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One purpose of cognitive diagnostic model (CDM) is designed to make inferences
about unobserved latent classes based on observed item responses. A heuristic
for test construction based on the CDM information index (CDI) proposed by
Henson and Douglas (2005) has a far-reaching impact, but there are still many
shortcomings. He and other researchers had also proposed new methods to improve
or overcome the inherent shortcomings of the CDI test assembly method. In this study,
one test assembly method of maximizing the minimum inter-class distance is proposed
by using mixed-integer linear programming, which aims to overcome the shortcomings
that the CDI method is limited to summarize the discriminating power of each item into a
single CDI index while neglecting the discriminating power for each pair of latent classes.
The simulation results show that compared with the CDI test assembly and random test
assembly, the new test assembly method performs well and has the highest accuracy
rate in terms of pattern and attributes correct classification rates. Although the accuracy
rate of the new method is not very high under item constraints, it is still higher than the
CDI test assembly with the same constraints.

Keywords: cognitive diagnosis, cognitive diagnostic model information index, cluster analysis, mixed-integer
linear programming, inter-class distance, correct classification rate

INTRODUCTION

The theory of cognitive diagnostic assessment (CDA) is an important part of personalized adaptive
learning (Sia and Lim, 2018). Since the cognitive diagnostic model (CDM) was put forward, it
has attracted much attention because of its ability to analyze and explain the test results in detail
(Hsu et al., 2020). On the other hand, the test is the bridge between the abstract and unobservable
ability of the examinees and the real observable item response data, so the quality of the test affects
the quality of diagnostic classification directly. A test that meets the test specification needs to
be selected from an item bank, then the test assembly will be restricted by many conditions and
requirements (Zijlmans et al., 2019; Tang and Zhan, 2020), such as the difficulty and discrimination
under the constraints of psychometrics, the maximum number of knowledge points allowed in a
test, or the requirements of parallel tests.

How to construct a test with higher quality has always been a research hotspot. In the aspect
of test assembly based on cognitive diagnosis, the test assembly method of CDM information
index (CDI) proposed by Henson and Douglas (2005) is of great influence. Henson et al. (2008)
put forward the attribute level discrimination index (ADI) under uniform and non-uniform
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distribution of attributes. However, neither the CDI method nor
the ADI method considers the attribute hierarchical structure.
When these methods are applied in practice, the performance
of CDI and ADI methods will be poor under some conditions
if the hierarchical structure exists between attributes (Kuo et al.,
2016). In addition, Finkelman et al. (2009) proposed a method
of test assembly based on genetic algorithm minimizing the
expected posterior error rate for attributes under the framework
of CDA. For example, the method of test assembly based
on genetic algorithm takes three fitness functions: the average
number of classification errors, maximum error rate, and ability
to hit attribute-level target error rates. This method can directly
optimize the classification errors, but its computational intensity
is considerably greater than that of analytic procedures like
the CDI. For classroom or formative assessment, we should
choose the algorithm with low computational complexity if other
algorithms for test assembly are sufficient to meet the needs
(Clark, 2013).

In terms of test assembly methods based on cognitive
diagnosis, researchers have proposed a large number of methods,
but most of these methods are based on a certain CDI, and there
are some problems such as lacking of global consideration or
requiring large amount of computation. Therefore, it is urgent to
consider the global information and the method of test assembly
with less calculation in cognitive diagnosis. The method of test
assembly based on CDI takes into account the sum of the whole
amount of information, but it has been found that this method
is not the optimal method of test assembly. In some cases, the
total amount of information is the largest, which may due to some
of the larger information on a non-trivial subset of the universal
set of latent classes (i.e., the set of all possible combinations
of attributes). The discriminating power of this strategy with
the largest CDI is not necessarily better than the strategy with
uniform distribution of information and less overall information.
Therefore, the goal of this study is to explore a new method
for test construction, and combine the idea of cluster analysis
(Guo et al., 2020) and mixed-integer linear programming method
(Kantor et al., 2020) to propose a method to maximize the
minimum distance (MMD) between latent classes, in order to
overcome the shortcomings of the existing methods.

METHODS

Cognitive Diagnostic Model
The purpose of cognitive diagnostic model is to describe
the relationship between examinee’s item response and his
or her potential cognitive attributes (Mao, 2014). It is a
psychometric model. The common cognitive diagnostic models
are the deterministic input noisy “and” gate (DINA) model,
the deterministic input noise “or” gate (DINO) model, and the
reduced-reparameterized unified model (R-RUM; Hartz, 2002).
The new method proposed in this study mainly focused on these
two cognitive diagnosis models. Let K be the number of attributes
to be measured by the test. The entry qjk in the Q-matrix indicates
whether the attribute k is measured in item j. When qjk = 1,
the attribute k is measured by item j. And 0 indicates that

it has not been measured. αik indicates the attribute status of
examinee i, that is, 1 indicates examinees’ mastery of attribute k,
and otherwise 0.

The DINA model is a completely non-compensatory model,
which requires that the examinees must master all the attributes
required by the item for correctly answering. As long as any
one of them is not mastered, it will lead to a wrong answer
or a very low probability of correct answer. For the value of

the ideal response ηij =
K∏

k=1
α

qjk

ik , a value of 1 indicates that

the examinee i has mastered all the attributes measured by
the item j, while a value of 0 means that the examinee has
not fully mastered the attributes measured by the item j. The
corresponding probabilities of correct answer to this item are
(1− sj) and gj respectively. The formula of DINA model is as
follows (Junker and Sijtsma, 2001)

P
(
Xij = 1|αi

)
=
(
1− sj

)ηij g(
1−ηij)

j . (1)

The DINO model is the compensatory model. As long as the
examinees have mastered any of the attributes measured by the
item, they can have a higher probability of correctly answering.

For the value of the ideal response -ij = 1−
K∏

k=1
(1− αik)

qjk is 1,

it means that the examinees have mastered at least one attribute
measured by item j. A value of 0 indicates that the examinees have
not mastered all the attributes of item j. The formula of the DINO
model is as follows (Templin and Henson, 2006)

P
(
Xij = 1|αi

)
= (1− sj)

-ij g
(1−-ij)
j . (2)

where sj is the slip probability for the examinees of the ideal
response with value 1 on item j, and gj is the guessing probability
for the examinees with value 0 on item j.

Like the DINA model, R-RUM is a non-compensatory model,
which is a simplified unified model of reparameterization. The
baseline parameter π∗j indicates the positive response probability
for examinees who have mastered all the attributes required by
item j. The values are all between 0 and 1. The penalty parameter
r∗jk for not possessing the kth attribute is defined at the level of
interaction between the item and the attributes and reflects the
importance of attribute k on item j. The formula of R-RUM is as
follows (Hartz, 2002)

P
(
Xij = 1|αi

)
= π∗j

K∏
k=1

r
∗(1−αik)qjk
jk . (3)

For simplify, the correct answer probability P
(
Xij = 1|αi

)
is

denoted by Pj(αi), where αi is the knowledge state of the
examinee i.

Kullback-Leibler Information Distance
Between Classes
Considering the existing cognitive diagnosis item bank, attribute
vectors of all items in the item bank have been specified (Wang
et al., 2020), and the parameters of each item have been estimated
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by the parameter estimation algorithm of cognitive diagnosis
model. The correct answer probability Pj(αc) of knowledge state
αc on item j can be calculated by item attribute vector qj and
item parameters, where αc is a knowledge state of the examinees
and is an element of the universal set of latent classes. Let M
be the size of the item bank. Kullback-Leibler (K-L; Cover and
Thomas, 2006; Debeer et al., 2020) information quantity or K-L
distance is the most commonly used to measure the distance
between any two probability distributions Pj (αu) and Pj (αv) for
two knowledge states αu and αv. Formally, item j is defined as the
K-L distance of the item response probability distributions under
the knowledge states of αu and αv

DK−L(αu, αv, j) = Pj (αu) log
[

Pj (αu)

Pj (αv)

]
+

(1− Pj (αu)) log

[(
1− Pj (αu)

)(
1− Pj (αv)

) ] . (4)

In fact, DK−L is the expectation of the function of the logarithmic
likelihood ratio of probability distributions Pj (αu) and Pj (αv).
Although this amount of information is called the distance
between the two distributions, and it does have statistical
significance for distance measurement, that is, with the increase
of DK−L, it is easier to distinguish the two distributions
statistically (Rao, 1962). But it is not symmetrical, that is,
DK−L(αu, αv) 6= DK−L(αv, α u) .

Kullback-Leibler distance is often used for computer adaptive
testing or cognitive diagnostic computer adaptive testing. For
instance, Chang and Ying (1996) firstly suggested that K-L
distance instead of Fisher information should be used as a more
effective item selection index in computer adaptive testing based
on one-dimensional IRT model. Madigan and Almond (1995)
use K-L distance for test selection strategy of belief networks.
Tatsouka and Ferguson (2003) use K-L distance and Shannon
entropy for sequential item selection and use it in cognitive
diagnostic computer adaptive testing. Different from the amount
of Fisher information, the K-L distance does not require that the
parameter space must be continuous, so it is suitable for CDM
where the attribute pattern is discrete.

Test Assembly Using Mixed-Integer
Linear Programming
In cognitive diagnosis, the probability of correct answer or the
expected vector of item response of knowledge state αc on test
length of J in a test is P (αc) = (P1 (αc) , P2 (αc) , . . . , PJ (αc)).
For knowledge state αc, the P(αc) can be regarded as the center
of the class. In pattern recognition or clustering methods, the
method of maximum distance between classes can usually be used
for classification. If the cognitive diagnostic test can maximize the
distance between the class centers of all potential classes αc ∈ Qs,
where Qs is the universal set of latent classes, it is easier to classify
knowledge states. It is just like in a jigsaw puzzle, if there is a big
difference between the sub-images, the difficulty of completing
the puzzle will be correspondingly lower.

In order to characterize the distinguishing power of item j
to knowledge states αu and αv, the following is DK−L as its

metric index. For any αu and αv, the discrimination power
matrix or K-L distance matrix Dj = (D(αu, αv, j)) is obtained.
If the cardinality (i.e., the number of elements) of Qs is T,
we know that the number of rows or columns is T in Dj.
In order to use the mixed-integer linear programming for
test construction, it is necessary to vectorize the matrix Dj
into a single stacked column vector. That is, the sequence of
rows in this matrix is composed of a long vector, and then
transpose the row vector to get the stacked column vector,
which is denoted as Vj = Vec(Dj). When the matrix Dj is
vectorized, we remove the main diagonal elements because these
values are zeros. For each item in the item bank, Vj can be
calculated, and the matrix V = (V1,V2, . . . ,VM) composed of
all the items can be obtained, where M is the number of
items in the item bank. Based on the mixed-integer linear
programming model, we will give a linear programming model
which takes into account the mean value of the distance between
all classes and maximizes the minimum distance between classes:

min
(
f1x+ f2y

)
, (5)

Subject to
Vx+ y ≥ b,

1Tx = J,

xj ∈ {0, 1}, j = 1, 2, . . ., M,

y ∈ R.

Among them, f1 = (f11, f12, . . . , f1M)
T , where f1j =

−

TT−1∑
v=1

Vvj/(T(T− 1)). The negative of f1j is used to

convert a maximization problem into a minimization one.

Here, f2 = J
T(T−1)∑

u=1

M∑
v=1

Vuv/(TM (T− 1)) is the weight of y,

x = (x1x2 . . . xM)
T , where x1x2 · · · xM is the 0-1 vector in the

decision vector of linear programming, and the value of the
xj indicated whether the test contains the item j. If xj = 1, it
means that the test contains the item j, otherwise it does not
include the item j, b = (b1, b2, . . . , bT(T−1))

T represents the
lower limit of K-L distance for all pairs of knowledge states.

You can set the bounded distance bt = J
M∑

j=1

(
Vtj
)
/M, which

is the average value of the distance between classes of J items
in the item bank. 1Tx = J represents the test length constraint,
where 1T is a M-dimensional column vector with all elements
1, and J is the test length. y captures the difference between
the t-th pair inter-class distance V(t)x and the target distance
bt , where V(t) is row t in V . Then, adding y to the constraint
condition, and adding f2y to the objective function, is to
maximize the minimum inter-class distance y. For example, if
the components in b are equal, and V(t)x is the smallest of all
the distances between classes, if V(t)x < bt , then V(t)x can at
least add bt − V(t)x to satisfy the constraint. Because the average
distance between other classes is larger than V(t)x, V(t)x needs
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to add bt − V(t)x to reach the constraint. And minimizing f2y
in the objective function is minimizing f2(bt − V(t)x).Because
f2y is positive and bt fixed, that is maximizing V(t)x which
is the minimum inter-class distance between classes. In the
objective function, we also consider the f1x, linear programming
model at the same time, that is, to maximize the distance
between all classes, because the model also contains 0-1 vector
x and real vector y, so this linear programming model is a
typical mixed-integer or mixed 0-1 linear programming model,
which can be solved by intlinprog function in Matlab2015a.
For the source codes, we provided a user-friendly code in
MATLAB into a public repository at the website: https:
//github.com/JXNU-EduM/MMD-Test-Assembly-for-CD/.

Simplify of K-L Distance Matrix
The distance index DK−L in this study needs to be calculated
for mixed-integer linear programming, so it is necessary to
process the distance index matrix with vectorizing, transposing
and merging. In the case of no hierarchical structure of attributes,
there are T = 2K possible mastery modes for K attributes,
and there are M items in the item bank. The size of the
distance matrix of M items on the 2K attribute mastery patterns
after vectorizing, transposing and merging is M∗2K(2K

− 1).
If M is 300 and K is 4, the size of the distance matrix
is 300∗240. Although the size of the matrix is within the
acceptable range, the amount of calculation for mixed-integer
linear programming is a little large, so if possible, the distance
matrix should be simplified.

If the u-th row and v-column element in Dj is denoted by
Djuv, and the corresponding element in Vj is denoted by Vjuv.

FIGURE 1 | Partial relation for eight possible attributes mastery patterns.

Djuv or Vjuv is the discriminating power for these two different
knowledge states of αu and αv, and one condition for the smallest
difference between the two knowledge states is that there is a
k-th attribute in the two attribute mastery patterns, which makes
the k-th attribute mastery status of the two patterns different,
and all mastery status except k are exactly the same. If only
the discriminating power among attribute patterns with the
least difference for the item is considered when vectorizing the
distance matrix, the Vjuv can be simplified. In the following, the
distance matrix index corresponding to the simplified Vjuv is
recorded as SDK−L. According to the characteristics of attribute
patterns, we know that if the number of attributes is K and a
certain attribute pattern is given, there are K attribute patterns
with the least difference from it. Because of the asymmetry of the
distance between αu and αv, that is, the DK−L distance from αu
and αv is different from that from αv to αu, both Djuv and Djvu
should be considered. If the number of attributes is three and
the attributes are independent and without hierarchical structure,
there are eight possible attribute mastery patterns, as shown in
Figure 1: the difference of attribute patterns with connections
between adjacent levels is the smallest. Thus, only 24 elements
needed to be considered in Dj is obviously smaller than the
number of non-diagonal elements in Dj, which can greatly save
the computational cost.

STUDY DESIGN

Some main factors that may affect the efficiency of constructing
test assembly should be considered: cognitive diagnosis model
(the DINA model, the DINO model, and the R-RUM), attribute
correlation coefficient (0 and 0.5), the number of examinees
was fixed at 10000, the size of item bank was fixed at 300,
the number of measured attributes was fixed at 4. Attribute
correlation coefficient is zero, implying that the attributes
were independent of each other, and the knowledge state was
distributed evenly. Under each condition, the experiment was
repeated for 200 times.

Assuming that the test measured K attributes, there are at
most 2K

− 1 possible item attribute vectors. First of all, all
possible item attribute binary vectors were converted to decimal
as 1, 2, . . . , 2K

− 1, and then 300 random integers in the range
[1, 2K

− 1] were randomly generated. Item attribute vectors of
300 items with corresponding numbers were selected to form the
Q-matrix for an item bank. Item parameters of each item were
randomly generated from specified distributions. The DINA and
DINO models have the guessing and slip item parameters, which
are randomly generated from a uniform distribution U (0.05,
0.4). Meanwhile the R-RUM also has the baseline and penalty
parameters, which are respectively randomly generated from the
uniform distribution U (0.75, 0.95) and U (0.2, 0.95). These were
the same as the experimental design of Henson and Douglas
(2005).

When the examinees are simulated, two aspects need to
be considered: one is attribute mastery status αki at the k-th
attribute for the i-th examinee and the other is the correlation
coefficient between attributes, denoted by ρ. Multivariate normal
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distribution can be used to simulate latent ability, α̃ i ∼

MVN(0, 6K∗K), where 0 is the zero vector with the length of K
and6 is the correlation matrix

6 =

 1 · · · ρ
...
. . .

...

ρ · · · 1

 . (6)

In this study, the value of ρ is 0 (independent structure) or 0.5.
After getting the value of α̃ki, we need to discretize it. The strategy
of discretization of αki is

αki =

{
1 if α̃ki ≥ 0,
0 otherwise.

(7)

Two groups of 10000 examinees were simulated. One group of
examinees was used to calculate the empirical distribution of
knowledge state, which will be applied as the prior distribution
for compute the posterior mode in the classification of the other
group. We have not changed this condition for the repetition
of the study of Henson and Douglas (2005). If a lager sample
is available for the calibration of item bank, the empirical
distribution of attribute patterns from the large sample will be
applied as the prior distribution to computing the posterior
mode in the classification of examinees who have taken the tests
constructed from the calibrated item bank.

For a set of given attribute mastery pattern, PXij = 1|αi
depending on the selected model is the probability of correct
response to item j for examinee i with attribute mastery pattern
αi. We supposed u was randomly generated from a uniform
distribution U (0, 1). The item response of the ith examinee on
item j can be obtained by discretizing the probability matrix

Xij =

{
1 if u ≤ P

(
Xij = 1|αi

)
0 otherwise.

(8)

Since the item parameters were known, the examinees’ item
responses on the selected items could be simulated, and then the
examinees were classified by maximum posterior estimation, and
then attribute correct rate (ACR) and pattern correct rate (PCR)
could be calculated. The formulas of ACR and PCR are as follows

ACR =
1

NK

K∑
k=1

N∑
i=1

I
(
αik = α̂ik

)
, (9)

and

PCR =
1
N

N∑
i=1

I
(
αi = α̂i

)
. (10)

In the above two expressions, N and K represent the number of
examinees and the number of attributes, respectively, and I(x =
y) is an indicative function, which is defined as follows: when
x = y, I(x = y) = 1, otherwise it is 0. The attribute correct rate
(ACR) is the proportion of examinees whose estimated attribute
status is equal to the simulated or true attribute status, while
the pattern correct rate (PCR) is the proportion of examinees
whose estimated attribute patterns is equal to the simulated or

true attribute patterns. These two indices are commonly used in
the simulation study for evaluating the correct classification rates
for attributes or attribute patterns. The higher PCR and ACR for
a test construct method implies that it yields considerably higher
correct classification rates.

The DK−L distance was used as the inter-class distance, and
the mixed-integer linear programming is used to maximize
the minimum inter-class distance with additional constraints.
The test length is 20 for all test design. The first constraint
was no constraint (No Constraints, NC), which directly used
the greedy algorithm to construct test, and did not set any
constraints based on the CDI or MDD. The second constraint
was item-level constraint (Item Constraints, IC), which controls
the number of items that measure a specific number of attributes
for test assembly. According to the suggestion of Henson and
Douglas (2005), among the 20 items that measure a total
of 4 attributes, 9 items measured three attributes, 7 items
measured two attributes, and the remaining 4 items measured
one attribute. The third constraint was the attribute number
constraint (Attribute Constraints, AC), which required that each
attribute must be measured at least 7 times in a test with four
attributes and 20 items.

STUDY 1: COMPARISON BETWEEN THE
PROPOSED METHOD AND ITS
SIMPLIFICATION

The proposed method uses mixed-integer linear programming to
maximize the minimum inter-class distance between classes and
comprehensively to consider the overall amount of information
in order to achieve better test assembly quality. However, when
the number of attributes measured was four, the calculation of
the distance matrix DK−L after vectorizing by the new method
was a bit large, so when using the new method to construct
test assembly, the distance matrix needs to be simplified. The
test assembly method using the original and simplified matrices
were denoted by DK−L and SDK−L, respectively. In fact, the
simplification of the distance matrix will reduce the constraints
of mixed-integer linear programming. The simplified matrix aims
to discriminate similar attribute patterns, but whether it will lose
the amount of information, if it is true, the size of the loss still
needs to be verified.

Research Purpose
The purpose of this study is to verify whether the simplified
distance matrix will lose information and lead to poor results.
Since this study only considered the effect of simplified
constraints on the efficiency of the MMD test assembly method,
a single factor or one-way analysis of variance (ANOVA) can
be performed on the two groups of ACR and PCR before
and after the simplification in order to measure the impact
of simplified constraints on ACR and PCR. In addition, the
mean of ACR or PCR before and after simplification and the
index of constructing test assembly time (in seconds) need to be
taken into account.
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TABLE 1 | Single factor analysis of variance for simplified and non-simplified constraints under the DINA model.

Correlation Accuracy Constraints SA SE F p-value

0 ACR NC 5.3222E-06 0.0054 0.3942 0.5304

IC 3.4223E-09 0.0168 0.0001 0.9928

AC 6.7185E-06 0.0059 0.4556 0.5001

PCR NC 6.9139E-05 0.0604 0.4559 0.4999

IC 9.8010E-07 0.0966 0.0040 0.9494

AC 6.4883E-05 0.0654 0.3951 0.5300

0.5 ACR NC 9.8533E-06 0.0052 0.7510 0.3867

IC 4.4944E-08 0.0177 0.0010 0.9747

AC 2.9618E-06 0.0050 0.2346 0.6284

PCR NC 1.2589E-04 0.0619 0.8099 0.3687

IC 4.6923E-07 0.1320 0.0014 0.9700

AC 3.4047E-05 0.0592 0.2290 0.6326

TABLE 2 | Single factor analysis of variance for simplified and non-simplified constraints under the DINO model.

Correlation Accuracy Constraints SA SE F p-value

0 ACR NC 1.1516E-05 0.0060 0.7602 0.3838

IC 1.2100E-10 0.0163 0.0000 0.9986

AC 6.0639E-06 0.0060 0.4025 0.5262

PCR NC 1.0040E-04 0.0670 0.5961 0.4405

IC 5.0625E-08 0.0939 0.0002 0.9883

AC 6.6831E-05 0.0668 0.3985 0.5282

0.5 ACR NC 5.8443E-06 0.0054 0.4343 0.5103

IC 3.8813E-07 0.0154 0.0100 0.9202

AC 2.2801E-06 0.0054 0.1688 0.6814

PCR NC 7.1234E-05 0.0658 0.4309 0.5119

IC 2.6732E-06 0.1209 0.0088 0.9253

AC 1.8966E-05 0.0654 0.1154 0.7343

TABLE 3 | Single factor analysis of variance for simplified and non-simplified constraints under the R-RUM model.

Correlation Accuracy Constraints SA SE F p-value

0 ACR NC 3.0360E-07 0.0082 0.0147 0.9035

IC 4.1598E-04 0.0114 14.4606 0.0002

AC 8.2369E-08 0.0085 0.0039 0.9505

PCR NC 4.1209E-06 0.0854 0.0192 0.8898

IC 1.3195E-03 0.0886 5.9273 0.0153

AC 1.6512E-06 0.0882 0.0075 0.9313

0.5 ACR NC 1.7222E-09 0.0051 0.0001 0.9908

IC 1.9847E-04 0.0058 13.6922 0.0002

AC 2.4602E-07 0.0051 0.0193 0.8896

PCR NC 2.3040E-07 0.0584 0.0016 0.9684

IC 1.1219E-03 0.0507 8.8060 0.0032

AC 3.2580E-06 0.0586 0.0221 0.8818

Experimental Steps
In order to achieve the purpose of this study, the experiment was
designed according to the following steps:

(1) According to the design of Section 3 (four attributes were
considered), we simulate two groups of examinees, in which
one group was used to calculate the prior distribution, and
the other group was used for classification. We simulate
the Q matrix and item parameters in the item bank, and

simulate the observed complete item response matrix of all
examinees on all items in the item bank.

(2) Calculate the DK−L distance and the simplified
DK−L distance of all items on all possible attribute
mastery patterns.

(3) Choose the items according to the strategies of no
restriction, attribute restriction and item restriction;

(4) Take out the response matrix of all the items on the
corresponding test according to the test items generated by
the test assembly algorithm;
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TABLE 4 | Comparison of simplified and non-simplified constraints under the DINA model.

Correlation Accuracy Constraints DK−L SDK−L SDK−L Outperforms DK−L Time for DK−L (seconds) Time for SDK−L (seconds)

0 ACR NC 0.9798 0.9795 0.4500 1.9195 0.7373

IC 0.9463 0.9463 0.9700 0.3661 0.1022

AC 0.9796 0.9793 0.4250 1.9718 0.7971

PCR NC 0.9260 0.9251 0.4500 1.9195 0.7373

IC 0.8356 0.8357 0.9800 0.3661 0.1022

AC 0.9253 0.9245 0.4150 1.9718 0.7971

0.5 ACR NC 0.9810 0.9807 0.4350 1.8395 0.7196

IC 0.9489 0.9489 0.9800 0.3429 0.0909

AC 0.9808 0.9806 0.4850 1.9187 0.7774

PCR NC 0.9292 0.9281 0.4400 1.8395 0.7196

IC 0.8349 0.8350 0.9800 0.3429 0.0909

AC 0.9286 0.9280 0.4800 1.9187 0.7774

TABLE 5 | Comparison of simplified and non-simplified constraints under the DINO model.

Correlation Accuracy Constraints DK−L SDK−L SDK−L Outperforms DK−L Time for DK−L (seconds) Time for SDK−L (seconds)

0 ACR NC 0.9794 0.9790 0.4300 1.7908 0.8185

IC 0.9457 0.9457 0.9800 0.3470 0.1052

AC 0.9793 0.9791 0.4700 1.8486 0.8369

PCR NC 0.9246 0.9236 0.4750 1.7908 0.8185

IC 0.8346 0.8346 0.9800 0.3470 0.1052

AC 0.9245 0.9237 0.4800 1.8486 0.8369

0.5 ACR NC 0.9814 0.9811 0.4450 1.7821 0.8107

IC 0.9494 0.9495 0.9950 0.3277 0.0955

AC 0.9811 0.9810 0.5150 1.8327 0.8403

PCR NC 0.9305 0.9297 0.4450 1.7821 0.8107

IC 0.8358 0.8360 0.9950 0.3277 0.0955

AC 0.9297 0.9292 0.5300 1.8327 0.8403

(5) Estimate the knowledge state of the examinees and calculate
the PCR and ACR, according to the selected response
matrix, and repeat experiments for a total of 200 times.

(6) A one-way analysis of variance was performed on the data
before and after the simplification. The specific steps of the
analysis method were as follows:

We conduct a statistical test to compare the means for the PCR
and ACR from two methods with the null hypothesis H0: The
simplified constraint has no significant effect on the ACR and
PCR of the MMD test assembly method.

In order to express the differences of the means for the PCR
or ACR from two methods, the simplified ACR (the same for
PCR analysis) is combined into a two-column matrix Yij, i = 1,2;
j = 1,2, . . . , n. The sum of samples is set to Yi. =

∑n
j=1 Yij, and the

sample mean is Ȳi =
1
n
∑n

j=1 Yij, then the calculation formula for
the total mean of the samples is

Ȳ =
1
n

2∑
i=1

n∑
j=1

Yij. (11)

The sum of squares of deviations is an indicator of the
degree of dispersion of all data. If the assumption H0 holds, the
simplified constraint will have no significant effect on ACR or

PCR, and then the difference of data in Yij is caused by other
random factors. If the assumption is not true, in addition to
random factors, the data difference in Yij also has the influence
of simplified constraints. If the influence of simplified constraints
is much greater than that of random factors, the simplified
constraints should be considered to have a significant impact on
ACR or PCR, otherwise it is considered to have no significant
impact. Among them, the calculation formulas for the sum of
squares between groups SA and the random error sum of squares
(or sum of squares within groups) SE are

SA =

2∑
i=1

n(Ȳi − Ȳ)2, (12)

and

SE =

2∑
i=1

n∑
j=1

(Yij − Ȳi)
2. (13)

In this study, only one factor was considered, so the degree of
freedom of SA was 1, and the total observation data was set to 2n,
then the degree of freedom of SE was 2n-2. From this, the formula
for the one-way analysis of variance F-test can be calculated

F =
SA

SE/(2n− 2)
. (14)
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TABLE 6 | Comparison of simplified and non-simplified constraints under the R-RUM model.

Correlation Accuracy Constraints DK−L SDK−L SDK−L Outperforms DK−L Time for DK−L (seconds) Time for SDK−L (seconds)

0 ACR NC 0.9514 0.9514 0.5250 3.3500 0.8915

IC 0.9332 0.9311 0.2600 0.3594 0.1072

AC 0.9513 0.9513 0.5150 3.4402 0.9404

PCR NC 0.8270 0.8272 0.5500 3.3500 0.8915

IC 0.7816 0.7780 0.3750 0.3594 0.1072

AC 0.8267 0.8269 0.5500 3.4403 0.9404

0.5 ACR NC 0.9590 0.9590 0.4950 3.3598 0.8921

IC 0.9457 0.9443 0.2750 0.3369 0.1024

AC 0.9590 0.9589 0.5000 3.4420 0.9420

PCR NC 0.8495 0.8495 0.5000 3.3598 0.8921

IC 0.8115 0.8081 0.3500 0.3369 0.1024

AC 0.8494 0.8492 0.5050 3.4420 0.9420

TABLE 7 | The accuracy rate of each condition for four attributes
under the DINA model.

Correlation Accuracy Constraints Random CDI SDK−L

0 ACR NC 0.8443 0.9692 0.9795

IC 0.8257 0.9173 0.9463

AC 0.8439 0.9730 0.9793

PCR NC 0.5803 0.8886 0.9251

IC 0.5507 0.7498 0.8357

AC 0.5806 0.9054 0.9245

0.5 ACR NC 0.8801 0.9733 0.9807

IC 0.8680 0.9401 0.9489

AC 0.8798 0.9756 0.9806

PCR NC 0.6588 0.9013 0.9281

IC 0.6377 0.8022 0.8350

AC 0.6587 0.9106 0.9280

After the observed value of F was obtained by analyzing and
calculating from the data, we can usually choose a significant
level of 0.05 or 0.01 according to the accuracy rate requirements.
Then, the p-value was computed based on the observed value
of F. Finally, the p-value is compared with 0.05 or 0.01 to

decide whether to accept the null hypothesis. In this study, the
significance level was set to 0.05.

Experimental Results
Tables 1–3 are results of the one-way analysis of variance of
ACR and PCR obtained by the simplified and non-simplified
constraint MMD test assembly method under the DINA model,
the DINO model and the R-RUM, respectively. It can be seen that
the p-value of DINA and DINO models are greater than 0.05 in all
relevant cases, indicating that there is no significant difference in
ACR or PCR between before and after the simplified constraints.
However, the p-value of item constraints on the R-RUM is lower
than 0.05, indicating that there is a significant difference in ACR
or PCR between before and after the simplified constraints. It
shows whether the constraints are simplified or not has little effect
on the efficiency of the MMD constructing test assembly, except
under the item constraints on the R-RUM.

Tables 4–6 respectively give a detailed comparison of
simplified and non-simplified constraints in terms of ACR and
PCR under each condition of the DINA model, the DINO model
and the R-RUM. The sixth column of the tables indicates that the
accuracy rate of simplified constraints higher than the accuracy
rate of non-simplified constraints.

TABLE 8 | Comparison of the accuracy rate of each method for four attributes under DINA model.

Correlation Accuracy Constraints CDI Outperforms Random SDK−L Outperforms Random SDK−L Outperforms CDI

0 ACR NC 1.0000 1.0000 0.9150

IC 0.9950 1.0000 0.9500

AC 1.0000 1.0000 0.8850

PCR NC 1.0000 1.0000 0.9250

IC 1.0000 1.0000 0.9550

AC 1.0000 1.0000 0.8600

0.5 ACR NC 1.0000 1.0000 0.8800

IC 1.0000 1.0000 0.9050

AC 1.0000 1.0000 0.8500

PCR NC 1.0000 1.0000 0.8850

IC 1.0000 1.0000 0.9300

AC 1.0000 1.0000 0.8500
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TABLE 9 | Comparison of the accuracy rate of each method for four attributes under DINO model.

Correlation Accuracy Constraints Random CDI SDK−L

0 ACR NC 0.8428 0.9687 0.9790

IC 0.8256 0.9173 0.9457

AC 0.8429 0.9728 0.9791

PCR NC 0.5779 0.8867 0.9236

IC 0.5510 0.7490 0.8346

AC 0.5786 0.9040 0.9237

0.5 ACR NC 0.8791 0.9739 0.9811

IC 0.8696 0.9409 0.9495

AC 0.8792 0.9758 0.9810

PCR NC 0.6566 0.9033 0.9297

IC 0.6406 0.8041 0.8360

AC 0.6573 0.9114 0.9292

TABLE 10 | Comparison of the accuracy rate of each method for four attributes under the DINO model.

Correlation Accuracy Constraints CDI Outperforms Random SDK−L Outperforms Random SDK−L Outperforms CDI

0 ACR NC 1.0000 1.0000 0.9250

IC 0.9850 1.0000 0.9800

AC 1.0000 1.0000 0.8750

PCR NC 0.9950 1.0000 0.9350

IC 0.9900 1.0000 0.9800

AC 1.0000 1.0000 0.8550

0.5 ACR NC 1.0000 1.0000 0.8550

IC 1.0000 1.0000 0.8950

AC 1.0000 1.0000 0.8500

PCR NC 1.0000 1.0000 0.8650

IC 1.0000 1.0000 0.9100

AC 1.0000 1.0000 0.8550

It can be seen from Table 4 that under the DINA model,
when the MMD test assembly simplifies the constraints, the
overall efficiency is less than 50% although the efficiency
of the simplified constraints is higher than that of the
non-simplified constraints. Therefore, the simplification of
the distance matrix will indeed lose information. From the
perspective of the overall mean, the loss of information has
a relatively low impact on the efficiency of the test assembly.
This conclusion is similar to the results of the one-way
analysis of variance. In terms of average time consumption,
simplifying the constraints will increase the operating efficiency
by 2 to 4 times. Comparing with the information of lost by
the simplified constraints, the improvement of the operating
efficiency is considerable. Therefore, the simplified constraints on
the distance matrix are feasible.

Tables 5, 6 shows that the efficiency of the simplified
constraints is higher than that of the non-simplified constraints,
the efficiency is more than 50% or close to 50% under the
attribute constraints, but the overall situation is still lower
than the non-simplified constraints and the difference is still
small under the DINO model and R-RUM. In terms of
time-consuming, the time-consuming for these two models is
similar to that under the DINA model, but simplifying the
constraints will still increase the operating efficiency by 2 to

4 times on average, so a similar conclusion can be obtained
with the DINA model.

STUDY 2: COMPARISON BETWEEN
SIMPLIFIED MMD METHOD AND CDI
METHOD

Experimental Purpose
Study 1 has verified that the simplified constraints on the
distance matrix is feasible, so how the new method itself
compares with the famous method needs to be discussed
further. In order to compare the simplified MMD test assembly
method and the CDI method (Henson and Douglas, 2005),
we performed the second simulation experiments by using
the similar condition settings as the study of Henson and
Douglas (2005). It should be noted that eight attributes were
considered in the second simulation study for exploring the
performance of the simplified MMD test assembly method under
different conditions.

Experimental Steps
Conduct the simulation experiment as follows:
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TABLE 11 | Comparison of the accuracy rate of each method for four attributes under R-RUM model.

Correlation Accuracy Constraints Random CDI SDK−L

0 ACR NC 0.8450 0.9386 0.9514

IC 0.8447 0.9258 0.9311

AC 0.8453 0.9408 0.9513

PCR NC 0.5418 0.7894 0.8272

IC 0.5446 0.7594 0.7780

AC 0.5427 0.7984 0.8269

0.5 ACR NC 0.8798 0.9504 0.9590

IC 0.8806 0.9416 0.9443

AC 0.8801 0.9518 0.9589

PCR NC 0.6230 0.8223 0.8495

IC 0.6272 0.7986 0.8081

AC 0.6240 0.8275 0.8492

TABLE 12 | Comparison of the accuracy rate of each method for four attributes under the R-RUM model.

Correlation Accuracy Constraints CDI Outperforms Random SDK−L Outperforms Random SDK−L Outperforms CDI

0 ACR NC 1.0000 1.0000 0.9750

IC 1.0000 1.0000 0.7400

AC 1.0000 1.0000 0.9700

PCR NC 0.9950 1.0000 0.9650

IC 0.9950 1.0000 0.7850

AC 1.0000 1.0000 0.9550

0.5 ACR NC 1.0000 1.0000 0.9650

IC 1.0000 1.0000 0.7050

AC 1.0000 1.0000 0.9700

PCR NC 1.0000 1.0000 0.9600

IC 1.0000 1.0000 0.7300

AC 1.0000 1.0000 0.9650

(1) According to the design of the first study, we simulated two
groups of examinees, one of groups was used to calculate the
prior distribution and the other was used for classification.
The Q matrix and item parameters in the item bank and
observed complete item response matrix of all possible
attribute mastering patterns on all items in the item bank
were simulated;

(2) Calculate the CDI and SDK−L of all items;
(3) Construct cognitive diagnostic test using the random way,

the CDI method, or the simplified MMD method, according
to the three strategies of no constraints, attribute constraints
and item constraints;

(4) Take out the response matrix of all the items on the
corresponding test according to the test items generated by
the test assembly algorithms;

(5) Estimate the knowledge state of the examinees and calculate
the PCR and ACR, according to the selected response
matrix, and repeat experiments for a total of 200 times.

Experimental Results
Table 7 shows the average accuracy rate of each condition under
measuring four attributes with the DINA model. In the table, CDI
represents the CDI test assembly method, SDK−L is the simplified

TABLE 13 | The accuracy rate of each condition for eight attributes
under the DINA model.

Correlation Accuracy Constraints Random CDI SDK−L

0 ACR NC 0.6234 0.8294 0.8181

IC 0.6489 0.7244 0.7289

AC 0.6234 0.8315 0.8181

PCR NC 0.0988 0.3305 0.3678

IC 0.1304 0.2525 0.2764

AC 0.0988 0.3438 0.3678

0.5 ACR NC 0.7474 0.8745 0.8664

IC 0.7672 0.8267 0.8259

AC 0.7474 0.8759 0.8664

PCR NC 0.3272 0.4683 0.4909

IC 0.3381 0.4479 0.4547

AC 0.3272 0.4766 0.4909

MMD test assembly method, and Random represents random
test assembly. Analyzing the data in Table 7 shows that the
new method has a higher improvement compared with the CDI
method. In terms of the three constraints, the overall accuracy
rate of the attribute constraints is slightly higher than the other
two constraints, and the accuracy rate for the item constraints is
the worst. Under the condition of item constraints, the ACR and
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TABLE 14 | Comparison of the accuracy rate of each method for eight attributes under the DINA model.

Correlation Accuracy Constraints CDI Outperforms Random SDK−L Outperforms Random SDK−L Outperforms CDI

0 ACR NC 1.0000 1.0000 0.1500

IC 1.0000 1.0000 0.6950

AC 1.0000 1.0000 0.0950

PCR NC 1.0000 1.0000 0.8850

IC 1.0000 1.0000 0.9600

AC 1.0000 1.0000 0.8350

0.5 ACR NC 1.0000 1.0000 0.1000

IC 1.0000 1.0000 0.4150

AC 1.0000 1.0000 0.0650

PCR NC 1.0000 1.0000 0.9400

IC 1.0000 1.0000 0.7800

AC 1.0000 1.0000 0.8900

TABLE 15 | The accuracy rate of each condition for eight attributes under the DINO model.

Correlation Accuracy Constraints Random CDI SDK−L

0 ACR NC 0.6208 0.8289 0.8171

IC 0.6479 0.7238 0.7296

AC 0.6208 0.8302 0.8171

PCR NC 0.0963 0.3319 0.3679

IC 0.1294 0.2525 0.2781

AC 0.0963 0.3435 0.3679

0.5 ACR NC 0.7444 0.8754 0.8665

IC 0.7666 0.8268 0.8264

AC 0.7444 0.8765 0.8665

PCR NC 0.3248 0.4706 0.4910

IC 0.3368 0.4488 0.4553

AC 0.3248 0.4776 0.4910

TABLE 16 | Comparison of the accuracy rate of each method for eight attributes under the DINO model.

Correlation Accuracy Constraints CDI Outperforms Random SDK−L Outperforms Random SDK−L Outperforms CDI

0 ACR NC 1.0000 1.0000 0.1900

IC 1.0000 1.0000 0.7200

AC 1.0000 1.0000 0.1600

PCR NC 1.0000 1.0000 0.8750

IC 1.0000 1.0000 0.9400

AC 1.0000 1.0000 0.8450

0.5 ACR NC 1.0000 1.0000 0.0700

IC 1.0000 1.0000 0.4350

AC 1.0000 1.0000 0.0400

PCR NC 1.0000 1.0000 0.8950

IC 1.0000 1.0000 0.8000

AC 1.0000 1.0000 0.8700

PCR of CDI, MMD, and random test assembly method are lower
than the other two constraints.

Table 8 shows the comparison of the accuracy rate of each
method when the number of attributes under the DINA model
is four in the 200 repeats. Among them, the last column
represents the proportion of MMD test assembly method with
SDK−L distance as the class distance index more efficient than
CDI in the 200 simulation repeats. The fourth or fifth column

respectively represents the proportion of CDI test assembly
method or MMD test assembly method with SDK−L distance
more efficient than the random test assembly method across
200 repetitions.

It can be seen from Table 8 that the MMD test assembly
method with SDK−L distance as an index is stable under
various conditions. In the existing conclusions, as the correlation
increasing, the accuracy rate of the MMD test assembly method
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TABLE 17 | The accuracy rate of each condition for eight attributes under the R-RUM model.

Correlation Accuracy Constraints Random CDI SDK−L

0 ACR NC 0.7427 0.8300 0.8336

IC 0.7572 0.8142 0.8231

AC 0.7427 0.8303 0.8336

PCR NC 0.1236 0.2648 0.2823

IC 0.1365 0.2433 0.2651

AC 0.1236 0.2660 0.2823

0.5 ACR NC 0.8243 0.8753 0.8787

IC 0.8300 0.8705 0.8745

AC 0.8243 0.8757 0.8787

PCR NC 0.3261 0.4175 0.4309

IC 0.3232 0.4183 0.4254

AC 0.3261 0.4189 0.4309

TABLE 18 | Comparison of the accuracy rate of each method for eight attributes under the R-RUM model.

Correlation Accuracy Constraints CDI Outperforms Random SDK−L Outperforms Random SDK−L Outperforms CDI

0 ACR NC 1.0000 1.0000 0.6350

IC 1.0000 1.0000 0.8700

AC 1.0000 1.0000 0.6350

PCR NC 1.0000 1.0000 0.8000

IC 1.0000 1.0000 0.8850

AC 1.0000 1.0000 0.7950

0.5 ACR NC 1.0000 1.0000 0.7900

IC 1.0000 1.0000 0.8450

AC 1.0000 1.0000 0.7800

PCR NC 1.0000 1.0000 0.8300

IC 1.0000 1.0000 0.6850

AC 1.0000 1.0000 0.8300

the CDI method based on SDK−L distance increases. Therefore,
as the correlation increasing, the gap between the two methods
will shrink. Thus, comparing with random test assembly, the
average value of each method is greater than the random
method. However, in the 200 simulation repeats, the CDI test
assembly method is occasionally outperformed by the random
test assembly method, which is similar to the simulation
results of Henson and Douglas (2005).

On the whole, the result of CDI test assembly method is
slightly different from that of Henson and Douglas (2005) in
comparison with random test assembly method under measuring
four attributes, because the random test assembly method itself
is uncertain. In addition, the case that the accuracy rate of CDI
test assembly method is lower than that of the random method is
concentrated under the item constraints.

Table 9 shows the comparison of several test assembly
methods for 200 repetitions under DINO model. From the data
in Table 9, it can be seen that the MMD method is still superior
to CDI method, and the MMD method with SDK−L distance as
the distance index does not have the situation that the average
accuracy rate is lower than CDI method.

Table 10 shows the comparison of the accuracy rate of each
method when the number of attributes is four across replications
under the DINO model. It can be seen from Table 10, the MMD

method with SDK−L distance as the distance index has slightly
better accuracy rate than the CDI method under the condition of
unconstrained and attribute constraints, respectively. However,
the accuracy rate of the MMD test assembly method under the
item constraints is better than under the other two constraints.
In the existing conclusions, with the increase of correlation,
the accuracy rate of MMD test assembly method with SDK−L
distance as the index decreased while that of the CDI method
increased. Therefore, with the increase of correlation, the gap
between the two methods narrowed.

Table 11 shows the comparison of several test assembly
methods for the 200 repetitions under the R-RUM. Like the
DINA and DINO model, the performance of MMD test assembly
method based on SDK−L distance is better than the other two
methods, and the performance is almost the same under the
condition of both no constraints and attribute constraints.

Table 12 shows the comparison of the accuracy rate of each
method when the number of attributes is four across replications
under the R-RUM. It can be seen from Table 12 that in the 200
simulation replications, the MMD test assembly method based
on SDK−L distance is better than the CDI test assembly method
in every case, and its performance on R-RUM is also better than
that of DINO model under the condition of both no constraints
and attribute constraints.
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Tables 13–18 show accuracy rates and comparison results for
eight attributes. The results of eight attributes are similar to that
of four attributes. On the whole, the new method is better than
the CDI test assembly method and the random assembly method
under the DINA model, the DINO model and the R-RUM.
Furthermore, the new method has a greater advantage over the
CDI method in terms of the PCR. Under the three models, the
PCR of the MMD test assembly method based on SDK−L distance
is higher than that of the CDI test assembly method, but the ACR
of the MMD test assembly method is slightly lower than the CDI
test assembly method. It means that the higher the averaged ACR,
the PCR is not necessarily higher. For example, the ACRs for two
attributes are 0.1 and 0.9 or 0.4 and 0.4. Although the average
of ACR for these two cases are 0.5 and 0.4, the former case has
the PCR of 0.09, while the latter case has the PCR of 0.16, if the
correct classification rates for two attributes are independent.

DISCUSSION

Simulation results show that the MMD test assembly method
with the simplified constraints has similar performance to the
new method with the full constraints under four attributes,
and the new simplified method performs better than the CDI
method for four and eight attributes in term of the PCR. The
MMD test assembly method with the full constraints suffers a
large computational burden due to the optimization problem
of complex constraints, but it is fast and performs relatively
well when the number of attributes is four. In order to simplify
computation, the MMD test assembly method with the simplified
constraints can simplify computation effectively and is suitable
for a larger number of attributes (i.e., eight attributes). We also
found that when the number of measured attributes increases,
the advantages in PCR for the MMD method are still obvious,
while its performance in ACR tends to be average. This is
related to the characteristics of the MMD and CDI-based test
assembly methods: the CDI test assembly method pays attention
to the local information, while the MMD focuses on the global
information. When the ratio of test length to attribute number
is large, the MMD test assembly method has enough room to
play and select enough high-quality tests to obtain sufficient
overall information, in order to make up for the lack of local
information. So, the MMD test assembly method has obvious
advantages at this condition.

We found that there is a considerably worse performance
for item constraints compared to attribute constraints, which is
consistent of results of Henson and Douglas (2005). The possible
explanations are as follows: First, we think this may be related to
the concept of statistical identification that is receiving a lot of
attention lately for the case of CDMs. Specifically, for the DINA
model, two identity matrices in the Q matrix and an additional
third item per attribute would be required (e.g., Chen et al.,
2015; Xu and Shang, 2018). This would be never satisfied in the
item constraint condition. Second, because the item constraints
required only 4 items measured one attribute, the Q-matrix is
not complete if all columns of the K × K identity matrix are

not contained in the Q-matrix. A simple example of a complete
Q-matrix is the K × K identity matrix I (Chiu et al., 2009; Cai
et al., 2018). Third, item-level expected classification accuracy of
attributes for 16 items measured two or three attributes in item
constraint condition is often lower than that for items measured
only one attribute (Wang et al., 2019).

Test constraints in this study are still rough, since it is only
a repetition of Henson and Douglas (2005) experiments. The
performance of each method under other constraints needs
to be studied. The MMD test assembly method with SDK−L
distance as the index is superior to CDI test assembly method
in performance, but the combination of this test assembly idea
and other distance indexes is worth discussing. This study does
not consider the relationship between the number of measured
attributes and the length of tests, the influence of the ratio of the
test length and number of attributes on the MMD test assembly
method, how about the specific relationship between them is,
and how to specify item constraints and attribute constraints
when the length of tests is different, all of above will need a
further investigation.

As in the study of Henson and Douglas (2005), the larger
sample in our study was only employed to obtain correct
classification rates more stability with simulated item parameters.
We have not considered the impact of item banks calibrated
by using larger or smaller sample sizes on the performance
of test construction methods. As the reviewer motioned, it is
true that larger sample sizes are likely to be used to calibrate
item banks (e.g., Liu et al., 2013; George and Robitzsch, 2014),
while the review of available empirical studies indicates that
sample sizes in cognitive diagnosis tend to be much smaller
(Sessoms and Henson, 2018). It would be an interesting question
to justify whether a difference in performance is expected
from the CDI and SDK−L methods for item banks calibrated
from different sample sizes. One limitation of this study is
that three simple CDMs (the DINA model, the DINO model,
and the R-RUM) were considered in the simulation study. If
we have a large sample size to calibrate an item bank, we
believe that the results can be generalized to a more general
model, such as the G-DINA model (de la Torre, 2011), or a
combination of reduced models (Ravand, 2016; Sorrel et al., 2017;
de la Torre et al., 2018).
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