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This research focuses on developing a learning progression of probability for middle
school students, and it applies the GDINA model in cognitive diagnosis models
to data analysis. GDINA model analysis firstly extracted nine cognitive attributes
and constructed their attribute hierarchy and the hypothesized learning progression
according to previous studies, curriculum standards, and textbooks. Then the cognitive
diagnostic test was developed based on Q-matrix theory. Finally, we used the GDINA
model to analyze a sample of 1624 Chinese middle school students’ item response
patterns to identify their attribute master patterns, verify and modify the hypothesized
learning progression. The results show that, first of all, the psychometric quality of the
measurement instrument is good. Secondly, the hypothesized learning progression is
basically reasonable and modified according to the attribute mastery probability. The
results also show that the level of probabilistic thinking of middle school students is
improving steadily. However, the students in grade 8 are slightly regressive. These
results demonstrate the feasibility and superiority of using cognitive diagnosis models
to develop a learning progression.

Keywords: probability, learning progression, GDINA model, attribute hierarchy, learning pathway

INTRODUCTION

Learning progression is defined as ‘descriptions of the successively more sophisticated ways of
thinking about a topic that can follow one another as children learn about and investigate a
topic over a broad span of time (e.g., 3–5 years)’ (National Research Council, 2007). Although
different perspectives of concern formed different definitions of learning progression (Catley
et al., 2005; Duncan and Cindy, 2009; Mohan et al., 2009), they all focus on the study of
core knowledge to investigate students’ cognitive development process. It seems that learning
progression is an important channel for the dialogue among theoretical researchers, curriculum
planners, educational decision-makers and exam examiners, a bridge between learning research and
classroom teaching, and a tool with the most potential to connect curriculum standards, teaching
and evaluation and promote the consistency of the three.

Quantitative analysis plays an essential part in developing a learning progression. The initial
research on learning progression was built on descriptive statistical results. At present, the most
effective and widely used method is Rasch measurement theory (Liu and Collard, 2005; Liu and
McKeough, 2005; Johnson, 2013; Todd and Romine, 2016), which estimates the item difficulty
parameter as the same level as the students’ ability parameter (Rasch, 1960/1980). Rasch analysis
assumes unidimensionality, that is, a single trait affects the responses of the participants (Wilson,
2005; Chen et al., 2017a). However, because the core concept covers a wide range of attributes, it is
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difficult to strictly satisfied the unidimensionality assumption
in practice. The learning progression constructed by the above
two quantitative analysis methods is a linear step-by-step
development process of students as they increase in grade or as
time goes by, and the ability level of students is estimated mainly
through the total score of the test.

Since the core concepts are directly related to the internal
logical structure of the discipline, they are not all linear, so
students can understand core concepts through different learning
pathways (Alonzo and Steedle, 2008). In recent years, the research
on the learning progression of core concepts has been integrated
into the process of individual cognitive structure gradually
becoming complete. Since the beginning of the last century,
psychometrics and cognitive psychology have been increasingly
dissatisfied with assessing the ability level of the individual
from macro perspective, so a new generation of psychometrics
theory has developed a cognitive diagnosis model for the purpose
of diagnosing students’ cognitive process, processing skills or
knowledge structure. Therefore, researchers began to use it as a
quantitative analysis method to provide technical support for the
construction of learning progression evaluation system, so as to
deeply evaluate student’ knowledge structure (Derek and Alonzo,
2012; Chen et al., 2017b; Gao et al., 2017).

Compared with traditional methods, cognitive diagnosis
models have the following advantages. First, cognitive diagnosis
models directly integrate cognitive variables to estimate the
attribute mastery pattern (AMP) of each student, thus realizing
the measurement and evaluation of individual’s cognitive level
from the micro perspective. Second, the attributes that students
have and have not mastered can be identified from their
responses to the test items. These attributes are distributed at
different levels of learning progression, which helps to verify
and modify the hypothesized learning progression. Third, it
is beneficial to promote personalized education. Each level of
learning progression based on the cognitive diagnosis models
has multiple AMPs, that is, there are multiple learning pathways
from the low level to high level, so as to provide targeted
teaching according to the individual student’s AMP. Generalized
Deterministic Inputs, Noisy and Gate (GDINA) model (de la
Torre, 2011), as a saturated cognitive diagnosis model, breaks
through the assumptions of the previous simplified cognitive
diagnosis models on attribute action mechanism, making the
model more flexible and widely used. Whereas, there are few
studies have been done on learning progression based on
the GDINA model.

As one of the most basic core qualities throughout the
mathematics curriculum, probability literacy has now become
an indispensable quality for every citizen to enter the society
(Scheaffer, 1984; Biehler, 1994; Aitken, 2009). However, studies
have repeatedly shown that students always have different degrees
of cognitive difficulties in the development of probabilistic
thinking. Jones et al. (1997, 1999) proposed a framework to
describe students’ cognition of probability, in which students’
understanding of probability concepts is divided into subjective
level, transitional level, informal quantitative level and numerical
level. English, Fischbein and Lecoutre found that students cannot
naturally understand the sample space, because the basic results

in different orders should be distinguished and counted as
different results (Fischbein and Gazit, 1984; Lecoutre et al., 1990;
English, 1993). Whereas, further analysis shows that although
previous research on probability investigated all knowledge
points, they did not pay enough attention to the core knowledge.
Thus, the introduction of learning progression provides a new
research perspective for probability.

As shown in the above literature review, from the perspective
of students, there are many stubborn misunderstandings and
preconceptions in the learning of probability concepts (Green,
1982; Fischbein and Gazit, 1984; Fischbein et al., 1991; Williams
and Amir, 1995; Moritz et al., 1996; Potyka and Thimm,
2015). However, Liu and Thompson’s research provided a
rich description of the kinds of difficulties experienced by
teachers in developing coherent and powerful understandings of
probability (Liu and Thompson, 2007). From the perspective of
empirical research, the existing studies on learning progression
ignored the establishment of a cognitive model, so the
probabilistic cognitive structure of individual students cannot
be systematically described. Additionally, the nature of cognitive
diagnosis and learning progression is very consistent, so using it
as a measurement tool to construct the learning progression of
probability is well worth further exploration.

To address the issues already outlined and to begin to fill
the gaps in the previous research, the present study attempts
to: (a) judge whether developed measurement instrument
is appropriate to evaluate learning progression of students’
probability; (b) verify and modify the hypothesized learning
progression by the results of the GDINA model analysis; (c)
identify what levels of students’ AMPs and provide proper
learning pathways accordingly.

HYPOTHESIZED LEARNING
PROGRESSION

The current course distribution of probability concept is as
follows: intuitive perception of probability concepts through
experiments, games and other activities is arranged in grades 4 to
6. The systematic study of preliminary probability is set in grade
9, which is mainly the teaching of one-dimensional probability
concepts. Further probability knowledge is arranged in grade
11. The curriculum goals are to deeply learn two-dimensional
probability concepts and to preliminarily understand relevant
probability concepts of finite dimensions. On this basis, the
attribute selection, the attribute hierarchy and the hypothesized
learning progression are studied one by one.

Attribute Selection
According to the basic process of cognitive diagnosis, the
cognitive attributes contained in probability should be extracted
first (Tatsuoka, 2009; de la Torre, 2011; Basokcu, 2014; Rupp
and van Rijn, 2018). The most common probability concepts in
previous research were the following: randomness, sample space,
probability of an event, probability comparisons (Fischbein, 1975;
Biggs and Collis, 1982; Liu and Zhang, 1985; Jones et al., 1997,
1999; Li, 2003; Piaget and Inhelder, 2014; He and Gong, 2017).
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Other studies have also explored students’ ability to make
probability estimation (Acredolo et al., 1989). However, the
components mentioned above do not explicitly indicate the
impact of dimensions.

Taking into account previous studies, curriculum standards
and textbooks, students’ understanding of one-dimensional
probability concepts and two-dimensional probability concepts
is not synchronized (Liu and Zhang, 1985; Jones et al., 1997;
Li, 2003). Hence, when identifying cognitive attributes, the
probability was not only divided into randomness, sample space,
probability of an event, probability comparisons and probability
estimation, but also the effect of dimension was considered.
Consequently, we obtained the nine cognitive attributes of
probability as follows.

A1: Randomness: distinguish between certain events,
random events, and impossible events.
A2: One-dimensional sample space: list all possible
outcomes of a one-dimensional event.
A3: Two-dimensional sample space: list all possible
outcomes of a two-dimensional event.
A4: One-dimensional probability comparisons: compare
the probability of one-dimensional events.
A5: Two-dimensional probability comparisons: compare
the probability of two-dimensional events.
A6: Probability of a one-dimensional event: calculate the
probability of a one-dimensional event by definition.
A7: Probability of a two-dimensional event: calculate the
probability of a two-dimensional event by definition.
A8: Probability estimation of a one-dimensional
event: estimate the probability of a one-dimensional
event by frequency.
A9: Probability estimation of a two-dimensional
event: estimate the probability of a two-dimensional
event by frequency.

Attribute Hierarchy
On the basis of attributes selected before, the attribute hierarchy
was constructed by considering previous studies and the
curricular sequences of the relevant probabilistic content in the
curriculum standards and textbooks. Some studies suggested
that the understanding of randomness is the starting point
for probabilistic thinking, and this ability increases with age
(Williams and Amir, 1995; Chan, 1997; Jones et al., 1997). This
indicates that randomness is a precondition of sample space
and probability estimation. Furthermore, the understanding of
sample space is central to understanding probability (Van de
Walle et al., 2016). He and Gong (2017) found that students aged
6 to 14 must master the sample space in order to perform well in
calculating the probability of an event by definition. Zhang’s team
demonstrated that students’ understanding of the sample space is
superior than probability comparisons (Zhang et al., 1985). This
indicates that sample space is a premise of probability of an event
and probability comparisons.

Considering the impact of dimensions on students’
understanding of probability, students who can consistently
list all possible outcomes of a one-dimensional event were often

inconsistent or unsystematic in listing all possible outcomes of a
two-dimensional event (Liu and Zhang, 1985; Jones et al., 1997;
He and Gong, 2017). Moreover, probability estimation is an
intuitive way to understand the probability of an event through
a large number of repeated experiments. Chapin et al. (2003)
argued that students in grades 3 to 5 can initially understand
the relationship between the frequency and probability of
a one-dimensional event. However, interviews with middle
school teachers revealed that students also made some errors
in estimating the probability of a two-dimensional event,
indicating that probability estimation of a one-dimensional
event is the prerequisite of probability estimation of a two-
dimensional event. As such, the attribute hierarchy was
constructed (Figure 1). Thereafter, the attribute hierarchy was
tested through mathematics curriculum standards, mathematics
textbooks, and interviews with teachers. Attribute hierarchy was
found to be basically consistent with the curricular sequences
and instructional sequences of the related mathematical topics.

Hypothesized Learning Progression
In light of the above analysis, we developed the hypothesized
learning progression of probability for middle school students
relied on the previous studies, curriculum standards and
textbooks. Considering the influence brought by the dimensions,
students’ understanding of probability was investigated from
five aspects: randomness, sample space, probability of an event,
probability comparisons and probability estimation. We then
used the SOLO (Structure of the Observed Learning Outcome)
taxonomy that developed from Piaget’s cognitive development
phase theory to clarify the learning progression levels (Biggs and
Collis, 1982, 1991).

In the hypothesized learning progression of probability (see
Table 1), Level 1 does not involve any attributes of probability,
indicating that the probabilistic thinking of students at Level 1

FIGURE 1 | The attribute hierarchy.
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TABLE 1 | Hypothesized learning progression of probability.

Level Content Attributes

1 Students cannot master any attributes
related to probability.

None

2 Students begin to understand the
one-dimensional probability concepts, but
they cannot transfer their understanding of
one-dimensional probability concepts to
two-dimensional probability concepts.

At least one of A1, A2, A4,
A6, and A8

3 Students can perform two-dimensional
sample space and probability estimation of
a two-dimensional event.

Further master at least one
of A3 and A9

4 Students can understand two-dimensional
probability comparisons and probability of a
two-dimensional event. Furthermore, they
can build a connection between
one-dimensional probability concepts and
two-dimensional probability concepts.

Further master A5 and A7

has not yet begun to develop. When the students reach Level
2, students begin to understand the one-dimensional probability
concepts, indicating that they have mastered at least one of A1,
A2, A4, A6, and A8. On the basis of Level 2, students at Level
3 can perform two-dimensional sample space and probability
estimation of a two-dimensional event, indicating that students’
mastery of A3 and A9. At last, when students reach Level 4,
they can understand two-dimensional probability comparisons
and probability of a two-dimensional event. This indicates that
students have mastered all attributes of probability. So far,
we established the correspondence between the hypothesized
learning progression levels and the attributes of probability,
which will help to verify and modify the hypothesized learning
progression through the analysis of GDINA model.

MATERIALS AND METHODS

Item Design
The Q-matrix (Table 2), which is established by the selected
attributes and their attribute hierarchy, presented the
correspondence between each item and each attribute and
was used to guide the item design. Q-matrix is based on the
design principles proposed by Tu et al. (2012). The first is that the
item assessment patterns should include the Reachability Matrix.
The second is that each attribute is measured no less than three
times. In the Q-matrix, ‘1’ means that the attribute is measured
in this item, and ‘0’ means that the attribute is not measured in
this item. For instance, ‘100000000’ means that item 1, item 2,
item 3, and item 4 only measure A1, and ‘100000011’ means that
item 24, item 25 and item 26 measure A1, A8, and A9.

Five mathematics teachers, two subject experts, two
mathematics educators and two psychometricians were invited
to develop the instrument. The mathematics teachers came
from key middle schools in Fujian, Shanxi, Henan and Inner
Mongolia, as well as a teaching and research staff from Qinghai
Province. The subject experts consisted of a professor and an
associate professor who study probability and statistics. The

TABLE 2 | Q-matrix of attributes and items.

Attribute

Item A1 A2 A3 A4 A5 A6 A7 A8 A9

1 1 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0

4 1 0 0 0 0 0 0 0 0

5 1 1 0 0 0 0 0 0 0

6 1 1 0 1 0 0 0 0 0

7 1 1 0 0 0 0 0 0 0

8 1 1 0 1 0 0 0 0 0

9 1 1 0 0 0 0 0 0 0

10 1 1 0 1 0 0 0 0 0

11 1 1 0 0 0 1 0 0 0

12 1 1 0 0 0 1 0 0 0

13 1 1 0 0 0 1 0 0 0

14 1 1 1 0 0 0 0 0 0

15 1 1 1 0 1 0 0 0 0

16 1 1 1 0 0 0 0 0 0

17 1 1 1 0 1 0 0 0 0

18 1 1 1 0 0 0 0 0 0

19 1 1 1 0 1 0 0 0 0

20 1 1 1 0 0 0 1 0 0

21 1 1 1 0 0 0 1 0 0

22 1 1 1 0 0 0 1 0 0

23 1 0 0 0 0 0 0 1 0

24 1 0 0 0 0 0 0 1 1

25 1 0 0 0 0 0 0 1 1

26 1 0 0 0 0 0 0 1 1

mathematics educators were composed of two professors engaged
in mathematics education research. The psychometricians were
comprised of a professor and a Ph.D. candidate who do research
in psychometrics.

Based on the Q-matrix, curriculum standards and textbooks,
the study developed a cognitive diagnostic test of probability,
which consists of 26 items and each item corresponds to a specific
item assessment pattern (IAP). All items are in multiple-choice or
short-answer format. All items are dichotomous, with the correct
score of ‘1’ and the wrong score of ‘0.’ Table 3 presents some
example items and their corresponding IAPs.

Participants and Procedure
According to the level of economic development, mainland
China can be divided into four types: the most developed areas,
the developed areas, the moderately developed areas and the
underdeveloped areas. Since the moderately developed areas
cover 23 provinces and cities, accounting for a large part of the
mainland (Xie and Lu, 2011), the schools and corresponding
students in these areas were selected in this study.

In the end, six junior high schools and five high schools were
selected from the moderately developed areas. A total of 1624
students participated in this study (Table 4). To ease the tension
of the students during the test, we informed them that their test
results will not affect their academic rankings this semester. The
time allocated to the test was 40 min.
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TABLE 3 | Example items from the probability test.

Item number Content IAP

1 Roll a fair dice and the number rolled is greater
than 6. Please determine the type of this event.
(A) Certain (B) Random (C) Impossible

100000000

7 Randomly select a number from the set {1, 2,
3, 4, 5}. Please write out how many possible
outcomes there are.

110000000

18 Roll two fair dice and observe the number on
the up side. Please list all possible outcomes of
the numbers rolled by the two dice.

111000000

TABLE 4 | Structure description of the sample.

Grade 7 8 9 10 11

Total number 323 333 302 354 312

Data Analysis
Instrument Functioning
Parscale 4.1, R and SPSS 22.0 were used to investigate the
psychometric quality of the developed measurement instrument.
First, the rationality of attribute selection and the attribute
hierarchy should be attested. Specifically, we performed a linear
regression analysis to see if the attributes measured by the item
can predict the item difficulty level. We used the hierarchy
consistency index (HCI) to measure the degree of matching
between the actual item response pattern (IRP) and the expected
response pattern under the attribute hierarchy. Second, the test
reliability and test validity should be explored. Attribute test–
retest reliability was used as the test reliability measure under
Cognitive Diagnosis Theory, indicating the internal consistency
of each attribute (Templin and Bradshaw, 2013). As for test
validity, since our study used a cognitive diagnosis model,
the identifiability of the Q-matrix was used as evidence of
the test validity. Third, the quality of each item should be
explored. This includes the examination of item fitting index,
item difficulty and item discrimination. In addition, students
with abnormal responses were identified and analyzed by
participant fitting index.

GDINA Model Analysis
In cognitive diagnosis assessment, the ability of each student is
presented as AMP (attribute master pattern). Attribute refers
to the knowledge, skills and strategies required for a student
to correctly complete a test item. AMP is a description of
whether a student has mastered each attribute. Where, ‘1’ means
that the attribute is mastered, and ‘0’ means that the attribute
is not mastered.

The GDINA model was used to classify students into different
AMPs represented by the observed IRPs. First, the rationality
of attribute selection and attribute hierarchy should be verified.
Then, the identifiability of Q-matrix and the psychometric quality
of the cognitive diagnostic test must be judged. Finally, student’s
AMP was estimated from his or her IRP through the classical
estimation method. Ideally, a student should only correctly
answer items that measure the attributes he or she mastered, and
incorrectly answer items that measure at least one attribute that

he or she did not master. For more information about the GDINA
model estimation program, please refer to de la Torre (2011). The
above analysis was performed using the GDINA model program
in the R package (CDM package). The item response function of
the GDINA model is as follows:

P(Xij = 1|α∗ιj) = δj0 +

K∗j∑
k=1

δjkαιk +

K∗j∑
k′=k+1

K∗j −1∑
k=1

δjkk′αιkαιk′ + · · ·

+ δj12····K∗j

K∗j∏
k=1

αιk

The function above can be decomposed into the sum of the
effects due to the presence of specific attributes and all their
possible interactions. δj0 is the intercept of item j, called the
baseline probability, that is, the probability that the participant
answers the item correctly without mastering all the attributes
measured by this item. The value is a non-negative value and can
be regarded as the guessing parameter. δjk is the main effect of
attribute k on item j, which is generally a non-negative value. It
represents the effect of increasing the probability of answering
this item correctly because the participant has mastered the
attribute k. The larger the value, the greater the contribution of
mastering the attribute to the correct item j. δjkk′ is the interaction
effect of attribute k and attribute k′ on item j. δj12····K∗j measures
the interaction effect between all attributes for item j.

Learning Progression Verification and Modification
Due to the correspondence between the hypothesized
learning progression levels and the attributes contained
in probability presented in Table 1, the attribute mastery
probability analyzed by the GDINA model was used to verify
and modify the hypothesized learning progression. Students
are expected to develop a successively more sophisticated
understanding of probability based on the hypothesized learning
progression levels.

First, students will master the attributes regarding the one-
dimensional probability concepts. Then, students will enter the
initial stage of two-dimensional probabilistic thinking, that is,
they will continue to learn the sample space and compare the
probability of two-dimensional events. It ends with students
being able to build a connection between one-dimensional
probability concepts and two-dimensional probability concepts.
If the hypothesized learning progression is reasonable, the
attributes at higher levels are generally more difficult to master
than the attributes at lower levels.

RESULTS

Instrument Functioning
In this study, a cognitive diagnostic test was developed under the
guidance of the GDINA model. Tu et al. (2012) suggested to first
attest the rationality of the attribute selection and the attribute
hierarchy. For attribute selection, the result of linear regression
analysis with the item difficulty as the dependent variable and the
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columns of the Q-matrix as the independent variables shows that
the adjusted R2 value is 0.875. This means the explanatory power
of the selected attributes to the item difficulty is 87.5%, which
verifies the attribute selection. For attribute hierarchy, Cui and
Leighton (2009) proposed that it is feasible to use HCI index to
test the rationality of attribute hierarchy. Wang and Gierl (2007)
pointed out that if the mean value of HCI index is greater than 0.6,
the attribute hierarchy has good rationality. Based on the current
data, the mean value of HCI index is 0.90, which proves that the
attribute hierarchy is reasonable.

Regarding the quality of cognitive diagnostic test, the
reliability and validity needs to be checked. Based on attribute
test–retest reliability, the internal consistency value of each
attribute ranges from 0.88 to 0.99, indicating that each attribute
has good reliability. Then the test was prepared according to the
design principles of Q-matrix proposed by Tu et al. (2012), which
can confirm the validity of the test.

As for the quality of each item, the item fitting index RMSEA
for all items is less than 0.08, with an average of 0.03, indicating
that each item has a good fit to GDINA model. The item difficulty
index under CTT shows that the difficulty value of most items is
between 0.37 and 0.84, with an average of 0.62, and only seven
items have difficulty values higher than 0.84. The estimation
of item difficulty under IRT shows that the difficulty range is
between −3.41 and 0.95. As for the item discrimination, when
the discrimination is greater than 0.4, the item is considered
excellent (Ray and Margaret, 2003; Tu et al., 2019), and all items
meet the standard.

According to the participant fitting index, if the index is
greater than −2, the participant’s response is in good agreement
with the model. In this study, 94.6% of the students’ responses
have a good fit.

Learning Progression Verification and
Modification
GDINA Model Analysis
The results of the GDINA model analysis show that 1624
students are classified into 34 AMPs (Table 5). All students
mainly concentrated in the following six AMPs: AMP 1, 4,
11, 13, 31, and 34.

Further analysis of these AMPs reveals that 94.6% of students
can develop a perception of randomness because they have
mastered A1. 93.11% of students are able to list all possible
outcomes of a one-dimensional event due to their proficiency in
A1 and A2. 84.62% of students can calculate the probability of a
one-dimensional event, in view of their mastery of A1, A2, and
A4. 84.56% of students know how to compare the probability of
one-dimensional events, which stems from their mastery of A1,
A2, and A6. 63.36% of students can estimate the probability of
a one-dimensional event because of their mastery of A1 and A8.
61.71% of students can form good one-dimensional probabilistic
thinking as they have mastered A1, A2, A4, A6, and A8.

By shifting the discussion of students’ probabilistic thinking
from one-dimensional to two-dimensional, 60.91% of
students can build a connection from one-dimensional to
two-dimensional on the probability estimation (A8, A9), with

a slightly reduced proportion of the latter. The percentage of
students who can migrate from one-dimensional sample space
(A2) to two-dimensional sample space (A3) drops significantly
to 58.19%. The number of students able to progress from one-
dimensional probability comparisons (A4) to two-dimensional
probability comparisons (A5) decreases from 84.62 to 50.06%.
The proportion of students who can calculate the probability of
a two-dimensional event by definition (A7) is 40.16%. However,
only 30.79% of students have mature probabilistic thinking
(A1–A9). In summary, we can find that middle school students
have basically formed a good one-dimensional probabilistic
thinking, but the development of students’ two-dimensional
probabilistic thinking is not optimistic.

In terms of the classification of students in each grade, students
in grade 7 are mainly concentrated in AMP 1, 4, 6, 11, 13, 29,
31 and 34, which indicates that they have a good mastery of A1,
A2, A4, and A6. Students in grade 8 are mainly concentrated in
AMP 1, 2, 4, 6, 9, 11, 13, 31 and 34, and the AMP 34 showed
that students in grade 7 had more percentage than grade 8. This
phenomenon may be due to the fact that after learning probability
concepts in primary school, students in grade 8 have not been
exposed to probability concepts for a longer period of time than
students in grade 7, so their performance is somewhat backward.
Students in grade 9 are mainly concentrated in AMP 11, 13, 31,
32 and 34, indicating that they have further mastered A3, A8, and
A9 on the basis of grades 7 and 8. Students in grades 10 are mainly
concentrated in AMP 11, 13, 25, 31, 32 and 34, which means that
they have made great progress in probability estimation (A8, A9).
Students in grades 11 are mainly concentrated in AMP 13, 25, 31
and 34, which shows that they can master almost all the attributes,
and the proportion of students with mature probabilistic thinking
increases from 7.43 to 58.65%.

Learning Progression Verification and Modification
Process
The attribute mastery probability, which can be estimated by
GDINA model analysis, is used to verify the hypothesized
learning progression. If the hypothesized learning progression
can truly reflect the development of students’ probabilistic
thinking, the attribute mastery probability should be directly
affected by the level of the attributes in hypothesized learning
progression. That is, the attributes at a higher level should be
more difficult to master, while the attributes at a lower level
should be easier to master.

The GDINA model analysis shows that the order of attribute
mastery probability from high to low is A1 (0.94), A2 (0.93),
A6 (0.85), A4 (0.84), A8 (0.63), A9 (0.61), A3 (0.58), A5 (0.50),
A7 (0.41). According to this result, in the one-dimensional
probability concepts, A1, A2, A4, and A6 are relatively easy
to master, except for the probability estimation of a one-
dimensional event (A8). Then, A3, A8, and A9 are at a moderate
difficulty level. Moreover, A5 and A7 are more difficult to
master. This indicates that the attribute mastery probability
levels are basically consistent with the hypothesized learning
progression levels. However, the attribute mastery probability of
A8 at the Level 2 of the hypothesized learning progression is
lower than expected.
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TABLE 5 | Classification of students’ AMPs.

AMP Total (%) Grade 7 (%) Grade 8 (%) Grade 9 (%) Grade 10 (%) Grade 11 (%)

1 000000000 5.54 11.46 13.21 2.98 0.00 0.00

2 100000000 1.29 1.86 4.20 0.33 0.00 0.00

3 100000010 0.06 0.31 0.00 0.00 0.00 0.00

4 110000000 4.86 8.36 14.11 1.32 0.28 0.00

5 110000011 0.06 0.00 0.30 0.00 0.00 0.00

6 110001000 2.22 4.64 5.11 0.99 0.28 0.00

7 110001010 0.12 0.00 0.60 0.00 0.00 0.00

8 110001011 0.62 1.24 1.20 0.33 0.28 0.00

9 110100000 2.65 3.41 6.61 2.98 0.28 0.00

10 110100011 0.25 0.62 0.60 0.00 0.00 0.00

11 110101000 9.91 15.48 13.51 15.56 4.80 0.64

12 110101010 0.74 1.86 1.20 0.66 0.00 0.00

13 110101011 13.49 18.89 14.71 6.95 14.12 12.18

14 111000000 0.06 0.31 0.00 0.00 0.00 0.00

15 111001000 0.31 0.31 0.30 0.33 0.28 0.32

16 111001111 0.06 0.00 0.00 0.00 0.28 0.00

17 111010000 0.06 0.00 0.30 0.00 0.00 0.00

18 111011011 0.12 0.31 0.00 0.00 0.28 0.00

19 111100000 0.06 0.00 0.00 0.33 0.00 0.00

20 111101000 1.54 1.86 1.80 2.65 1.13 0.32

21 111101010 0.06 0.00 0.00 0.00 0.00 0.32

22 111101011 1.29 1.55 0.30 1.66 1.98 0.96

23 111101100 0.74 0.62 0.90 1.66 0.28 0.32

24 111101110 0.25 0.62 0.30 0.00 0.00 0.32

25 111101111 3.76 0.31 0.90 1.32 8.19 7.69

26 111110000 0.18 0.62 0.00 0.00 0.28 0.00

27 111110011 0.12 0.00 0.00 0.66 0.00 0.00

28 111110111 0.25 0.00 0.00 0.00 0.85 0.32

29 111111000 3.76 7.74 3.90 3.31 2.54 1.28

30 111111010 0.37 0.00 0.00 0.33 1.13 0.32

31 111111011 10.10 8.36 6.01 7.95 14.97 12.82

32 111111100 3.45 1.55 2.40 6.62 4.24 2.56

33 111111110 0.86 0.31 0.60 1.32 1.13 0.96

34 111111111 30.79 7.43 6.91 39.74 42.37 58.65

So as to modify the hypothesized learning progression, we
first determine the transition points of the hypothesized learning
progression levels from the perspective of the attribute mastery
probability. According to the GDINA model analysis, the mastery
probability of all attributes is within the range of 0.4 to 0.95.
Meanwhile, 5.5% of the students still cannot master any attributes
related to probability (see Table 5). Therefore, the Level 1 of
learning progression is set so that students cannot master any
attributes. Next, we divide 0.4 to 0.95 into three parts, and
each part corresponds to a learning progression level. Based on
the perspective of attribute mastery probability, the modified
learning progression is presented in Table 6.

Students’ Understanding Levels of
Probability
Regarding the modified learning progression, middle school
students are classified into Level 2, Level 3 and Level 4, with
more students at Level 3 and Level 4. This implies that the
one-dimensional probabilistic thinking of middle school students

is basically mature, and the development of two-dimensional
probabilistic thinking (A3, A5, A7, A9) is relatively slow, which
is consistent with the three stages of the probabilistic cognitive
development proposed by Piaget and Inhelder (2014).

As for the learning progression levels of students in different
grades, students in grade 7 are classified into four levels on
average, with more students at Level 2 and Level 3, but still
11.46% of the students cannot master any attributes. This implies
that although the vast majority of students can recognize the
concept of randomness, there are still a few students in the
embryonic stage of probabilistic thinking, which confirms the
previous research conclusions (Moritz et al., 1996; Chan, 1997;
He and Gong, 2017).

Students in grade 8 are mainly classified into Level 2, and
averaged at the other three levels. However, there are more
students at Level 1 and Level 2 than in grade 7, suggesting
that the probabilistic thinking levels of students in grade 8 are
slightly degraded compared with grade 7. This may be because
the teaching of probability concepts is mainly set in grade 9, while
students in grade 8 have not learned the probability concepts
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TABLE 6 | Modified learning progression of probability.

Level Content Attributes

1 Students cannot understand any attributes
related to probability.

None

2 Students begin to understand the four
one-dimensional probability concepts
(randomness, sample space, probability of an
event and probability comparisons). But they
cannot perform well in probability estimation of
a one-dimensional event, and they cannot
transfer their understanding of probability
concepts from one-dimensional to
two-dimensional.

At least one of A1, A2,
A4, and A6

3 Students can perform probability estimation
and two-dimensional sample space. And they
cannot integrate all the two-dimensional
probability concepts.

Further master at least
one of A3, A8, and A9

4 Students can understand two-dimensional
probability comparisons and probability of a
two-dimensional event. Furthermore, they can
build a connection between one-dimensional
probability concepts and two-dimensional
probability concepts.

Further master A5 and
A7

for a long time, which leads to their backward thinking. This
suggests that the teaching of probability should be properly
arranged for each grade.

Students in grade 9 are mainly classified into Level 3 and
Level 4, which indicates that they have basically mastered all
one-dimensional probability concepts, and the two-dimensional
probabilistic thinking is also developing steadily. Students in
grades 10 and 11 are mainly classified into Level 4, with 42.37 and
58.65% of them reaching the AMP (111111111), which implies
that about half of them have not yet formed a mature probabilistic
thinking. That is to say, although students have mastered the two-
dimensional sample space, they are unable to effectively establish
a connection between two-dimensional probability concepts,
which makes the previous studies confirmed again (Liu and
Zhang, 1985; Li, 2003; He and Gong, 2017).

In short, middle school students develop a successively more
sophisticated understanding of the concepts involved in the
learning progression levels, but the reasons for the decline of
students in grade 8 still need to be further explored.

DISCUSSION

The current study aimed to develop a learning progression for
probability. To this end, we built a new measurement instrument
based on cognitive diagnosis theory for data collection and
data analysis. The findings will be discussed from the learning
progression for probability, the types probability AMPs for
students, learning progression verification and modification and
practical implications.

Learning Progression for Probability
The learning progression for probability, based on the cognitive
diagnosis theory, is presented in Table 6. Students at Level 1

cannot master any attributes. In particular, 5.5% of the students
are at Level 1, and the number of students at Level 1 decline
as the grade progresses. This confirms the research conclusion
of He and Gong, there are still a small number of middle
school students who do not understand the concepts related to
probability (He and Gong, 2017). Thus, although the curriculum
of junior high school should be spiraling upward in primary
school, those students whose probabilistic thinking has not yet
sprouted cannot be completely ignored.

Students at Level 2 can master at least one of one-dimensional
probability concepts, with the exception of probability
estimation, which combines the Uni-Structural level with
the Multi-Structural level in Li’s research (Li, 2003). By contrast,
contemporary students have made progress in probability,
suggesting that formal teaching in the early stage of secondary
school has achieved good results. It is worth noting that the
probability estimation found by Li’s research is out of step with
the development of other one-dimensional probability concepts
(Li, 2003). This may be due to the dispersion of the probability
content in the junior high school. Some suggestions are also put
forward for the classroom setting, which implies that we should
pay more attention to the cultivation of probability estimation
thoughts, and should not ignore the importance of probability
estimation as the foundation of statistics learning in the future.

Students at Level 3 can further master probability estimation
of a one-dimensional event, two-dimensional sample space and
probability estimation of a two-dimensional event. Logically
speaking, mastering one-dimensional probability concepts is the
prerequisite for continuing to learn two-dimensional probability
concepts. Meanwhile, the construction of sample space is
the prerequisite for probability calculation and probability
comparisons. This is similar to the conclusions of earlier
studies by Lecoutre, Fischbein, and English that students cannot
naturally understand the sample space, because the basic results
in different orders should be distinguished and counted as
different results (Lecoutre et al., 1990; Fischbein et al., 1991;
English, 1993).

Students at Level 4 can further develop probability of
a two-dimensional event and two-dimensional probability
comparisons. These two attributes belong to the last stage of
probabilistic cognitive development proposed by Piaget and
Inhelder — the stage of formal operation, thus verifying the
setting of Level 4 (Piaget and Inhelder, 2014). In discipline
logic, the sample space is the basis of probability of an event
and probability comparisons. However, not all students who
mastered the two-dimensional sample space can enter Level 4,
and the reasons are worth exploring. Referring to the answers
of these students, some students have not formed a stable
understanding of the sample space and are in a wandering
stage and some students have a lack of calculation formula or
calculation ability in the process.

The Types Probability AMPs for Students
There are 34 AMPs for students based on the GDINA model
analysis. As can be seen from Table 6, students’ AMPs for
probability can be summarized into two types through the
correspondence between learning progression levels and AMPs.
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The first type of AMPs is to master all the attributes at a lower
level and then develop the attributes at the next level, such
students account for 86.89% of the total. For instance, AMP
12 (110101010) indicates that students in this category have
mastered A1, A2, A4, A6, and A8, that is, after mastering all the
attributes at Level 2, they have developed A8 at Level 3.

It is worth noting that there is another type of AMPs. After
developing partial attributes at a low level, students develop
the attributes at the next level, reciprocating cycles, and finally
forming mature probabilistic thinking. Such students account for
13.11% of the total, mainly at Level 3 and Level 4. Looking at
the attribute hierarchy (see Figure 1), because the probability
estimation A8 and A9 are independent of the other attributes,
these two attributes may be the hardest for some students to
master. For example, AMP 32 (111111100) indicates that students
in this category have mastered A1–A7, but have not mastered
A8 and A9, that is, they have mastered all attributes of Level 2
and Level 4, but for Level 3, they have only mastered A3, and we
believe that they have reached Level 4.

To sum up, most students develop probabilistic thinking in
a spiraling manner, while a few develop probabilistic thinking
by learning each knowledge point independently. This result
indicates that the curriculum, teaching and evaluation should
attach importance to the cultivation and investigation of core
knowledge and ability, and further thinking is still needed
on how to form a good cognitive structure for students
around core knowledge.

Learning Progression Verification and
Modification
As the levels of learning progression correspond to the attributes
contained in probability, the results of GDINA model analysis are
used to verify and modify the hypothesized learning progression.
On the one hand, the order of attribute mastery probability
is basically consistent with the levels of hypothesized learning
progression, that is, the attributes at a low level are easier to
master, while the attributes at a high level are more difficult to
master. However, the attribute mastery probability of probability
estimation of a one-dimensional event is lower than expected,
which implies that students who can perform well on other
one-dimensional probability concepts (A1, A2, A4, and A6) still
perform poorly on probability estimation of a one-dimensional
event (A8). On the other hand, the AMPs of each grade students
can also be used to verify and modify the hypothesized learning
progression. The AMPs of students in grades 7 and 8 show that
they can perform well in A1, A2, A4 and A6, and slightly worse

on A8. The AMPs of students in grade 9 indicate that they have
further mastered A3, A8, and A9 on the basis of grades 7 and 8.
Students in grades 10 and 11 can master almost all the attributes.
The above analysis means that students’ understanding of all one-
dimensional probability concepts is not completely synchronized
in junior high school.

From the attribute hierarchy, the probability estimation of a
one-dimensional event (A8), which is an approximation of the
probability of an event from the experimental perspective, is
independent of A2–A7. Therefore, A8 may be more difficult to
master than A1, A2, A4, and A6. This finding may be due to the
fact that students in the second learning phase (grades 4 to 6) have
already begun the initial study of probability, but the curriculum
standards and textbooks for this phase focus on one-dimensional
probability concepts and do not formally introduce probability
estimation. It is not until the third learning phase (grade 9) that
students begin to systematically contact the idea of probability
estimation. This result shows that it is unreasonable to put A8 at
the Level 2 and adjust it to the Level 3.

Compared with the hypothesized learning progression, the
modified learning progression has obvious advantages. From the
macro perspective, the modified learning progression combines
the experience of subject experts, front-line teachers, and the
students’ actual learning conditions, which is closer to the
development characteristics of students’ probabilistic thinking
in each grade. From the micro perspective, each student’s
path from a lower level to a higher level is not unique.
Starting from the student’s current AMP and taking AMP 34
(111111111) as the learning target, a path can be selected to
match the learning progression and attribute hierarchy. This
suggests that the learning progression constructed by the GDINA
model includes both macroscopic and microscopic observations,
which can improve the theoretical nature of teaching decision-
making, enhance the operability of teaching practice, and provide
possibility for students’ self-improvement, so as to promote the
integration of curriculum, teaching and evaluation.

Practical Implications
Through the GDINA model analysis, this study used cross-
sectional data to construct a learning progression for probability.
Although no longitudinal data has been collected for verification,
the attribute hierarchy, learning progression and the student’s
AMP can still be helpful to front-line teachers. Before teaching,
the results of this study can provide a more scientific analysis
of learning situations for teaching design. After teaching, the
cognitive diagnostic test in this study can be used to check the

TABLE 7 | Individual information of three students.

ID Score AMP IRP Non-mastered attributes and remedy pathway

67 14 110101000 11111111111110000100000000 A3, A5, A7, A8, A9

A8→A9→A3→A5→A7

179 14 110101011 11011110111110000000001101 A3, A5, A7

A3→A5→A7

529 14 110100011 11111111110000000000001111 A3, A5, A6, A7

A6→A3→A5→A7
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learning effect of students, thereby providing a plan for teaching
review and teaching remedy.

Many researchers pointed out that students’ learning pathways
are not unique (Baroody et al., 2004), and teachers can
find several remedy pathways for students with specific
AMP to master all attributes by combining the learning
progression and attribute hierarchy. In addition, teachers
can gather students with specific AMP, which is more
effective. For example, for students with AMP (110100000),
the remedy pathway may be A8→A9→A6→A3→A5→A7 or
A6→A8→A9→A3→A5→A7. In the first remedy pathway,
students will first learn probability estimation, then learn
probability of a one-dimensional event, and finally learn
the sample space, probability comparison, and probability of
a two-dimensional event. In the second remedy pathway,
students will first develop a good one-dimensional probabilistic
thinking, and then gradually develop a mature two-dimensional
probabilistic thinking.

Furthermore, a student’s individual diagnostic report,
including individual test score, IRP, AMP and non-mastered
attributes, can be used to conduct an in-depth analysis of the
student’s knowledge state and provide personalized remedial
suggestions. For example, Table 7 shows the individual
information of three students. Even if they have the same score,
they may have different IRPs, AMPs, and remedy pathways.
This directly demonstrates the significant advantages of using
cognitive diagnosis assessment to develop learning progression.

Limitations and Future Work
Although this study has the above findings and implications,
there are still some limitations. First, this study used cross-
sectional data to construct a learning progression for probability,
but learning progression itself is a developmental concept, so
longitudinal data can be collected for more in-depth exploration
in the future. In addition, some scholars have recently explored
longitudinal cognitive diagnosis theory (Li et al., 2016; Zhan et al.,
2019; Zhan, 2020), so longitudinal tracking data can be collected
under the guidance of longitudinal cognitive diagnosis theory
to build learning progression that can reveal more about the
laws of education. Second, the effect of the constructed learning
progression is not fully explored in this study, so that future
research can use remedy pathways to examine the validity of

the cognitive diagnosis results. For example, students can be
divided into an experimental group and a control group. Courses
and teaching are arranged for the students in the experimental
group according to the learning progression, while the students
in the control group follow the normal teaching plan. If there
is a significant difference in performance between the two
groups at the end of the course, we believe that the learning
progression is effective. Further exploration can group students
with a specific AMP and select different remedy pathways to find
the most effective way for these students. In addition, realizing
the computerization of students’ diagnostic reports and targeted
remedial suggestions is also the direction of future development.
That is, computer programs need to be programmed to report
results automatically, which can help students achieve self-
remedy learning.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Northeast Normal University. The
participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

SB participated in the design of the study, test preparation,
data collection and analysis, analysis of the results, and
writing the manuscript, and agreed to submit the final version
of the manuscript.

ACKNOWLEDGMENTS

I would like to thank the students, teachers, and experts for
participating in and assisting with the present research.

REFERENCES
Acredolo, C., O’Connor, J., Banks, L., and Horobin, K. (1989). Children’s ability

to make probability estimates: skills revealed through application of Anderson’s
functional measurement methodology. Child. Dev. 60, 933–945. doi: 10.2307/
1131034

Aitken, C. G. G. (2009). Some thoughts at the interface of law and statistics. Law.
Probab. Risk. 8, 73–83. doi: 10.1093/lpr/mgp019

Alonzo, A., and Steedle, J. T. (2008). Developing and assessing a force and motion
learning progression. Sci. Educ. 93, 389–421. doi: 10.1002/sce.20303

Baroody, A. J., Cibulskis, M., Lai, M. L., and Li, X. (2004). Comments on the use
of learning trajectories in curriculum development and research. Math. Think.
Learn. 6, 227–260. doi: 10.1207/s15327833mtl0602_8

Basokcu, T. O. (2014). Classification accuracy effects of Q-Matrix validation and
sample size in DINA and G-DINA models. J. Educ. Pract. 5, 220–230.

Biehler, R. (1994). Probabilistic thinking, statistical reasoning, and the search
for causes—Do we need a probabilistic revolution after we have taught data
analysis. Res. Pap. ICOTS 4, 20–37.

Biggs, J. B., and Collis, K. F. (1982). Evaluating the Quality of Learning: The
SOLO Taxonomy (Structure of the Observed Learning Outcome). New York, NY:
Academic Press.

Biggs, J. B., and Collis, K. F. (1991). “Multimodal learning and the quality of
intelligent behavior,” in Intelligence: Reconceptualization and measurement, ed.
H. A. Rowe (Hillsdale: Lawrence Erlbaum), 57–76.

Catley, K., Lehrer, R., and Reiser, B. (2005). Tracing a Prospective Learning
Progression for Developing Understanding of Evolution. Washington, DC:
National Academy of Sciences.

Chan, W. S. (1997). 16 to 18 Year Old Students’ Errors and Misconceptions
in Learning Probability. Dissertation, Nanyang Technological University,
Singapore.

Frontiers in Psychology | www.frontiersin.org 10 September 2020 | Volume 11 | Article 569852

https://doi.org/10.2307/1131034
https://doi.org/10.2307/1131034
https://doi.org/10.1093/lpr/mgp019
https://doi.org/10.1002/sce.20303
https://doi.org/10.1207/s15327833mtl0602_8
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-569852 September 18, 2020 Time: 22:16 # 11

Bai Cognitive Diagnosis for Learning Progression

Chapin, S., Koziol, A., MacPherson, J., and Rezba, C. (2003). Navigating Through
Data Analysis and Probability in Grades 3-5. London: National Council of
Teachers of Mathematics.

Chen, F., Yan, Y., and Xin, T. (2017a). Developing a learning progression for
number sense based on the rule space model in China. Educ. Psychol. U.K. 37,
128–144. doi: 10.1080/01443410.2016.1239817

Chen, F., Zhang, S., Guo, Y., and Xin, T. (2017b). Applying the rule space model
to develop a learning progression for thermochemistry. Res. Sci. Educ. 47,
1357–1378. doi: 10.1007/s11165-016-9553-7

Cui, Y., and Leighton, J. P. (2009). The hierarchy consistency index: evaluating
person fit for cognitive diagnostic assessment. J. Educ. Meas. 46, 429–449.
doi: 10.1111/j.1745-3984.2009.00091.x

de la Torre, J. (2011). The generalized DINA model framework. Psychometrika 76,
179–199. doi: 10.1007/s11336-011-9207-7

Derek, C. B., and Alonzo, A. C. (2012). “The Psychometric modeling of ordered
multiple-choice item response for diagnostic assessment with a learning
progression,” in Proceedings of the Learning Progressions in Science Conference,
Iowa City, IA.

Duncan, R. G., and Cindy, E. H. S. (2009). Learning progressions: aligning
curriculum, instruction, and assessment. J. Res. Sci. Teach. 46, 606–609. doi:
10.1002/tea.20316

English, L. D. (1993). Children’s strategies for solving two-and three-dimensional
combinatorial problems. J. Res. Math. Educ. 24, 255–273. doi: 10.2307/749347

Fischbein, E. (1975). The Intuitive Sources of Probabilistic Thinking in Children.
Dordrecht: Reidel Publishing Company. doi: 10.1007/978-94-010-1858-6

Fischbein, E., and Gazit, A. (1984). Does the teaching of probability improve
probabilistic intuitions? Educ. Stud. Math. 15, 1–24. doi: 10.1007/BF00380436

Fischbein, E., Nello, M. S., and Marino, M. S. (1991). Factors affecting probabilistic
judgements in children and adolescents. Educ. Stud. Math. 22, 523–549. doi:
10.2307/3482209

Gao, Y., Chen, F., Xin, T., Zhan, P., and Jiang, Y. (2017). Applying psychometric
models in learning progressions studies: theory, method and breakthrough.
Adv. Psychol. Sci. 25, 1623–1630. doi: 10.3724/sp.j.1042.2017.01623

Green, D. R. (1982). Probability Concepts in 11-16 Year Old Pupils. Dissertation,
Loughborough University of Technology, Loughborough.

He, S. Q., and Gong, Z. K. (2017). Learning Progressions of Probability in Children
of 6 to 14 Years. Curric. Teach. Mater. Method 37, 61–67.

Johnson, P. (2013). ““How students’ understanding of particle theory develops:
a learning progression,”,” in Concepts of Matter in Science Education, eds T.
Georgios and S. Hannah (Dordrecht: Springer), 47–67. doi: 10.1007/978-94-
007-5914-5_3

Jones, G. A., Langrall, C. W., Thornton, C. A., and Mogill, A. T. (1997). A
framework for assessing and nurturing young children’s thinking in probability.
Educ. Stud. Math. 32, 101–125. doi: 10.1023/a:1002981520728

Jones, G. A., Langrall, C. W., Thornton, C. A., and Mogill, A. T. (1999). Students’
probabilistic thinking in instruction. J. Res. Math. Educ. 30, 487–519. doi: 10.
2307/749771

Lecoutre, M. P., Durand, J. L., and Cordier, J. (1990). A study of two biases in
probabilistic judgments: representativeness and equiprobability. Adv. Psychol.
68, 563–575. doi: 10.13140/2.1.4664.8324

Li, F., Cohen, A., Bottge, B., and Templin, J. (2016). A latent transition analysis
model for assessing change in cognitive skills. Educ. Psychol. Meas. 76, 181–204.
doi: 10.1177/0013164415588946

Li, J. (2003). Teaching and Learning of Probability in Primary and Secondary
Schools. Shanghai: East China Normal University Press.

Liu, F., and Zhang, Z. J. (1985). Cognitive Development and Education of Children.
Beijing: People’s Education Press.

Liu, X., and Collard, S. (2005). Using the Rasch model to validate stages of
understanding the energy concept. J. Appl. Meas. 6, 224–241.

Liu, X., and McKeough, A. (2005). Developmental growth in students’ concept of
energy: analysis of selected items from the TIMSS database. J. Res. Sci. Teach.
42, 493–517. doi: 10.1002/tea.20060

Liu, Y., and Thompson, P. (2007). Teachers’ understandings of probability. Cogn.
Instruc. 25, 113–160. doi: 10.2307/27739856

Mohan, L., Chen, J., and Anderson, C. W. (2009). Developing a multi-year learning
progression for carbon cycling in socio-ecological systems. J. Res. Sci. Teach. 46,
675–698. doi: 10.1002/tea.20314

Moritz, J. B., Watson, J. M., and Pereira-Mendoza, L. (1996). “The language of
statistical understanding: an investigation in two countries,” in Proceedings of
the Annual Conference of the Australian Association for Research in Education,
Camberwell.

National Research Council (2007). Taking Science to School: Learning and Teaching
Science in Grades K-8. Washington, DC: The National Academies Press.

Piaget, J., and Inhelder, B. (2014). The Origin of the Idea of Chance in Children
(Psychology Revivals). London: Psychology Press. doi: 10.4324/9781315766959

Potyka, N., and Thimm, M. (2015). “Probabilistic reasoning with inconsistent
beliefs using inconsistency measures,” in Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, Menlo Park, CA.

Rasch, G. (1960/1980). Probabilistic Models for Some Intelligence and Attainment
Tests. Chicago, IL: The University of Chicago Press.

Ray, A., and Margaret, W. (eds) (2003). PISA Programme for international student
assessment (PISA) PISA 2000 technical report: PISA 2000 technical report. Paris:
OECD Publishing.

Rupp, A. A., and van Rijn, P. W. (2018). GDINA and CDM packages in R. Meas.
Interdiscip. Res. Perspect. 16, 71–77. doi: 10.1080/15366367.2018.1437243

Scheaffer, R. L. (1984). “The role of statistics in revitalizing precollege mathematics
and science education,” in Proceedings of the Section on Statistical Education,
(Washington, DC: American Statistical Association), 19–21.

Tatsuoka, K. K. (2009). Cognitive Assessment: An Introduction to the Rule Space
Method. New York: Routledge. doi: 10.4324/9780203883372

Templin, J., and Bradshaw, L. (2013). Measuring the reliability of diagnostic
classification model examinee estimates. J. Classif. 30, 251–275. doi: 10.1007/
s00357-013-9129-4

Todd, A., and Romine, W. L. (2016). Validation of the learning progression-
based assessment of modern genetics in a college context. Int. J. Sci. Educ. 38,
1673–1698. doi: 10.1080/09500693.2016.1212425

Tu, D. P., Cai, Y., and Ding, S. L. (2012). Cognitive Diagnosis: Theory, Methods and
Applications. Beijing: Beijing Normal University Press.

Tu, D. P., Cai, Y., Gao, X. L., and Wang, D. X. (2019). Advanced Cognitive
Diagnosis. Beijing: Beijing Normal University Press.

Van de Walle, J. A., Karp, K., and Bay-Williams, J. M. (2016). Elementary
and Middle School Mathematics: Teaching Developmentally, 9th Edn. London:
Pearson Education Inc.

Wang, C., and Gierl, M. J. (2007). “Investigating the cognitive attributes underlying
student performance on the SAT critical reading subtest: an application of the
attribute hierarchy method,” in Proceedings of the annual meeting of the National
Council on Measurement in Education, Washington, DC.

Williams, J. S., and Amir, G. S. (1995). 11-12 Year Old Children’s Informal
Knowledge and Its Influence on their Formal Probabilistic Reasoning. ERIC
ED387256. London: ERIC.

Wilson, M. (2005). Constructing Measures: An Item Response Modeling Approach.
Mahwah, NJ: Lawrence Erlbaum Associates. doi: 10.4324/9781410611697

Xie, J. S., and Lu, Y. S. (2011). The quantitative classification of the level of
economic development of Chinese provinces and cities. Modern Finan. Econ.
31, 96–99.

Zhan, P. (2020). Longitudinal learning diagnosis: minireview and future research
directions. Front. Psychol. 11:1185. doi: 10.3389/fpsyg.2020.01185

Zhan, P., Jiao, H., Liao, D., and Li, F. (2019). A longitudinal higher-order
diagnostic classification model. J. Educ. Behav. Stat. 44, 251–281. doi: 10.3102/
1076998619827593

Zhang, Z. J., Liu, F., and Zhao, S. W. (1985). A study of the development of 5 to
15-year-old’s concept of probability. J. Psychol. Sci. 6, 3–8. doi: 10.16719/j.cnki.
1671-6981.1985.06.001

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Bai. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 11 September 2020 | Volume 11 | Article 569852

https://doi.org/10.1080/01443410.2016.1239817
https://doi.org/10.1007/s11165-016-9553-7
https://doi.org/10.1111/j.1745-3984.2009.00091.x
https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1002/tea.20316
https://doi.org/10.1002/tea.20316
https://doi.org/10.2307/749347
https://doi.org/10.1007/978-94-010-1858-6
https://doi.org/10.1007/BF00380436
https://doi.org/10.2307/3482209
https://doi.org/10.2307/3482209
https://doi.org/10.3724/sp.j.1042.2017.01623
https://doi.org/10.1007/978-94-007-5914-5_3
https://doi.org/10.1007/978-94-007-5914-5_3
https://doi.org/10.1023/a:1002981520728
https://doi.org/10.2307/749771
https://doi.org/10.2307/749771
https://doi.org/10.13140/2.1.4664.8324
https://doi.org/10.1177/0013164415588946
https://doi.org/10.1002/tea.20060
https://doi.org/10.2307/27739856
https://doi.org/10.1002/tea.20314
https://doi.org/10.4324/9781315766959
https://doi.org/10.1080/15366367.2018.1437243
https://doi.org/10.4324/9780203883372
https://doi.org/10.1007/s00357-013-9129-4
https://doi.org/10.1007/s00357-013-9129-4
https://doi.org/10.1080/09500693.2016.1212425
https://doi.org/10.4324/9781410611697
https://doi.org/10.3389/fpsyg.2020.01185
https://doi.org/10.3102/1076998619827593
https://doi.org/10.3102/1076998619827593
https://doi.org/10.16719/j.cnki.1671-6981.1985.06.001
https://doi.org/10.16719/j.cnki.1671-6981.1985.06.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	Developing a Learning Progression for Probability Based on the GDINA Model in China
	Introduction
	Hypothesized Learning Progression
	Attribute Selection
	Attribute Hierarchy
	Hypothesized Learning Progression

	Materials and Methods
	Item Design
	Participants and Procedure
	Data Analysis
	Instrument Functioning
	GDINA Model Analysis
	Learning Progression Verification and Modification


	Results
	Instrument Functioning
	Learning Progression Verification and Modification
	GDINA Model Analysis
	Learning Progression Verification and Modification Process

	Students' Understanding Levels of Probability

	Discussion
	Learning Progression for Probability
	The Types Probability AMPs for Students
	Learning Progression Verification and Modification
	Practical Implications
	Limitations and Future Work

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	References


