AUTHOR=Gamazo Adriana , MartĂnez-Abad Fernando TITLE=An Exploration of Factors Linked to Academic Performance in PISA 2018 Through Data Mining Techniques JOURNAL=Frontiers in Psychology VOLUME=11 YEAR=2020 URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2020.575167 DOI=10.3389/fpsyg.2020.575167 ISSN=1664-1078 ABSTRACT=
International large-scale assessments, such as PISA, provide structured and static data. However, due to its extensive databases, several researchers place it as a reference in Big Data in Education. With the goal of exploring which factors at country, school and student level have a higher relevance in predicting student performance, this paper proposes an Educational Data Mining approach to detect and analyze factors linked to academic performance. To this end, we conducted a secondary data analysis and built decision trees (C4.5 algorithm) to obtain a predictive model of school performance. Specifically, we selected as predictor variables a set of socioeconomic, process and outcome variables from PISA 2018 and other sources (