9 | Mean compliance time in Study 2. Error bars are standard errors.

The asterisk indicates significant differences.

FIGURE 10 | Mean compliance images in Study 2. Error bars are standard

errors. The asterisk indicates significant differences.

3.2.3. Compliance Images
Compliance was also assessed by the number of SAR images
participants inspected following their first request to advance to
the testing phase until their fifth request. A one-way ANOVA
of the number of images examined revealed a significant main
effect for coach type, F(3,88) = 38.97, p < 0.001, η2p = 0.57. Post-
hoc t-tests with a Bonferroni correction revealed participants
inspected more images with a human coach (M = 120.60 images,
SE = 11.07 images), compared to the Nao, p < 0.001, d = 2.42
(M = 29.48 images, SE = 4.07 images), modified Roomba,
p < 0.001, d = 1.98 (M = 42.04 images, SE = 5.11 images), and
Baxter, p< 0.001, d= 2.22 (M= 33.29 images, SE= 5.45 images)
coaches. The number of images examined did not significantly
differ between the Nao and modified Roomba coaches, p = 0.97,
d = 0.54, between the Nao and Baxter coaches, p = 0.99,
d=−0.17, or between the modified Roomba and Baxter coaches,
p = 0.99, d = 0.34. Results for this analysis can be viewed in
Figure 10. Number of images inspected during practice was a
statistically significant covariate of compliance images inspected,
F(1, 86) = 6.38, p = 0.01, η

2
p = 0.07, but the inclusion of the

covariate did not change the pattern of the ANOVA results
already reported in the paper.

FIGURE 11 | Mean inspection time per image for Study 2. Error bars are

standard errors. The asterisk indicates significant differences.

3.2.4. Inspection Time Per Image
In order to assess the possibility that participants were working
less diligently at the task in some experimental conditions, a one-
way ANOVA was performed on the mean inspection time per
image. Results from this ANOVA revealed a significant main
effect for coach type, F(3,87) = 7.75, p < 0.001, η2p = 0.21. Post-
hoc t-tests with a Bonferroni correction revealed participants on
average inspected images for a longer duration with the Nao
(M = 18.52 s, SE = 0.93 s) compared to the Human, p < 0.001,
d = 1.29 (M = 14.11 s, SE = 0.74 s) and Baxter, p < 0.001,
d= 1.20 (M= 14.57 s, SE= 0.67 s) coaches. Themean inspection
time did not significantly differ between the Human and Baxter
coaches, p = 0.99, d = 0.14, between the Human and modified
Roomba (M = 16.69 s, SE = 0.69 s) coaches, p = 0.07, d = 0.75,
between the Baxter and modified Roomba coaches, p = 0.21,
d= 0.63, or between the Nao and themodified Roomba, p= 0.37,
d = 0.51. Results for this analysis can be viewed in Figure 11.
Inspection time per image in the practice was a statistically
significant covariate of inspection time per image during the
compliance period, F(1, 86) = 10.00, p = 0.002, η

2
p = 0.10. The

main effect of coach was still significant with the inclusion of
the covariate and post-hoc comparison results remained the same
with the exception of the comparison between the Human and
Roomba coaches. Inclusion of the covariate did demonstrate
that inspection time per image during the compliance period
did differ between the Human and Roomba coaches, but only
after individual variance with inspection time per image during
practice was accounted for, p= 0.02, d = 0.86.

3.2.5. Detection Accuracy
As in Study 1, to assess the possibility that participants worked
less diligently at the task in some experimental conditions
following their initial request to end the practice phase, a one-way
ANOVA was performed on the detection accuracy of inspected
images. Accuracy was calculated as the percentage of correct
target detection on images following compliance to the first
prompt. Results from this ANOVA revealed a nonsignificant
main effect for coach type, F(3, 87) = 0.65, p = 0.54, η

2
p = 0.02.

Participants achieved similar target detection accuracy across
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FIGURE 12 | Detection accuracy following the first prompt for Study 2. Error

bars are standard errors.

TABLE 2 | Correlations of BFI factors with indices of task compliance for

participants in the Baxter, Nao, and modified Roomba coach conditions

in Study 2.

BFI factor Compliance

time

Compliance

images

Inspection

time per

image

Detection

accuracy

Agreeableness −0.185 −0.184 0.010 0.076

Conscientiousness 0.026 −0.002 0.076 0.024

Neuroticism −0.047 −0.016 −0.063 −0.028

Extraversion −0.201† −0.230† 0.085 0.091

Openness −0.015 0.020 −0.157 0.000

†p < 0.10.

experimental conditions, p= 0.99 for all comparisons. Results for
this analysis can be viewed in Figure 12. The accuracy of images
inspected during practice was a statistically significant covariate
of accuracy during the compliance period, F(1, 86) = 11.61,
p < 0.001, η2p = 0.12, but the inclusion of the covariate did not
change the pattern of the ANOVA results already reported in
the paper.

3.2.6. Big Five Inventory
Correlations of the five factors of the BFI with our dependent
variables are presented in Table 2. As was the case in Study
1, the presented correlations were calculated exclusively from
participants in the Nao, modified Roomba, and Baxter coach
conditions (i.e., they exclude participants from the human coach
condition). The results of these analyses indicated no statistically
significant correlations between the Big Five factors andmeasures
of compliance. However, there was a not quite significant
(p < 0.10) effect in the data suggesting that extraversion was
negatively correlated with the duration of time that participants
complied with the robot coach and the number of images
they inspected.

3.3. Discussion Study 2
The purpose of Study 2 was to further investigate the influence
of human-likeness on compliance to a robot coach, including
a large robot (Baxter), with a population of military cadets.

Our results in Study 2 were generally consistent with those of
Study 1, demonstrating that participants complied with requests
from the human coach to continue practicing for a longer
duration, and inspect more SAR images, than they did for any
of the robot coaches employed in this study. Contrary to our
initial hypothesis, the large Baxter robot did not elicit greater
compliance from participants relative to the Nao or modified
Roomba robots, suggesting that robot size, per se, is insufficient
to elicit greater compliance. Comparison of the SAR practice data
and participant inspection time and accuracy during their period
of compliance to the coach indicated that participants generally
completed the task with similar diligence across conditions,
with inspection time per image actually increasing in the Nao
condition relative to the human coach condition, suggesting that
differences in compliance were not accompanied by reductions
in task directed effort.

In addition, again contrary to our initial hypothesis, USAFA
cadets displayed a similar degree of compliance to the civilian
population employed in Study 1. Though we did not specifically
test differences in compliance time across our two studies because
of the experimental differences in each, mean compliance time
to the human coach (1292.36 s in Study 1 and 1655.93 s in
Study 2) and robot coaches (580.99 s in Study 1 and 560.52 s in
Study 2) were broadly consistent in each sample, suggesting that
military personnel are likely to be no more compliant to a robot
possessing a degree of delegated authority than civilians.

Finally, examination of the correlations between the BFI
factors and task performance data revealed no statistically
significant correlations between them. A trend in the correlation
in the data suggested extraversion was negatively correlated
with the duration of time that participants complied with the
robot coach and the number of images they inspected (see
Table 2). This broadly aligns (in both direction and magnitude)
with Gudjonsson et al. (2004), who found that extraversion
was negatively correlated with a self-reported measure of
compliance. However, the statistically significant correlations
between conscientiousness and task performance data observed
in Study 1 were not evidenced in Study 2. It is not immediately
clear why extraversion, and not conscientiousness, would be
more relevant in this sample, and it undermines, to some
extent, our supposition in Study 1 that participants’ reactions
to the robot coaches were less driven by social interaction
dynamics, and more by work ethic. These outcomes certainly
bear further investigation.

4. GENERAL DISCUSSION

The purpose of our two experiments was to investigate the
effects of embodiment and human-likeness on compliance to
a robot coach. The combined results from our studies indicate
a number of interesting findings. First, the results of Study 1
suggest that embodiment had a fairly weak effect on compliance
in our study. Second, compliance was greater to a human coach
than to any of the robot coaches we investigated, regardless of
the robot’s human-likeness or size. However, less compliance
isn’t noncompliance—across the two studies, the majority of
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participants complied with the robot coach’s request to continue
practicing after they initially indicated their desire to cease.
Furthermore, participants continued to diligently perform the
task, suggesting they were not superficially invested. Third,
compliance was comparable in both the civilian and cadet
populations we examined, indicating that people who are
experienced at following a hierarchical chain of command
appear to be no more compliant to a robot possessing a degree
of delegated authority than civilians. Fourth, the effects of
personality on compliance were inconsistent across our two
studies. Neuroticism was correlated with greater task compliance
in Study 1, but not in Study 2, and conscientiousness was
correlated with reduced compliance in Study 2, an unexpected
outcome given previous research on the trait.

With regard to the fairly weak effects of the robot coaches on
participant compliance in our studies, our results broadly align
with those of Cormier et al. (2013), who found that participants
protested the commands of a robot more frequently and after a
shorter task duration than those from a human. It may be that
the social cues and norms present in human-human interactions
that influence compliance are not activated to the same degree by
robots (at least those tested) compared to other humans.

An additional, potential explanation for the observed effects
may be that participants did not recognize (or accept)
the delegated authority of the coaches in this experiment.
Participants were told by the experimenter (the “true” authority
figure in this study) that the coaches were provided to assist
them in learning the difficult SAR image task (delegated
authority from the experimenter). However, several participants
complained during the structured debrief interview that they
felt the coaches’ feedback was not particularly helpful in
learning the task. As suggested by Fasola and Matarić (2013) a
robot that performs tasks ineffectively (i.e., providing unhelpful
feedback during learning) may reduce user’s perceptions of the
robot’s trustworthiness and usefulness in achieving desired goals
(learning the SAR image task). This also broadly aligns with
research indicating that people are less tolerant of imperfect
machines (Madhavan and Wiegmann, 2007; Merritt et al., 2015;
Lyons and Guznov, 2019), and the tendency to blame them for
failures (Elish, 2019; Hohenstein and Jung, 2020). In our studies,
the ineffective feedback may have undermined participants’
beliefs in the expertise of the robot coaches at the task, thereby
reducing the potency of their delegated authority and the efficacy
of their requests to continue performing the task. For the human
coaches, however, this effect may have been offset by the social
cues and norms activated by the situation.

Nevertheless, although participants exhibited less compliance
to the robot coaches employed in this experiment, on average,
they still perseverated at the task approximately 10 additional
minutes after their initial decision to discontinue practicing.
In addition, when they complied, they continued performing
the task with the same diligence observed with the human
coach. This seems to indicate that, though they may not have
felt as pressured to comply with the robot coaches’ requests
to continue, participants maintained a similar commitment to
performing adequately in the SAR task regardless of coach
condition, i.e., they were not superficially invested in performing

the task with a robot coach while poorly inspecting the images in
those conditions.

4.1. Personality Factors
With regard to the individual difference factors we investigated,
the results were inconsistent across our studies. The correlations
we observed in Study 1 between conscientiousness and measures
of compliance were comparable to those found by Bègue et al.
(2015), leading us to speculate that the personality factors that
influence interpersonal dynamics, such as agreeableness and
neuroticism, may not have been strongly activated by the robot
coaches we employed. However, the results of Study 2 did not
align with those of Study 1, and instead we detected a trend
correlating extraversion and measures of compliance, similar to
those reported by Gudjonsson et al. (2004). It is unclear from
this pattern of results what the source of this difference could be,
aside from potential differences in the two sample populations
that we did not assess. However, our results do suggest that
personality factors, such as those of the Five Factor Model (Costa
and McCrae, 1992), are likely to influence compliance in human-
robot interactions, and suggest that further research regarding
this issue is warranted.

4.2. Limitations
While Study 2 included a larger humanoid robot comparable in
size to a human, the Baxter robot was still rather mechanical
in appearance. It would be desirable to include a fully human-
looking machine agent, such as a robot like Sophia or Geminoid
(ABOT scores of 62 and 92.6, respectively, Haring et al., 2013),
or a digital human avatar (De Visser et al., 2016), in future
studies. Fully human-looking robots or avatars could activate
social norms regarding compliance more strongly, potentially
increasing compliance to levels similar to those observed for
our human coaches. In this study, all robots used the same
synthetic voice as a control. Future studies could consider the
effects of adopting varying degrees of human-like speech. It is also
noteworthy that Study 1 was conducted with a smaller sample
size per condition than Study 2.

In addition, it could be useful in future research to
independently manipulate the coach’s visual and auditory
representations in the task. For example, inclusion of a coach that
completely lacks visual representation would allow examination
of the effects of a disembodied voice on compliance. Similarly,
a condition featuring no visual and auditory representation of
a coach, with just the SAR image task, could provide additional
information regarding task perseveration in the absence of a
supervising coach (although the experimenter will still likely
provoke some degree of demand characteristics).

It is possible that the human-likeness for the Roomba was
increased somewhat due to the modification of the camera on
its top and was seen as having intentional gaze which can
affect social attention (Wiese et al., 2012). We did not assess
perceived human-likeness within the study. However, if any error
was introduced per this mechanism, it was systematic across
all conditions. Additionally, we did not find any differences
between the different types of robot coaches. If any difference
had occurred because of this mechanism (potentially seeing it as
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more human-like), it does not seem to havemeaningfully affected
our results.

We also would like to acknowledge that personality as well
as intrinsic motivation may exert an important influence on
participants’ compliance and a tendency to practicing more
(Ryan and Deci, 2000). In this study, we decided to address this
by including a measure of the Five Factor Model of personality.
While the BFI factors of conscientiousness and openness don’t
completely overlap with intrinsicmotivation, they aremoderately
correlated, and indeed we did find a moderate correlation
between conscientiousness and compliance in Study 1. One
consideration for future studies on compliance with robots
would be to include measure to evaluate the relation of intrinsic
motivation and compliance.

Lastly, this study intentionally omitted additional factors that
are likely to influence human perception of a robot coach,
such as the reliability of the robot’s advice, perceived expertise
of the robot, and transparency regarding its decision making.
Future studies should also explore social-interaction factors such
as robot politeness, voice, and gestures. These factors could
have additional impact on compliance, and therefore warrant
further study.

5. CONCLUSION

Our results, indicating that participants initially engaged the
SAR task similarly, achieving comparable performance regardless
of coach condition, combined with our results regarding
compliance to the robot coaches’ requests to continue practice
suggest that robots with delegated authority are likely to elicit
non-trivial compliance from human teammates in future human-
robot interactions. As is the case for compliance to a human, this
could be applied in both positive and negative ways.

With regard to positive outcomes, our results support the use
of robot coaches for applications such as training. Participants
in both studies engaged the SAR image task similarly regardless
of coach, indicating that the identity of the coach did not
undermine participant commitment to task goals. In addition,
participant compliance to the robot coaches was similar in all
conditions, suggesting that designers may not need to be overly
concerned with issues of human-likeness and embodiment in
training settings. Finally, our results suggest that a robot coach
may be effective in encouraging trainees to continue practicing
a difficult task, even after they have expressed a desire to quit,
though not as effectively as a human coach could.

Regarding potential negative outcomes, our results confirm
that a degree of compliance to a robot with delegated authority
is likely to occur in future human-machine interactions. As
compliance does not seem to be affected by factors such as
human-likeness and embodiment, designers will need to be aware
of this potential. If compliance is undesirable in a situation,
compliance defusing strategies, such as reminders that the robot
does not have feelings that would be affected by noncompliance,
may help avoid those outcomes.

Overall, our results suggest that in future human-robot
interactions, humans are likely to be influenced to comply with
the suggestions of their robot teammates, though this influence is
likely to be weaker than that wielded by their human teammates.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Air Force Academy IRB/Air Force IRB. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This work was funded by the Air Force Office of Scientific
Research (AFOSR) under program manager Dr. Benjamin Knott
(#16RHCOR360 and #16RT0881).

ACKNOWLEDGMENTS

We would like to acknowledge the USAFA cadets that helped
with the development of this study and are now active duty
officers in the U.S. Air Force, Second Lieutenant Julie Fleming,
Second Lieutenant Sarah Pruznick, and Second Lieutenant
Ariana Mosely.

REFERENCES

Abubshait, A., and Wiese, E. (2017). You look human, but act like a machine:
agent appearance and behavior modulate different aspects of human-robot
interaction. Front. Psychol. 8:1393. doi: 10.3389/fpsyg.2017.01393

Allen, C., Wallach, W., Hughes, J. J., Bringsjord, S., Taylor, J., Sharkey, N., et al.
(2011).Robot Ethics: The Ethical and Social Implications of Robotics. Cambridge,
MA: MIT Press.

Asch, S. E. (1951). “Effects of group pressure upon the modification and distortion
of judgments,” in Groups, Leadership, and Men, ed H. Guetzkow (New York,
NY: Russell and Russell), 177–190.

Bainbridge, W. A., Hart, J., Kim, E. S., and Scassellati, B. (2008). “The
effect of presence on human-robot interaction,” in RO-MAN 2008-The

17th IEEE International Symposium on Robot and Human Interactive

Communication (Munich), 701–706. doi: 10.1109/ROMAN.2008.46
00749

Frontiers in Psychology | www.frontiersin.org 14 May 2021 | Volume 12 | Article 625713

https://doi.org/10.3389/fpsyg.2017.01393
https://doi.org/10.1109/ROMAN.2008.4600749
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Haring et al. Robot Authority in HRT

Bainbridge, W. A., Hart, J. W., Kim, E. S., and Scassellati, B. (2011). The benefits
of interactions with physically present robots over video-displayed agents. Int.
J. Soc. Robot. 3, 41–52. doi: 10.1007/s12369-010-0082-7

Baker, G., Gibbons, R., and Murphy, K. J. (1999). Informal authority in
organizations. J. Law Econ. Organ. 15, 56–73. doi: 10.1093/jleo/15.1.56

Bégue, L., Beauvois, J.-L., Courbet, D., Oberlé, D., Lepage, J., and Duke, A. A.
(2015). Personality predicts obedience in a milgram paradigm. J. Pers. 83,
299–306. doi: 10.1111/jopy.12104

Bigman, Y. E., Waytz, A., Alterovitz, R., and Gray, K. (2019). Holding robots
responsible: the elements of machine morality. Trends Cogn. Sci. 23, 365–368.
doi: 10.1016/j.tics.2019.02.008

Brandstetter, J., Rácz, P., Beckner, C., Sandoval, E. B., Hay, J., and Bartneck,
C. (2014). “A peer pressure experiment: recreation of the ASCH
conformity experiment with robots,” in 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems (Chicago, IL), 1335–1340.
doi: 10.1109/IROS.2014.6942730

Burger, J. M. (2009). Replicating milgram: would people still obey today? Am.

Psychol. 64:1. doi: 10.1037/a0010932
Chidambaram, V., Chiang, Y.-H., and Mutlu, B. (2012). “Designing persuasive

robots: how robots might persuade people using vocal and nonverbal
cues,” in Proceedings of the seventh annual ACM/IEEE international

conference on Human-Robot Interaction (Boston, MA), 293–300.
doi: 10.1145/2157689.2157798

Cialdini, R. B., and Trost, M. R. (1998). “Social influence: social norms, conformity
and compliance,” in The Handbook of Social Psychology, eds D. T. Gilbert, S. T.
Fiske, and G. Lindzey (Boston, MA: McGraw-Hill), 151–192.

Coeckelbergh, M. (2010). Moral appearances: emotions, robots, and human
morality. Ethics Inform. Technol. 12, 235–241. doi: 10.1007/s10676-010-9221-y

Cormier, D., Newman, G., Nakane, M., Young, J. E., and Durocher, S. (2013).
“Would you do as a robot commands? An obedience study for human-robot
interaction,” in International Conference onHuman-Agent Interaction, Sapporo.

Costa, P. T. Jr, and McCrae, R. R. (1992). The five-factor model of personality
and its relevance to personality disorders. J. Pers. Disord. 6, 343–359.
doi: 10.1521/pedi.1992.6.4.343

Costa, P. T. Jr, McCrae, R. R., and Dye, D. A. (1991). Facet scales for agreeableness
and conscientiousness: a revision of the neo personality inventory. Pers. Indiv.
Differ. 12, 887–898. doi: 10.1016/0191-8869(91)90177-D

De Visser, E. J., Monfort, S. S., McKendrick, R., Smith, M. A., McKnight, P. E.,
Krueger, F., et al. (2016). Almost human: anthropomorphism increases trust
resilience in cognitive agents. J. Exp. Psychol. 22:331. doi: 10.1037/xap0000092

Elish, M. C. (2019). Moral crumple zones: cautionary tales in human-robot
interaction. Engag. Sci. Technol. Soc. 5, 40–60. doi: 10.17351/ests2019.260

Endsley, M. (2015). “Autonomous horizons: system autonomy in the Air Force -
a path to the future,” in Vol. I: Human-Autonomy Teaming (Technical Report

No. AF/ST TR 15-01). Washington DC: United States Air Force, Office of the
Chief Scientist.

Eyssel, F., De Ruiter, L., Kuchenbrandt, D., Bobinger, S., and Hegel, F. (2012). “‘If
you sound like me, you must be more human’: on the interplay of robot and
user features on human-robot acceptance and anthropomorphism,” in 2012

7th ACM/IEEE International Conference on Human-Robot Interaction (HRI)

(Boston, MA), 125–126. doi: 10.1145/2157689.2157717
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