Question-based computational language assessments (QCLA) of mental health, based on self-reported and freely generated word responses and analyzed with artificial intelligence, is a potential complement to rating scales for identifying mental health issues. This study aimed to examine to what extent this method captures items related to the primary and secondary symptoms associated with Major Depressive Disorder (MDD) and Generalized Anxiety Disorder (GAD) described in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). We investigated whether the word responses that participants generated contained information of all, or some, of the criteria that define MDD and GAD using symptom-based rating scales that are commonly used in clinical research and practices.
Participants (
The QCLA correlated significantly with the individual items connected to the DSM-5 diagnostic criteria of MDD (PHQ-9; Pearson’s
Together these results suggest that QCLA may be able to complement rating scales in measuring mental health in clinical settings. The approach carries the potential to personalize assessments and contributes to the ongoing discussion regarding the diagnostic heterogeneity of depression.